2018年中考数学总复习第四单元三角形专题14三角形和全等三角形试题20180112132
5.14三角形综合题(第4部分)-2018年中考数学试题分类汇编(word解析版)
第五部分图形的性质5.14 三角形综合题【一】知识点清单三角形综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省孝感市-第10题-3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【思路分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH 即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP= =x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答过程】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【总结归纳】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.2.(2018年湖北省荆门市-第11题-3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A B C.1 D.2【知识考点】轨迹;等腰直角三角形【思路分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答过程】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.【总结归纳】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.3.(2018年江苏省扬州市-第8题-3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【思路分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答过程】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【总结归纳】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题1.(2018年江苏省泰州市-第14题-3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为(用含α的式子表示).【知识考点】三角形中位线定理;角平分线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形的性质得到∠DAC=90°﹣α,根据角平分线的定义、三角形的外角的性质得到∠CEB=180°﹣2α,根据三角形中位线定理、平行线的性质得到∠CEF=∠D=α,结合图形计算即可.【解答过程】解:∵∠ACD=90°,∠D=α,∴∠DAC=90°﹣α,∵AC平分∠BAD,∴∠DAC=∠BAC=90°﹣α,∵∠ABC=90°,EAC的中点,∴BE=AE=EC,∴∠EAB=∠EBA=90°﹣α,∴∠CEB=180°﹣2α,∵E、F分别为AC、CD的中点,∴EF∥AD,∴∠CEF=∠D=α,∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,故答案为:270°﹣3α.【总结归纳】本题考查的是三角形中位线定理、直角三角形的性质、角平分线的定义,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题1.(2018年湖北省荆门市-第19题-9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB 边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若AC边上找一点H,使得BH+EH最小,并求出这个最小值.【知识考点】轴对称﹣最短路线问题;坐标与图形性质;全等三角形的判定与性质;等边三角形的性质【思路分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答过程】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.【总结归纳】本题考查轴对称最短问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.2.(2018年湖北省江汉油田/潜江市/天门市/仙桃市-第24题-10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【知识考点】三角形综合题.【思路分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答过程】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD 与△CAE 中,,∴△BAD ≌△CAE (SAS ), ∴BD=CE=9,∵∠ADC=45°,∠EDA=45°, ∴∠EDC=90°, ∴DE==6,∵∠DAE=90°, ∴AD=AE=DE=6.【总结归纳】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(2018年湖南省岳阳市-第23题-10分)已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示). 【知识考点】几何变换综合题.【思路分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可; (2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD ,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答过程】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【总结归纳】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.4.(2018年江苏省南通市-第26题-12分)如图,△ABC中,AB=6cm,AC=,BC=,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP 的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【知识考点】三角形综合题.【思路分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P 与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答过程】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【总结归纳】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2018年江苏省连云港市-第27题-14分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.S 时,求AE的长.(4)如图2,当△ECD的面积16【知识考点】三角形综合题.【思路分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答过程】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【总结归纳】本题考查三角形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.6.(2018年江苏省扬州市-第27题-12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN 的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【知识考点】三角形综合题.【思路分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答过程】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.【总结归纳】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.7.(2018年江苏省常州市-第27题-10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【知识考点】线段垂直平分线的性质;直角三角形斜边上的中线;作图—复杂作图.【思路分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答过程】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【总结归纳】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2018中考数学专题复习 全等三角形压轴题分类解析(无答案)
