第九章 电磁感应

合集下载

高考物理总复习:选修3-2第九章电磁感应

高考物理总复习:选修3-2第九章电磁感应

①垂直于磁场 ②垂直于磁场 ③1 T·m2 ④ΦS ⑤ 磁感应强度 ⑥磁通量发生变化 ⑦切割磁感线 ⑧阻 碍引起感应电流的磁通量 ⑨电磁感应 ⑩其余四指 ⑪磁感线 ⑫导体运动的方向 ⑬感应电流 ⑭切割磁 感线
一、磁通量的计算和理解 规律方法 1.求磁通量时要明确是穿过哪一面积的磁通量.且 这一面积必须是磁场内的.
题后反思 判断是否有感应电流产生,分析磁通量是否变化是 唯一的判断依据.可简单理解为判断穿过所研究的面积 内的磁感线的条数是否发生变化.
例3
如图所示,用一根长为 L、质量不计的细杆与一个上 弧长为 l0、下弧长为 d0 的金属线框的中点连接并悬挂于 O 点,悬点正下方存在一个上弧长为 2l0、下弧长为 2d0 的 方向垂直纸面向里的匀强磁场,且 d0≪L.先将线框拉开到 如图所示位置,松手后让线框进入磁场,忽略空气阻力 和摩擦.下列说法正确的是( )
________________________________________ _______________________________________________ _______________________________________________ _______________________________________________ _______________________________________________
(2)S 不变,S 内的磁场变化(即 B 变化),导致 Φ 变 化.ΔΦ=ΔBS.
(3)B 和 S 同时变化,导致 Φ 变化.但 ΔΦ 不一定等 于 ΔB·ΔS.
【重点提示】 磁通量是否发生变化,是判定电磁 感应现象的惟一依据,而引起磁通量变化的原因,主要 是磁场变化和导线相对磁场的运动而引起的,具体方式 有多种多样.

技术物理基础第9章 电磁感应技术

技术物理基础第9章 电磁感应技术

28
29
自感现象 由于电路本身的电流发生变化引起 磁通量改变而产生的电磁感应现象叫做自感现象。 在自感现象中产生的感应电动势叫做自感电动势, 自感现象也是电磁感应的一种形式,所以它也遵守 电磁感应定律和楞次定律。
30
31
自感系数 在自感现象中,磁通量的变化是由 于线圈本身电流的变化引起的,而磁通量的多少是 与通过线圈的电流大小成正比的,所以磁通量的变 化量 ΔΦ 必与电流的变化 ΔI成正比。根据电磁感 应定律,自感电动势与电流的变化率 ΔI/Δt成正比, 即
7
8
9
10
第二节 楞次定律 楞次定律 从图 9-7的实验中,在磁棒插入线 圈和从线圈中拔出的过程中,会产生方向不同的感 应电流。当磁棒插入线圈时,穿过线圈的磁通量是 增加的;当磁棒从线圈中拔出时,穿过线圈的磁通 量是减少的。这说明感应电流的方向跟穿过闭合电 路的磁通量是增加还是减少是有关的。
24
25
第四节 互感 自感 互感现象 对于两个相邻近的电路,当其中一 个电流变化时,另一个电路产生感应电动势的现象 ,叫做互感现象,互感是一种在特定方式下产生的 电磁感应现象。
26
27
感应圈 感应圈的外观和构造如图 9-22所 示。在一束细铁丝做成的绝缘铁心 M 上,套着两 个彼此绝缘的导线线圈,其中匝数不多,由较粗导 线绕成的线圈通以电流,常称为原线圈。在原线圈 外面套着一个匝数很多、由细导线绕成的线圈,用 以获得感应电动势,常称为副线圈。
46
47
第一节 电磁感应现象 在什么条件下才能产生电磁感应现象呢?下面 我们来研究闭合电路的一部分导体在磁场。 里做切割磁感线的运动。在图 9-1的实验中, 当导体ab做切割磁感线的运动时,电流表的指针就 会发生偏转,这说明此时电路中有电流产生;当导 体 ab沿着磁感线运动时,电流表的指针不动,这说 明此时电路中没有电流产生。