三角形综合题归类考点:利用角相等证明垂直1. 已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系2. 如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:CD=BF ;(2)求证:AD ⊥CF ;(3)连接AF ,试判断△ACF 的形状.拓展巩固:如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .3. 如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论;(2)将正方形DEFG 绕点D 按顺时针方向旋转,使E 点落在BC 边上,如图2,连接AE 和GC .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.BAC E FQPD A BCDEF图9ABCDE F4.如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也 在直线l 上,边EF 与边AC 重合,且EF FP =(1) 在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2) 将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接 ,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想; (3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长 线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.等腰三角形(中考重难点之一) 考点1:等腰三角形性质的应用1. 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连结BD ,取BD 的中点M ,连结,ME MC .试判断EMC ∆的形状,并说明理由. MED CBA压轴题拓展:(三线合一性质的应用)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .l(1)A B(F) (E)C PABECFPQ (2) lABEC FP l(3)Q当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S ∆∆∆+=.当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.FEDCBA图1AECF BD图2AECFBD图32. 已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。
(最新整理)2018中考数学专题复习教案全等三角形中动点问题
2018中考数学专题复习教案全等三角形中动点问题
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018中考数学专题复习教案全等三角形中动点问题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018中考数学专题复习教案全等三角形中动点问题的全部内容。
C
F
图1图2 图3。
三角形、三角形的相似及全等、解直角三角形-中考数学专题复习试题
三角形、三角形的相似及全等、解直角三角形教学准备一. 教学目标:(1)掌握三角形、三角形的全等、相似及解直角三角形的有关概念。
(2)利用三角形的相似、全等及解直角三角形的知识进行计算、解答有关综合题。
(3)培养学生的转化、数形结合、及分类讨论的数学思想的能力二. 教学重点、难点:三角形、三角形的相似及全等、解直角三角形的基础知识、基本技能是本节的重点。
难点是综合应用这些知识解决问题的能力。
三. 知识要点:知识点1 三角形的边、角关系①三角形任何两边之和大于第三边;②三角形任何两边之差小于第三边;③三角形三个内角的和等于180°;④三角形三个外角的和等于360°;⑤三角形一个外角等于和它不相邻的两个内角的和;⑥三角形一个外角大于任何一个和它不相邻的内角。
知识点2 三角形的主要线段和外心、内心①三角形的角平分线、中线、高;②三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到各顶点的距离相等;③三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三边的距离相等;④连结三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边且等于第三边的一半。
知识点3等腰三角形等腰三角形的识别:①有两边相等的三角形是等腰三角形;②有两角相等的三角形是等腰三角形(等角对等边);③三边相等的三角形是等边三角形;④三个角都相等的三角形是等边三角形;⑤有一个角是60°的等腰三角形是等边三角形。
等腰三角形的性质:①等边对等角;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形是轴对称图形,底边的中垂线是它的对称轴;④等边三角形的三个内角都等于60°。
知识点4直角三角形直角三角形的识别:①有一个角等于90°的三角形是直角三角形;②有两个角互余的三角形是直角三角形;③勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案
数学文化讲堂(四)一海伦——秦九韶公式古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=12(a+b+c),那么三角形的面积为:S△ABC=p(p-a)(p-b)(p-c)(海伦公式).我国南宋时期数学家秦九韶(约1202~约1261),曾提出利用三角形的三边求面积的秦九韶公式:S△ABC=1 4[a2b2-(a2+b2-c22)2].海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦——秦九韶公式.(人教八下P16,北师八上P51)1. 若△ABC的三边长为5,6,7,△DEF的三边长为5,6,7,请利用上面的两个公式分别求出△ABC和△DEF的面积.2. 如图,在△ABC中,BC=5,AC=6,AB=9,求△ABC的内切圆半径.第2题图二赵爽弦图赵爽,三国吴人,是三国到南宋时期三百多年间中国杰出的数学家之一.他在注解《周髀算经》中给出的“赵爽弦图”证明了勾股定理的准确性,如图所示,四个全等的直角三角形可以围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.证明方法如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a2,朱实面积+黄实面积=a2+b2=大正方形面积=c2.(人教八下P30,北师八下P16)3. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为________.第3题图第4题图4. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________.三泰勒斯——全等泰勒斯,公元前7至6世纪的古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人.泰勒斯是古希腊及西方第一个有记载有名字留下来的自然科学家和哲学家.5. 相传泰勒斯利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过点B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )第5题图A. SASB. ASAC. AASD. SSS四 《海岛算经》《海岛算经》是中国最早的一部测量数学专著,也是中国古代高度发达的地图学的数学基础.由刘徽于三国魏景元四年所撰,《海岛算经》共九问,都是用表尺重复从不同位置测望,取测量所得的差数,进行计算从而求得山高或谷深.(北师九上P 104)6. 该书中提出九个测量问题,其中一个为:有望深谷,偃矩岸上,令勾高六尺.从勾端望谷底,入下股九尺一寸.又设重矩于上,其矩间相去三丈.更从勾端望谷底,入上股八尺五寸.问谷深几何?题目的大意是:测量一个山谷AE 的深度,拿一个高AB 为6尺的矩尺△ABD 放在岸上,从B 端看谷底EG(D 在BG 上),下股AD 为9尺1寸,向上平移矩尺3丈,现从B ′端看谷底EG ,上股A ′D ′为8尺5寸,试求谷深AE.(一丈=10尺=100寸)第6题图7. 某校王老师根据《海岛算经》中的问题,编了这样一道题:如图,甲、乙两船同时由港口A 出发开往海岛B ,甲船沿北偏东60°方向向海岛B 航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,在C 港口停留0.5小时后再沿东北方向开往B 岛,B 岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔,两船看到灯塔的时间相差多少?(精确到分钟,3≈1.73,2≈1.41)第7题图答案1. 解: 当△ABC 的三边长为5,6,7时,则p =12×(5+6+7)=9,∴S △ABC =9×(9-5)×(9-6)×(9-7)=66,当△DEF 的三边长为5,6,7时,S △DEF =14[(5)2×(6)2-(5+6-72)2]=262. 2. 解:由题意得p =12×(5+6+9)=10,则 S =10×(10-5)×(10-6)×(10-9)=10 2.∵S =12r(AC +BC +AB), ∴102=12r(5+6+9), 解得r =2,故△ABC 的内切圆半径为 2.3. 1或4 【解析】分两种情况:①5为斜边时,由勾股定理得,另一直角边长=52-32=4,∴小正方形的边长=4-3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积=22=4;综上所述,小正方形的面积为1或4.4. 6 【解析】设AH =x ,则AE =x +2,由四个全等的直角三角形可得DE =AH =x ,在Rt △DAE 中,由勾股定理得:AD 2=AE 2+DE 2,即102=(x +2)2+x 2,解得x =6或x =-8(舍去).5. B6. 解:∵AD ∥EG ,∴△BAD ∽△BEG ,∴BA BE =AD EG, ∴66+AE =9.1EG , ∵A ′D ′∥EG ,∴△B ′A ′D ′∽△B ′EG ,∴B ′A ′B ′E =A ′D ′EG, ∴66+30+AE =8.5EG , ∴9.1(6+AE)=8.5(36+AE),∴解得AE =419(尺),∴谷深AE 为41丈9尺.7. 解:如解图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,设BD =x , 在Rt △BCD 中,第7题解图∵∠BCD =45°,∴BC =BD sin 45°=2x , 在Rt △ABD 中,∵∠ABD =60°,∴AD =BD ·tan 60°=3x ,AB =BD cos 60°=2x , ∵AC =20×1=20(海里),AC +CD =AD ,∴20+x = 3 x ,解得x =10(3+1)海里,∴AB =2x =20(3+1)海里,BC =2x =102(3+1)海里,∴t 甲=(AB -5)÷15×60=(203+20-5)÷15×60≈198.4(分钟),t乙=(AC+BC-5)÷20×60+0.5×60=[20+102(3+1)-5]÷20×60+30 ≈190.5(分钟).∵t甲>t乙,t甲-t乙≈8(分钟),∴乙船先看到灯塔,两艘船看到灯塔的时间相差约8分钟.。
2018年中考数学专题复习《全等三角形》模拟演练含答案
中考专题复习模拟演练:全等三角形一、选择题1.如图,某同学将一块三角形玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带(1)去B. 带(2)去C. 带(3)去D. 带(1)(2)去2.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为()A. 80°B. 70°C. 30°D. 100°3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若AC=6 cm,则AE+DE等于( )A. 4 cmB. 5 cmC. 6 cmD. 7 cm4.如图,若△ABE≌△ACF,且AB=5,AE=3,则EC的长为()A. 2B. 3C. 5D. 2.55.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A. 2对B. 3对C. 4对D. 5对6.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE 交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:①CE=BD=2;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有()A. 1个B. 2个C. 3个D. 4个7.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A. 1对B. 2对C. 3对D. 4对8.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A. 80°B. 70°C. 60°D. 50°9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°10.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是( )A. B. C. D.二、填空题11.用直尺和圆规作一个角等于已知角得到两个角相等的依据是________12.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)13.如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________ .14.如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________15.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,其中正确的结论有________(填序号).16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E 离开点A后,运动________秒时,△DEB与△BCA全等.17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图7,则∠EAB是多少度?请你说出∠EAB= ________度18.如图(1)所示,已知AB=AC,D为∠BAC的角平分线上面的一点,连接BD、CD;如图(2)已知AB=AC,D、E、F为∠BAC的角平分线上面的三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第N个图形中有全等三角形的对数是________.三、解答题19.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.20.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?21.如图1,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连结AE.(1)求证:AE∥BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.22.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.(1)证明:BE=CF;(2)如果AB=16,AC=10,求AE的长.23.将一块正方形和一块等腰直角三角形如图1摆放.(1)如果把图1中的△BCN绕点B逆时针旋转90°,得到图2,则∠GBM=________;(2)将△BEF绕点B旋转.①当M,N分别在AD,CD上(不与A,D,C重合)时,线段AM,MN,NC之间有一个不变的相等关系式,请你写出这个关系式:________;(不用证明)②当点M在AD的延长线上,点N在DC的延长线时(如图3),①中的关系式是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.24.已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、选择题C A C B C CD A B C二、填空题11.SSS12.①③④13.2114.60°或120°15.①②③16.0,2,6,817.3518.n(n+1)三、解答题19.证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC20.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.21.(1)证明:∵∠BCA=∠DCE=60°,∴∠BCA﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,在△BDC与△ACE中,,∴△DBC≌△ACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠BAC=60°,∴∠CAE+∠BAC=∠BAE=120°,∴∠B+∠BAE=180,∴AE∥BC(2)成立,证明如下:∵△DBC≌△ACE,∴∠BDC=∠AEC,在△DMC和△AME中,∵∠BDC=∠AEC(已证),∴∠DMC=∠EMA,∴△DMC∽△EMA,∴∠EAM=∠DCM=60°,∴∠EAC=120°,又∵∠DCA+∠CAE=∠DCE+∠ECA+CEA=180°+∠ECA,∴AE∥BC22.(1)证明:如图,连接BD、CD.∵DG⊥BC,BG=GC,∴DB=DC,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴△DEB≌△DFC,∴BE=CF.(2)解:在Rt△ADE和rT△ADF中,,∴△ADE≌△ADF,∴AE=AF,∴AB﹣BE=AC+CF,∴2AE=AB﹣AC=16﹣10,∴AE=323.(1)45°(2)MN=AM+CN24.(1)解:全等.∵四边形ABCD是矩形,所以∠A=∠B=∠C=∠ADC=90°,AB=CD,由题意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,所以∠A1=∠C=90°,∠CDF+∠EDF=90°,所以∠A1DE=∠CDF,所以△EDA1≌△FDC(ASA)(2)解:△B1DG和△EA1G全等.与△B1DG相似,设FC= ,则B1F=BF= ,B1C= DC=1,△FCB所以,所以,所以△FCB1与△B1DG相似,相似比为4:3(3)解:△FCB1与△B1DG全等.设,则有,,在直角中,可得,整理得,解得 (另一解舍去),所以,当B1C= 时,△FCB1与△B1DG全等.。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学总复习《全等三角形》专项提升练习题(附答案)
中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。
中考数学试题分类汇总《全等三角形》练习题