大学物理第九章

大学物理第九章

动生电动势
由于导体运动而产生的感应电动势。
dΦ B dS Bldx
i
dΦ dt
Bl
dx dt
Bl
d a
B
l
c b
dx
负号表示电动势的方向。
在磁场中运动的导线内的感应电动势
导线内每个自由电子受到的
洛仑F兹力e
B
非静E电k 场 强Fe
B
a
电场。
解:由场的对称性,变化磁场所激发的感生电场
线在管内、外都是与螺线管同轴的同心圆。
取任一电场线(半径为r)作
为闭合回 路, 则
L L
E E
E
ddll21LrESdSlBtBt2ddSrSE
ER
r
B
感生电场
1)
当r
S
<RB时 dS t
S
B t
dS
r 2 dB
dt
E
1
2r
S
§9-1 电磁感应定律
法拉第(1791-1867英国)
1831年,发现电磁感应现象。 1833年,发现电解定律。 1837年,发现电解质对电容的影响, 引入电容率概念。 1845年,发现磁光效应,顺磁质、抗 磁质等。
§9-1 电磁感应定律
1. 电磁感应现象
N
S
现象1
条形磁铁N极(或S极)插入线圈时,线圈中就有电 流通过,这种电流称为感应电流。 实验表明:磁铁与线圈有相对运动时,线圈中就有感 应电流,相对速度越大,感应电流也越大。
(a)Φ 0, dΦ
B
dt en
0, i
0
i
(b)Φ 0, dΦ
B