中考数学试题分类汇总《全等三角形》练习题(含答案)全等三角形的判定1.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、4或2、3去就可以了C.带1、4或3、4去就可以了D.带1、2或2、4去就可以了【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,2.如图,AC=BC=BE=DE=10cm,点A、B、D在同一条直线上,AB=12cm,BD=16cm,则点C和点E之间的距离是()A.6cm B.7cm C.8cm D.【分析】连接CE,过C作CM⊥AB于M,过E作EN⊥BD于N,根据等腰三角形的性质得到AM=BM =6cm,BN=DN=8cm,根据勾股定理得到的长,根据全等三角形的性质得到∠MBC=∠BEN,推出∠CBE=90°,根据勾股定理得出答案.【解答】解:连接CE,过C作CM⊥AB于M,过E作EN⊥BD于N,∴∠AMC=∠BMC=∠BNE=∠DNE=90°,∵AC=BC,BE=DE,∴AM=BM=AB=×12=6(cm),BN=DN=BD=×16=8(cm),∴CM==8(cm),在Rt△BCM与Rt△EBN中,,∴Rt△BCM≌Rt△EBN(HL),∴∠MBC=∠BEN,∵∠BEN+∠EBN=90°,∴∠MBC+∠EBN=90°,∴∠CBE=90°,∴CE==10(cm),故点C和点E之间的距离是10cm,3.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.【分析】根据AAS证明△ABD与△CBD全等.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).4.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.【解答】证明:∵BF=DC,∴BF﹣FC=DC﹣FC,即BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中∴△ABC≌△EDF(AAS).全等三角形的性质5.如图,△ABE≌△DCE,点E在线段AD上,点F在CD延长线上,∠F=∠A,求证:AD∥BF.【分析】根据△ABE≌△DCE得到∠A=∠ADC,然后利用∠F=∠A得到∠F=∠EDC,利用同位角相等,两直线平行证得结论.【解答】证明:∵△ABE≌△DCE,∴∠A=∠ADC,∵∠F=∠A,∴∠F=∠EDC,∴AD∥BF.全等三角形的判定与性质6.如图,△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中不一定成立的是()A.EC=CF B.∠DEF=90°C.AC=DF D.AC∥DF【分析】由平移的性质得出△ABC≌△DEF,得出对应边相等,对应角相等,即可得出结论.【解答】解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴AC∥DF,△ABC≌△DEF,∴∠ACB=∠DFE,∠DEF=∠ABC=90°,AC=DF,BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项B、C、D正确,不符合题意,选项A错误,符合题意;7.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E.(1)求证:△ABD≌△EBD;(2)当AB=12,CE=3,AD=4时,求∠C的正切值.【分析】(1)根据角平分线的定义得∠ABD=∠EBD,再利用AAS即可证明△ABD≌△EBD;(2)由△ABD≌△EBD,得AD=DE=4,根据正切的定义可得答案.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠EBD,∵DE⊥BC,∴∠DEB=∠A=90°,在△ABD和△EBD中,,∴△ABD≌△EBD(AAS);(2)解:∵△ABD≌△EBD,∴AD=DE=4,∴tan C=.8.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,9.已知∠MON=90°,点A,B分别在射线OM,ON上(不与点O重合),且OA>OB,OP平分∠MON,线段AB的垂直平分线分别与OP,AB,OM交于点C,D,E,连接CB,在射线ON上取点F,使得OF =OA,连接CF.(1)依题意补全图形;(2)求证:CB=CF;(3)用等式表示线段CF与AB之间的数量关系,并证明.【分析】(1)根据几何语言画出对应的几何图形;(2)过点C作CE垂直平分AB,CF⊥OP,垂足分别为D,C,根据线段的垂直平分线的性质得到CA =CB,根据角平分线的定义得到∠AOC=∠FOC,则可判断△AOC≌△FOC,从而得到CB=CF;(3)证明∠ACB=90°,结合(2)证明三角形ABC是等腰直角三角形,进而可得线段CF与AB之间的数量关系.【解答】(1)解:如图即为补全的图形;(2)证明:连接CA,∵OP是∠MON的平分线,∴∠AOC=∠FOC,在△AOC和△FOC中,,∴△AOC≌△FOC(SAS),∴CA=CF,∵CD是线段AB的垂直平分线,∴CA=CB,∴CB=CF;(3)AB=CF,证明:∵△AOC≌△FOC,∴∠CAO=∠CFB,∵CF=CB,∴∠CBF=∠CFB,∴∠CAO=∠CBF,∵∠CBF+∠CBO=180°,∴∠CAO+∠CBO=180°,∴∠AOB+∠ACB=180°,∵∠AOB=90°,∴∠ACB=90°,∵CA=CB,∴△ABC是等腰直角三角形,∴AB=CB,∴AB=CF.10.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC 交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA 证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.11.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.【分析】根据AAS证明△ABD与△CBD全等.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).12.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC.若AD=4,AB=6,BC=8,则梯形ABCD的周长为24.【分析】先判断△AMB≌△DMC,从而得出AB=DC,然后代入数据即可求出梯形ABCD的周长.【解答】解:∵AD∥BC,∴∠AMB=∠MBC,∠DMC=∠MCB,又∵MC=MB,∴∠MBC=∠MCB,∴∠AMB=∠DMC,在△AMB和△DMC中,∵∴△AMB≌△DMC(SAS),∴AB=DC,四边形ABCD的周长=AB+BC+CD+AD=24.13.如图,点E,F在线段AD上,AB∥CD,∠B=∠C,BE=CF.求证:AF=DE.【分析】根据AB∥CD,可得∠A=∠D,易证△ABE≌△DCF(AAS),根据全等三角形的性质可得AE=FD,进一步即可得证.【解答】证明:∵AB∥CD,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE.14.如图,已知AD=AE,AB=AC.求证:BE=CD.【解答】证明:在△AEB与△ADC中,,∴△AEB≌△ADC(SAS),∴BE=CD.15.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.16.如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.【分析】先证明出△AOB≌△COD,进而得出OB=OC,根据等腰三角形的性质得出结论.【解答】证明:在△AOB与△COD中,,∴△AOB≌△DOC(AAS),∴OB=OC,∴∠OBC=∠OCB.17.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.【分析】由已知两对边相等,再加上一对对顶角相等,利用SAS得出△AOB≌△COD,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行,可得出AB与CD平行.【解答】证明:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.18.如图,点C是AB的中点,DA⊥AB,EB⊥AB,AD=BE.求证:DC=EC.【解答】证明:∵DA⊥AB,EB⊥AB,∴∠A=∠B=90°,∵点C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴DC=EC.19.如图,点E、C在线段BF上,AC∥DF,∠A=∠D,AB=DE,证明:BE=CF.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF.20.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【解答】证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.21.如图,E为BC上一点,AC∥BD,AC=BE,∠ABC=∠D.求证:AB=ED.【解答】证明:∵AC∥BD,∴∠C=∠EBD,在△ABC与△EDB中,,∴△ABC≌△EDB(AAS),∴AB=ED.22.如图,点E,F在线段BC上,AB∥CD,AB=DC,BF=CE.求证:AF∥DE.【解答】证明:∵AB∥CD,∴∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠AFB=∠DEC,∴AF∥DE.。
2018年中考数学试题分类汇编知识点28全等三角形
知识点28 全等三角形一、选择题1. (2018贵州安顺,T5,F3)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定.....△ABE≌△ACD( )A.∠B=∠CB. AD = AEC. BD = CED. BE=CD【答案】D【解析】选项A,当AB=AC,∠A=∠A,∠B=∠C时,△ABE≌△ACD(ASA),故此选项不符合题意;选项B,当AB=AC,∠A=∠A,AE=AD时,△ABE≌△ACD(SAS),故此选项不符合题意;选项C,由AB=AC,BD=CE,得AB-AD=AD,AC-CE=AE,即AD=AE, △ABE≌△ACD(SAS),故此选项不符合题意;选项D,当AB=AC,∠A=∠A,BE=CD时,不能判定△ABE与△ACD全等,故此选项符合题意. 故答案选D.【知识点】全等三角形的判定定理.2. (2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;二、填空题1.(2018浙江金华丽水,12,4分)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 .【答案】答案不唯一,如CA =CB ,CE =CD 等.【解析】已知两角对应相等,可考虑全等三角形的判定ASA 或AAS .故答案不唯一,如CA =CB ,CE =CD 等.【知识点】全等三角形的判定2. (2018浙江衢州,第13题,4分)如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF =CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________________(只需写一个,不添加辅助线)第13题图【答案】AC//DF,∠A=∠D 等【解析】本题考查了全等三角形的判定,解题的关键是了解全等三角形的判断方法. 因为已知AB//DE ,BF=CE,这样可以看作时已知一角和一边对应相等,利用判定方法进行判断写出即可.【知识点】全等三角形的判定1. (2018湖北荆州,T12,F3)已知:AOB ∠,求作:AOB ∠的平分线.作法:①以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠内部交于点C ;③画射线OC .射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .【答案】SSS【解析】由作图可得OM=ON ,MC=NC ,而OC=OC ,∴根据“SSS ”可判定∆MOC ≌∆NOC.【知识点】作图—基本作图;三角形全等的判定.三、解答题1. (2018四川省南充市,第18题,6分)如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.【思路分析】根据等式的基本性质,求得∠BAC =∠DAE ,再利用SAS 证明三角形全等,最后利用全等三角形的性质即可得证.【解题过程】证明:∵∠BAE =∠DAC ,∴∠BAE -∠CAE =∠DAC -∠CAE .∴∠BAC =∠DAE . --------------------------------------- 2分在△ABC 与△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (SAS). ---------------------- 5分 ∴∠C =∠E . ------------------------------------------------ 6分【知识点】全等三角形的判定2. (2018湖南衡阳,20,6分)如图,已知线段AC ,BD 相交于点E ,AE=DE ,BE=CE.(1)求证:△ABE ≌△DCE ;(2)当AB =5时,求CD 的长.【思路分析】(1)根据已知条件,直接利用SAS 证明△ABE ≌△DCE 即可;(2)根据三角形全等的性质,可知CD=AB ,据此解答即可.【解题过程】解:(1)证明:在△ABE 和△DCE 中,AE=DE AEB=DEC BE=CE ⎧⎪⎨⎪⎩∠∠,∴△ABE ≌△DCE .(2)∵△ABE ≌△DCE ,∴CD =AB .∵AB =5,∴CD =5.【知识点】全等三角形的判定、全等三角形的判性质3. (2018江苏泰州,20,8分)(本题满分8分)如图,90A D ==∠∠°,AC DB =,AC 、DB 相交于点O .求证:OB OC =.【思路分析】根据“HL ”可证Rt△ABC ≌Rt△DCB ,得∠A CB =∠DBC ,从而得证OB OC =.【解题过程】在Rt△ABC 和Rt△DCB 中AC DB BC CB =⎧⎨=⎩∴Rt△ABC ≌Rt△DCB (HL )∴∠A CB =∠DBC ,∴OB OC =.【知识点】三角形全等4. (2018四川省宜宾市,18,6分)如图,已知∠1=∠2,∠B=∠D ,求证:CB=CD.【思路分析】先根据三角形外角的性质得到∠BAC=∠DAC ,然后根据AAS 判定△ABC 与△ADC 全等,从而根据性质得到CB=CD. 【解题过程】证明:∵∠1=∠2,∠B=∠D ,∴∠DAC=∠BAC ,在△ACD 和△ABC 中,D DAC BAC AC AC B ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ACD (AAS ),∴CB=CD .【知识点】三角形全等的判定;三角形外角的性质1. (2018山东菏泽,17,6分)如图,AB ∥CD ,AB=CD ,CE=BF .请写出DF 与AE 的数量关系,并证明你的结论.【思路分析】先由AB ∥CD ,得出∠B=∠C ;再由CE=BF ,得出CF=BE ;由“SAS”判定△ABE ≌△DCF即可得证.【解析】解:DF=AE .证明:∵AB ∥CD ,∴∠B=∠C .∵CE=BF ,∴CE -EF=BF -EF ,即CF=BE .在△ABE 和△DCF 中,AB CD B C BE CF ⎧⎪⎨⎪⎩,∠∠,,=== ∴△ABE ≌△DCF .∴DF=AE .【知识点】平行线的性质;全等三角形的判定与性质;2. (2018广东广州,18,9分)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .【思路分析】先根据题中条件AE =CE ,DE =BE ,∠AED =∠CEB 证明△AED ≌△CEB ,从而∠A =∠C .【解析】在△AED 和△CEB 中,=AE CE AED CEB DE BE =⎧⎪⎨⎪=⎩∠∠,∴△AED ≌△CEB (SAS ),∴∠A =∠C .【知识点】全等三角形的判定和性质3. (2018陕西,18,5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交于点G 、H .若AB =CD ,求证:AG =DH .【思路分析】要证AG=DH,需转化为证明AH=DG较简单,即证明△ABH≌△DCG,结合两组平行线利用AAS即可完成证明过程.【解题过程】证明:∵AB∥CD,∴∠A=∠D.∵EC∥BF,∴∠CGD=∠AHB.∵AB=CD,∴△ABH≌△DCG∴AH=DG.∴AH-GH=DG-GH.即AG=DH.【知识点】全等三角形的判定和性质,平行线的性质。
华师大版七年级数学专题4.2 三角形-2018年中考数学试题分项版解析汇编(解析版)
一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接AC交BD于点O,CE,作EH⊥AP于H,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.23.如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【来源】安徽省2018年中考数学试题【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.24.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【来源】安徽省2018年中考数学试题【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】(1)或或;(2)当且,有三个不同的度数.【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,,平分,平分,相交于点,且,则__________.【来源】广东省深圳市2018年中考数学试题【答案】【详解】如图,∵AD、BE分别平分∠CAB和∠CBA,∴∠1=∠2,∠3=∠4,∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°,过E作EG⊥AD,垂足为G,在Rt△EFG中,∠EFG=45°,EF=,∴EG=FG=1,在Rt△AEG中,AG=AF-FG=4-1=3,∴AE=,过F分别作FH⊥AC垂足为H,FM⊥BC垂足为M,FN⊥AB垂足为N,易得CH=FH,设EH=a,则FH2=EF2-EH2=2-a2,在Rt△AHF中,AH2+HF2=AF2,即+2-a2=16,∴a=,∴CH=FH=,∴AC=AE+EH+HC=,故答案为:.【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键. 27.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市2018年中考数学试题【答案】8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.28.等腰三角形的一个底角为,则它的顶角的度数为__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【来源】天津市2018年中考数学试题【答案】;见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。