dt en

电磁感应现象及其应用

电磁感应现象及其应用

电磁感应现象及其应用第九章电磁感应现象及其应用本章以磁场及电场等知识为基础,研究电磁感应的一系列现象,总结出产生感应电流的条件,形成了导体做切割磁感线运动而产生的感应电动势的计算公式,应用右手定则判断感应电动势的方向也是解决问题的关键.[基本规律与概念]一.电磁感应现象1.感应电动势2.感应电流产生的条件及方向的判断二.电磁感应现象的应用1.自感现象2.交变电流①交变电流的定义②正弦交流电的产生及规律a.产生b.规律:函数形式:e=NBSωsinωt(从中性面开始计时)图象c.表征交流电的物理量(1)瞬时值(2)峰值(3)有效值(4)周期和频率③应用:(1)变压器(2)远距离输电3.电磁场和电磁波a.麦克斯韦电磁场理论b.电磁波[应用]1.用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁场,右边没有磁场.(1)金属环的摆动会很快停下来,试解释这一现象.(2)若整个空间都有向外的匀强磁场,会有这种现象吗?2.如图所示,矩形线圈abcd质量为m,电阻为R,宽为d,长为L,在竖直平面内由静止开始自由下落,其下方存在如图示方向的磁感强度为B的匀强磁场,磁场上.下边界水平,宽度也为d.(1)线圈ab进入磁场时,感应电流的方向?(2)如果矩形线圈在ab边刚进入磁场就开始做匀速直线运动,那么,矩形线圈的ab 边应该距离磁场的上边界多高的位置开始下落?3.上海的部分交通线路上已开始使用〝非接触式IC卡〞.该卡应用到物理学上的电磁感应原理.持卡者只要将卡在车门口的一台小机器前一晃,机器就能发出通过的信号.(1)电磁感应现象的最早发现者是(A )A.法拉第B.格拉姆C.西门子D.爱迪生(2)与这一发现有关的科技革命的突出成就不包括( D )A.电力的广泛应用B.内燃机和新交通工具的创新C.新的通讯手段的发明D.计算机信息技术的出现4.照明电路中,为了安全,一般在电能表后面电路上按接一个漏电保护器,如右图所示,当漏电保护器的ef两端未有电压时,脱扣开关K能始终保持接通.当ef两端一有电压时,脱扣开关K立即会断开,下列说法正确的是A.当用户家的电流超过一定值时,脱扣开关会自动断开,即有过流保护作用B.当相线和零线间电压太高时,脱扣开关会自动断开,即有过压保护作用C.站在地面上的人触及b线时(单线触电),脱扣开关会自动断开,即有触电保护作用D.当站在绝缘物上的带电工作的人两手分别触到b线和d线时(双线触电),脱扣开关会自动断开,即有触电保护作用【分析与解答】漏电保护器是家庭生活中常见的电学仪器,通过变压器的互感原理进行开关控制,达到保护线路,防止漏电作用.观察工作原理图可知:相线ab与零线cd双线同向绕制构成原线圈.线路接通时,b与d相连,双线反向连接,磁场相反,无论用户电流的大小及相线和零线间电压高低如何变化,在副线圈中的磁通量变化率始终为零,因此ef两端未有电压,脱扣开关始终闭合.当人站在地面上单线触电时,电流不再经过零线而是通过人体流向大地,此时相线ab单线绕制,原副线圈中磁通量发生变化,ef两端出现电压,脱扣开关断开,当人站在绝缘物上双线触电时,人体形如用电器,电流通过人体流经零钱,此时相线与零线同样双线绕制,所以ef两端电压亦为零.正确选项为C.5.家用微波炉是利用微波电磁能加热食物的新型灶具,主要由磁控管.波导管.微波加热器.炉门.直流电源.冷却系统.控制系统.外壳等组成,接通电源后,220V交流电经一变压器,一方面在次级产生3.4V交流对磁控管加热,同时在次级产生2000V高压经整流加到磁控管的阴.阳两极之间,使磁控管产生频率为2450MHz的微波,微波输送至金属制成的加热器(炉腔),被来回反射,微波的电磁作用使食物内分子高额地振动而内外同时迅速变热,并能最大限度地保存食物中的维生素.(1)试计算微波输出功率为700W的磁控管每秒内产生的光子数.(2)试计算变压器的高压变压比.(3)导体能反射微波,绝缘体可使微波透射,而食物通常含有的成分是,较易吸收微波能而转换成热.故在使用微波炉时应A.用金属容器盛放食物放火炉内加热B.用陶瓷容器盛放食物火炉内加热C.将微波炉置于磁性材料周围D.将微波炉远离磁性材料周围6.图为一表示交变电流随时间变化的图象,此交变电流的有效值是A.A B.5AC.A D.3.5A7.一矩形线圈在匀强磁场中匀速转动产生的交变电动势的图象如图所示,则A.交变电流的频率是4πHzB.交变电的周期是0.5sC.当t=0时线圈平面与磁感线平行D.当t=0.5时,e有最大值8.现代家庭电器化程度越来越高,用电安全是一个十分突出的问题.(1)下表提供了一组部分人的人体电阻平均值数据.测量项目完全干燥时出汗或潮湿时电阻电流(加220V)电阻电流(加220V)手与手之间200kΩ5kΩ手与脚之间300kΩ8kΩ手与塑料鞋底之间8000kΩ10kΩ①从表中可看出干燥时电阻大约是潮湿时电阻的倍.②在空格中填入,对人体加220伏电压后的电流值.③若对人的安全电流是25mA以下,上述哪几项是十分危险的.(2)大家知道,洗衣机的插头上有三个金属片,插座也是三眼的,其中有一个较长而粗的是接地金属片,由导线将它与洗衣机的金属外壳连接,一旦插入插座,也就将洗衣机外壳与大地相连通.洗衣机的外壳是金属的(有许多地方没有油漆),左上图表示插头没有接地线,外壳与相线(俗称火线)接触漏电,手触及外壳.右上图表示插头中有接地线,接在洗衣机外壳,此时发生漏电.通过讨论说明为什么三眼插头比两眼插头更安全?(试在下图中画出电流经过的路线,假设此时M为正,N为负,并画出简单的电路模型加以分析)(3).电路上有规格为10A的熔丝(俗称保险丝),如右图所示用电器R的功率是1500W,这时通过熔丝实际电流是多少?一个潮湿的人,手脚触电,为什么熔丝不会断(即熔丝不能救人命).(4)如下图所示是一种触电保安器,变压器A处用相线和零线双股平行绕制成线圈,然后接到用电器.B处有一个输出线圈.一旦线圈中有电流,经放大后便能推动继电器J切断电源.试说明:①为什么多开灯不会使保安器切断电源.②为什么有人〝手—地〞触电保安器会切断电源③该保安器能不能为双手〝相线—零线〞触电保安?为什么?【参考答案】1:①40~80倍②干燥时电流分别为lmA,0.7mA,0.28mA,潮湿时电流分别为:44mA,27.5mA,22Ma③潮湿时各种情况均有危险2.电流路径如下图所示三眼插头比两眼插头安全.左图为二眼插头,一旦漏电,电流将流经人体;右图为三眼插头,一旦漏电,电流将通过接地板流入地下,(相当于一个短路导线),几乎没有电流通过人体.3.通过熔丝的实际电流是6.8A人的手脚触电时,通过人体电流是0.0275A熔丝点电流为6.828A,小于10A,故熔丝不会断去4.①变压器A线臼因双股并绕,正向电流与反向电流产生的磁性相互抵消,多开灯.少开灯都如此.所以线圈B中无感应电流,保安器的控制开关J不工作,不会自动切断电源.③当人〝手—地〞触电时,相线中电流有一部分直接通过人体,流入大地,不从A线圈中回流,保安器铁芯中有磁通量变化,B线圈有电流输出,保安器开关J工作,自动切断电源.③〝相线—零线〞触电时,与多打开几盏电灯情况相似,A线圈中正.反向电流总是相等,不引起磁通量变化,保安器不能自动切断电源,不起保安作用.综合点:本题首先是物理知识内部电流.电路.电磁感应等各部分的综合.它还涉及人身用电安全的问题,有较重要的现实意义.解答本题在一定程度能考查解答者所学知识联系实际问题的能力.有几点说明:本题中洗衣机的底部有塑料垫脚,因此它的外壳是不直接接地的,保安器的控制开关J应带有电流放大装置.因为变压器感应人体电流的功率是很小的,电流也是很小的,通常不经放大不能推动开关做功.9.如图所示带电的平行板电容器C的两个极板,在用绝缘工具将两板间距离匀速增大的过程中,电容器周围空间将( A )A.会产生变化的磁场B.会产生稳定的磁场C.不会产生磁场D.会产生周期性振荡的磁场10.对于〝超导体〞和〝空间技术〞的名字,人们可能并不陌生.所谓〝超导体〞是指电阻值几乎为零(10-5Ω)的导体.超导体在电力领域里,必将成为人们的理想材料.(1)以下关于超导体的说法中正确的是( B )A.超导体是没有电阻的导体B.超导体是电阻值很小的导体C.超导体内部电流可以任意大D.超导体内部电流必需大于某一特定值(2).我们把当温度降低到一定程度时,导体的电阻突然降低到很小(10-5Ω)的现象称为超导现象;而材料超导性的实现,除了需要将温度降低到临界温度以下外,还需要使其周围磁场低于某一临界值.另据实验表明,超导体内部电流必需小于某一特定值.其原因是(B)A.超导体虽然电阻很小,但是仍然有电阻,电流流过时要产生焦耳热,所以电流不能太大B.由于导线通过电流后,电流要在导线周围产生磁场,电流越大,磁场越强;而超导体周围磁场不能大于临界值,所以通过超导体的电流必需小于某一特定值C.超导体对电流有阻碍作用,所以电流不能太大D.以上说法均不对11.变压器是供电网络中的重要器件,它可以根据需要改变电压.(1)某理想变压器原副线圈匝数之比为10:1,正常工作时输入功率与输出功率之比是多少?(2)在传送一定电功率的输电线路中,若升压变压器输出电压提高1倍,则输电线上的电功率损失将变为原来的多少?。