中考数学一轮复习第四章几何初步与三角形第三节全等三角形同步测试题及答案.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三节全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( )A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等2.如图,在▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A.BE=DF B.BF=DEC.AE=CF D.∠1=∠23.如图,在方格纸中,以AB为一边作△AB P,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个4.(2017·四川眉山中考)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F.若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△ED B中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB=4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE 于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD 的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,A M⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥C D ,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF. 在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.18∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF =90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC , ∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠A CD =90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC , ∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD=180°-∠ABC-∠BAO-∠CAE=180°-60°-60°=60°.【培优训练】19.解:(1)∵AM⊥BM,∴∠AMB=∠AMC=90°.∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM.∵AB=32,∴AM=BM=3.∵BC=5,∴MC=2,∴AC=AM2+CM2=13.(2)证明:如图,延长EF到点G,使得FG=EF,连结BG.∵DM=MC,∠BMD=∠A MC=90°,BM=AM,∴△BMD≌△AMC,故AC=BD.又CE=AC,因此BD=CE.∵点F是线段BC的中点,∴BF=FC,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDG=∠G,∴∠BDF=∠CEF.中考数学知识点代数式一、重要概念分类:1.代数式与有理式的一个数或字母也是代数式。
中考备考数学总复习14讲三角形与全等三角形(含解析)
第14讲三角形与全等三角形[锁定目标考试]考标要求考查角度1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系.2.理解三角形内角和定理及推论.3.理解三角形的角平分线、中线、高的概念及画法和性质.4.掌握三角形全等的性质与判定,熟练掌握三角形全等的证明.中考多以填空题、选择题的形式考查三角形的边角关系,通过解答题来考查全等三角形的性质及判定.全等三角形在中考中常与平行四边形、二次函数、圆等知识相结合,考查运用知识的能力.[导学必备知识]知识梳理一、三角形的概念及性质1.概念(1)由三条线段________顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.2.性质(1)三角形的内角和是______;三角形的一个外角等于与它不相邻的____________;三角形的一个外角大于与它________的任何一个内角.(2)三角形的任意两边之和______第三边;三角形任意两边之差________第三边.二、三角形中的重要线段1.三角形的角平分线三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这个点叫做三角形的________.2.三角形的高线从三角形的一个顶点向它的对边所在的直线作______,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点,这个点叫做三角形的______.3.三角形的中线在三角形中,连接一个顶点和它对边______的线段叫做三角形的中线.特性:三角形的三条中线交于一点,这个点叫做三角形的______.4.三角形的中位线连接三角形两边______的线段叫做三角形的中位线.定理:三角形的中位线平行于第三边,且等于它的________.三、全等三角形的性质与判定1.概念能够________的两个三角形叫做全等三角形.2.性质全等三角形的__________、__________分别相等.3.判定(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).四、定义、命题、定理、公理1.定义对一个概念的特征、性质的描述叫做这个概念的定义.2.命题判断一件事情的语句.(1)命题由________和________两部分组成.命题通常写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.(2)命题的真假:正确的命题称为________;错误的命题称为________.(3)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的________,而第一个命题的结论是第二个命题的________,那么这两个命题称为互逆命题.每一个命题都有逆命题.3.定理经过证明的真命题叫做定理.因为定理的逆命题不一定都是真命题.所以不是所有的定理都有逆定理.4.公理有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他命题真伪的原始依据,这样的真命题叫做公理.五、证明1.证明从一个命题的条件出发,根据定义、公理及定理,经过________,得出它的结论成立,从而判断该命题为真,这个过程叫做证明.2.证明的一般步骤(1)审题,找出命题的题设和结论;(2)由题意画出图形,具有一般性;(3)用数学语言写出已知、求证;(4)分析证明的思路;(5)写出证明过程,每一步应有根据,要推理严密.3.反证法先假设命题中结论的反面成立,推出与已知条件或是定义、定理等相矛盾,从而结论的反面不可能成立,借此证明原命题结论是成立的.这种证明的方法叫做反证法.自主测试1.(浙江嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于() A.40° B.60° C.80° D.90°2.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83. (贵阳)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF4.下面的命题中,真命题是()A.有一条斜边对应相等的两个直角三角形全等B.有两条边和一个角对应相等的两个三角形全等C.有一条边对应相等的两个等腰三角形全等D.有一条高对应相等的两个等边三角形全等5.(四川雅安)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是__________.6.(广东广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BE =CD.[探究重难方法]考点一、三角形的边角关系【例1】若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9解析:设第三边为x,根据三角形三边的关系可得4-3<x<3+4,即1<x<7.答案:B方法总结 1.在具体判断时,可用较小的两条线段的和与最长的线段进行比较.若这两条线段的和大于最长的那条线段,则这三条线段能组成三角形.否则就不能组成三角形.2.三角形边的关系的应用:(1)判定三条线段是否构成三角形;(2)已知两边的长,确定第三边的取值范围;(3)可证明线段之间的不等关系.触类旁通1已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13考点二、全等三角形的性质与判定【例2】(云南)如图,在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.证明:在△ABC和△MED中,∵BC∥EM,∴∠MED=∠B.∵DM⊥AB,∴∠MDE=90°,∴∠C=∠MDE.∵AC=MD,∴△ABC≌△MED.方法总结 1.判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等.在具体的证明中,要根据已知条件灵活选择证明方法.2.全等三角形的性质主要是指全等三角形的对应边、对应角、对应中线、对应高、对应角平分线、周长、面积等之间的等量关系.触类旁通2如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:△BEC ≌△CDA . 考点三、真假命题的判断【例3】 (湖南益阳)下列命题是假命题...的是( ) A .中心投影下,物高与影长成正比B .平移不改变图形的形状和大小C .三角形的中位线平行于第三边D .圆的切线垂直于过切点的半径解析:同一时刻,平行投影下物高与影长成正比,故A 项错误;平移是全等变换,不改变图形的形状和大小,故B 项正确;三角形的中位线平行于第三边,故C 项正确;圆的切线垂直于经过切点的半径是切线的性质,故D 项正确.答案:A方法总结 对命题的正确性理解一定要准确,判定命题不成立时,有时可以举反例说明道理;命题有正、误,错误的命题也是命题.触类旁通3已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)考点四、证明的方法【例4】 如图,已知在梯形ABCD 中,AD ∥BC ,BC =DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E.求证:(1)△BFC ≌△DFC ; (2)AD =DE .证明:(1)∵CF 平分∠BCD ,∴∠BCF =∠DCF . 在△BFC 和△DFC 中,⎩⎪⎨⎪⎧BC =DC ,∠BCF =∠DCF ,FC =FC ,∴△BFC ≌△DFC . (2)如图,连接BD .∵△BFC≌△DFC,∴BF=DF.∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又BD是公共边,∴△BAD≌△BED.∴AD=DE.方法总结 1.证明问题时,首先要理清证明的思路,做到证明过程的每一步都有理有据,推理严密.要证明线段、角相等时,证全等是常用的方法.2.证明的基本方法:(1)综合法,从已知条件入手,探索解题途径的方法;(2)分析法,从结论出发,用倒推来寻求证题思路的方法;(3)两头“凑”的方法,综合应用以上两种方法找证明思路的方法.触类旁通4如图,在△ABC中,AD是中线,分别过点B,C作AD及其延长线的垂线BE,CF,垂足分别为点E,F.求证:BE=CF.[品鉴经典考题]1.(湖南长沙)现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2 C.3 D.42.(湖南娄底)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y3.以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cm C.5 cm,6 cm,12 cm D.2 cm,3 cm,5 cm4.(湖南长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=__________°.5.(湖南郴州)已知,点P是平行四边形ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.6. (湖南衡阳)如图所示,AF=DC,BC∥EF,请你只补充一个条件,使△ABC≌△DEF,并说明理由.[研习预测试题]1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得P A=16 m,PB=12 m,那么AB间的距离不可能是()A.5 m B.15 m C.20 m D.28 m2.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.2 2 B.4 C.3 2 D.4 23.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =__________.4.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__________.5.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__________.6.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,∠1__________(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是__________(只需写出一个).7.如图,已知在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.8.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.参考答案【知识梳理】一、1.(1)首尾2.(1)180° 两个内角的和 不相邻 (2)大于 小于 二、1.内心 2.垂线 垂心 3.中点 重心 4.中点 一半三、1.完全重合 2.对应边 对应角四、2.(1)题设 结论 (2)真命题 假命题 (3)结论 题设 五、1.逻辑推理 导学必备知识 自主测试1.A 设∠A =x ,则∠B =2x ,∠C =x +20°,则x +2x +x +20°=180°,解得x =40°,即∠A =40°.2.A3.B 由已知可得两个三角形已有两组边对应相等,还需要另一组边对应相等或夹角对应相等,只有B 能满足条件.4.D5.①②④ 由题意知AD =AD ,条件①可组成三边对应相等,条件②可组成两角和其中一角的对边对应相等,条件④可组成两边及其夹角对应相等,这三个条件都可得出△ADB ≌△ADC ,条件③组成的是两边及其一边的对角对应相等,不能得出△ADB ≌△ADC .6.证明:∵在△ABE 和△ACD 中,∠B =∠C ,AB =AC ,∠A =∠A ,∴△ABE ≌△ACD (ASA).∴BE =CD .探究考点方法触类旁通1.B 由三角形三边的关系可得13-2<x <13+2,即11<x <15, ∵x 为正整数,∴x 为12,13,14,故选B.触类旁通2.证明:∵BE ⊥CF 于点E ,AD ⊥CE 于点D , ∴∠BEC =∠CDA =90°.在Rt △BEC 中,∠BCE +∠CBE =90°, 在Rt △BCA 中,∠BCE +∠ACD =90°, ∴∠CBE =∠ACD . 在△BEC 和△CDA 中, ∵⎩⎪⎨⎪⎧∠BEC =∠CDA ,∠CBE =∠ACD ,BC =CA ,∴△BEC ≌△CDA . 触类旁通3.①②④触类旁通4.证明:∵在△ABC 中,AD 是中线, ∴BD =CD .∵CF ⊥AD ,BE ⊥AE ,∴∠CFD =∠BED =90°. 在△BED 与△CFD 中,∵∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD , ∴△BED ≌△CFD ,∴BE =CF .品鉴经典考题1.B 根据三角形三边关系,能组成三角形的是:3,7,9;4,7,9. 2.D 若x 2=y 2,则x =y 或x =-y ,所以D 是假命题. 3.B4.105 ∠ACD =∠A +∠B =45°+60°=105°. 5.证明:在平行四边形ABCD 中,AB ∥CD , ∴∠ACD =∠BAC .在△APE 和△CPF 中,⎩⎪⎨⎪⎧∠ACD =∠BAC ,∠CPF =∠APE ,PC =P A ,∴△APE ≌△CPF .∴AE =CF . 6.解:答案不唯一,如BC =EF 等. 理由:∵AF =DC ,∴AC =DF . ∵BC ∥EF ,∴∠BCA =∠EFD . 又BC =EF ,∴△ABC ≌△DEF .研习预测试题1.D 由三角形三边关系知16-12<AB <16+12,故选D. 2.B 因为由已知可证明△BDF ≌△ADC ,所以DF =CD . 3.70° 4.α=β+γ5.60° ∵∠A +∠B +∠C =180°,∠CDE +∠CED +∠C =180°, ∴∠A +∠B =∠CDE +∠CED .∴∠A +∠B +∠CDE +∠CED =2(∠A +∠B )=280°. ∵∠1+∠2+∠CDE +∠CED +∠A +∠B =360°, ∴∠1+∠2=360°-280°=80°. 又∵∠1=20°,∴∠2=60°. 6.不是 ∠B =∠E (答案不唯一)7.证明:∵FE ⊥AC 于点E ,∠ACB =90°, ∴∠FEC =∠ACB =90°.∴∠F +∠ECF =90°. 又∵CD ⊥AB 于点D ,∴∠A +∠ECF =90°. ∴∠A =∠F .在△ABC 和△FCE 中,⎩⎪⎨⎪⎧∠A =∠F ,∠ACB =∠FEC ,BC =CE ,∴△ABC ≌△FCE . ∴AB =FC .8.证明:∵AD =EB ,∴AD -BD =EB -BD ,即AB =ED .又∵BC∥DF,∴∠CBD=∠FDB. ∴∠ABC=∠EDF.又∵∠C=∠F,∴△ABC≌△EDF.∴AC=EF。
2018---2019学年度第一学期沪科版八年级数学单元测试题第14章全等三角形
2018--2019学年度第一学期沪科版八年级数学单元测试题第14章全等三角形做卷时间100分钟满分100分班级姓名一.单选题(共9小题,每题3分,计27分)1.使两个直角三角形全等的条件是()A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .两条边对应相等2.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是()A .甲乙B .甲丙C .乙丙D .乙3.如图△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D 点,BD :DC=2:1,BC=7.8,则D 到AB 的距离为()cm.A .7.8B .2.6C .2.8D .3.64.如图,点P 是∠AOB 的平分线OD 上的一点,PE ⊥OA 于E ,若PE=3,则点P 到OB的距离为()A .2B .3C .4D .55.如图,两条笔直的公路l 1、l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB=BC=CD=DA=5千米,村庄C 到公路l 1的距离为4千米,则C 到公路l 2的距离是题号一二三总分得分()A.6千米B.5千米C.4千米D.3千米6.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理()A.SAS B.HL C.AAS D.ASA7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.48.如图,线段AC与BD相交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件可以是()A.∠A=∠D B.OB=OD C.∠B=∠C D.AB=DC9.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去二.填空题(共8小题,每题4分,计32分)1.△ABC的形内有一点O,它是三角形三条角平分线的交点,若点O到AB的距离是2,则点O到另两边的距离之和是___________.2.如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是___________.3.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是___________度.4.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=___________.5.如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为___________.6.如图,右边有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是___________.7.如图(2),在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为。
浙江省中考数学总复习 第四章 基本图形(一)课后练习18 三角形与全等三角形作业本
课后练习18 三角形与全等三角形A 组1.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )第1题图A .甲乙B .甲丙C .乙丙D .乙2.若a 、b 、c 为△ABC 的三边长,且满足|a -4|+b -2=0,则c 的值可以为( )A .5B .6C .7D .83.(2017·丽水模拟)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°第3题图 第4题图 4.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .605.(2015·宜昌)如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )第5题图A.1个 B.2个 C.3个 D.4个6.(2015·达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连结CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为( )A.48° B.36° C.30° D.24°第6题图7.(2015·绍兴)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS第7题图8.在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B=____________________度.9.(2016·温州)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC=5,EF=3,求CD的长.第9题图B组10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.25° B.30° C.35 D.40°第10题图11.(2017·嘉兴模拟)如图,直角坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(-3,1),B、C两点在方程式y =-3的图形上,D、E两点在y轴上,则F点到y轴的距离为( )A.2 B.3 C.4 D.5第11题图12.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.13.如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.第13题图C组14.(2016·苏州模拟)如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以每秒1个单位长度和每秒3个单位长度的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.第14题图参考答案课后练习18 三角形与全等三角形A 组1.C 2.A 3.C 4.B 5.C 6.A 7.D 8.609.(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点,∴DE =CE ,在△ADE 和△FCE 中,⎩⎪⎨⎪⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE (AAS ); (2)∵△ADE ≌△FCE ,∴AE =EF =3,∵AB ∥CD ,∴∠AED =∠BAF =90°,在▱ABCD 中,AD =BC =5,∴DE =AD 2-AE 2=52-32=4,∴CD =2DE =8.B 组10.D 11.C 12.30°13.(1)证明:在Rt △AFD 和Rt △CEB 中,∵AD =BC ,AF =CE ,∴Rt △AFD ≌Rt △CEB ;(2)∵∠ABH +∠CBE =90°,∠ABH +∠BAH =90°,∴∠CBE =∠BAH ,又∵AB =BC ,∠AHB =∠CEB =90°,∴△ABH ≌△BCE ,同理可得,△ABH ≌△BCE ≌△CDG ≌△DAF ,∴S 正方形ABCD=4S △ABH +S 正方形HEGF =4×12×2×1+1×1=5; (3)由(1)知,△AFD ≌△CEB ,故h 1=h 3.由(2)知,△ABH ≌△BCE ≌△CDG ≌△DAF ,∴S 正方形ABCD =4S △ABH +S 正方形HEGF =4×12(h 1+h 2)·h 1+h 22=2h21+2h1h2+h22.C组14.设运动时间为t秒时,△PEC与△QFC全等,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6-t,CQ=8-3t,∴6-t=8-3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6-t=3t-8,∴t=3.5;③P在BC上,Q在AC上(未到终点),此时不存在;理由是:14÷3×1<6,Q在AC上时(未到终点),P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t-6,∴t-6=6,∴t=12.∵t<14,∴t=12符合题意.答:点P运动1或3.5或12秒时,△PEC与△QFC全等.第14题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题14三角形和全等三角形
2016~201
8详解详析第18页
A组基础巩固
1.(2017江苏无锡崇安一模,9,3分)如图,用四条线段首尾相接连成一个框架,其中
AB=12,BC=14,CD=18,DA=24,则A,B,C,D任意两点之间的最长距离为(C)
A.24 cm
B.26 cm
C.32 cm
D.36 cm
2.(2018中考预测)如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度
数为(B)
A.40°
B.20°
C.18°
D.38°〚导学号92034059〛
3.(2017河北唐山丰南一模,6,3分)如图,从下列四个条
件:①BC=B'C,②AC=A'C,③∠A'CA=∠B'CB,④AB=A'B'中,任取三个为条件,余下的一个为结论,则最
多可以构成正确的结论的个数是(B)
A.1
B.2
C.3
D.4 〚导
4.(2016江苏江阴校级月考,23,10分)将纸片△ABC沿DE折叠使点A落在A'处的位置.
图1
图2
(1)如果A'落在四边形BCDE的内部(如图1),∠A'与∠1+∠2之间存在怎样的数量关系?并说明理由.
(2)如果A'落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠EA'D与∠2之间的关系是.
(3)如果A'落在四边形BCDE的外部(如图2),这时∠A'与∠1,∠2之间又存在怎样的数量关系?并说明理由.
解(1)2∠A'=∠1+∠2,理由略.
(2)如图,∠EA'D=∠A,∠2=∠A+∠EA'D=2∠EA'D,故答案为:2∠EA'D=∠2.
(3)题图2中,2∠A'=∠2-∠1,
理由是:因为沿DE折叠,A和A'重合,
所以∠A=∠A'.
∵∠DME=∠A'+∠1,∠2=∠A+∠DME,
∴∠2=∠A+∠A'+∠1,即2∠A'=∠2-∠1.
B组能力提升
1.(2017湖北襄阳老河口期中,17,2分)如图,正方形①,②的一边在同一直线上,正方形③的一个顶点也在该直线上,且有两个顶点分别与正方形①,②的两个顶点重合,若正方形①,②的面积分别为3 cm2和4 cm2,则正方形③的面积为7cm
2.
2.(2018中考预测)如图,Rt△ABC中,直角边AC=7 cm,BC=3 cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2 cm/s的速度移动,过点E作BC的垂线交直线CD于点F.
(1)求证:∠A=∠BCD.
(2)点E运动多长时间,CF=AB?并说明理由.
(1)证明∵∠A+∠ACD=90°,∠BCD+∠ACD=90°,
∴∠A=∠BCD.
(2)解当点E在直线BC上运动2 s或5 s时,CF=AB.理由如下:
如图,当点E在射线BC上移动时,若E移动5 s,则BE=2×5=10(cm),∴CE=BE-BC=10-3=7(cm).
∴CE=AC,
又∵∠ECF=∠BCD,∠BCD=∠A,
在△CF E与△ABC中,
∴△CEF≌△ABC,
∴CF=AB,
当点E在射线CB上移动时,若E移动2 s,则BE'=2×2=4(cm),∴CE'=BE'+BC=4+3=7(cm),∴CE'=AC.
在△CF'E'与△ABC中,
∴△CF'E'≌△ABC,∴CF'=AB.
总之,当点E在直线BC上运动5 s或2 s时,CF=AB.。