高二物理第九章总结知识点

高二物理第九章总结知识点

高二物理第九章总结知识点本文总结了高二物理第九章的重要知识点,旨在帮助同学们复习和回顾所学内容。

第九章主要涉及电磁感应、电磁场和电磁波三个方面的内容,并介绍了电磁振荡、交流电路和光的波动性等相关知识。

以下是本章的重点知识总结。

一、电磁感应1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场发生变化时,导体中就会感应出感应电动势,其大小与导体运动速度、导体长度以及磁感应强度有关。

2. 楞次定律:感应电流的方向总是阻碍磁场发生变化的方式。

二、电磁场1. 电场和磁场:电场和磁场是相互关联的,当电场发生变化时,会产生磁场;当磁场发生变化时,会产生电场。

2. 磁场的性质:磁场有方向和大小之分,用磁感应强度表示,单位是特斯拉(T)。

3. 磁感线:磁感线是用来表示磁场方向的虚拟曲线,其方向是磁力线的方向。

三、电磁波1. 电磁波的概念:电磁波是通过自由空间以及一些介质传播的,由电场和磁场交替变化所产生的波动现象。

2. 光的电磁波性质:光既具有电磁波的特性,也具有粒子性质。

光的波长和频率之间有着确定的关系,即c=λν,其中c是光速。

3. 光的折射和反射:当光从一种介质射入另一种介质时,会发生折射现象;当光从一种介质射入另一种介质的界面上时,会发生反射现象。

四、电磁振荡和交流电路1. 电磁振荡:由于电容器和电感器之间的能量交换,电荷量和电流会周期性地发生变化。

这种周期性的变化称为电磁振荡,其频率由电容器和电感器的参数决定。

2. 交流电路:交流电路中的电压和电流大小和方向都周期性地变化,其频率通常为50Hz或60Hz,根据Ohm定律和功率公式可以计算电阻、电容和电感器上的电流和功率。

以上是本节内容的主要知识点总结。

通过对这些知识点的复习,同学们可以更好地理解和掌握高二物理第九章的内容,为进一步学习打下坚实的基础。

希望本文对同学们的学习有所帮助,祝大家学业进步!。

物理版课件第九章电磁感应第2讲

物理版课件第九章电磁感应第2讲

达到稳定值经历的时间大于t0
√C.若线圈中插入铁芯,上述过程中电路达到
图8
稳定时电流值仍为I
D.若将线圈匝数加倍,上述过程中电路达到稳定时电流值仍为I
变式3 (2018·南京市三模)如图9所示,电源电动势为E,其内阻r不可忽略,L1、 L2是完全相同的灯泡,线圈L的直流电阻不计,电容器的电容为C.下列说法正确 的是
2.说明 (1)当 ΔΦ 仅由 B 的变化引起时,则 E=nΔΔBt·S;当 ΔΦ 仅由 S 的变化引起时,则 E=nBΔ·ΔtS;当 ΔΦ 由 B、S 的变化同时引起时,则 E=nB2S2-ΔtB1S1≠nΔBΔ·tΔS. (2)磁通量的变化率ΔΔΦt 是 Φ-t 图象上某点切线的斜率.
例1 (2018·常州市一模)如图2甲所示,单匝正方形线框abcd的电阻R=0.5 Ω,边长 L=20 cm,匀强磁场垂直于线框平面,磁感应强度B随时间t的变化规律如图乙所 示.求:
运动时,则下列说法正确的是
A.金属棒a、b两端点间的电势差为0.2 V
√B.水平拉金属棒的力的大小为0.02 N
√C.金属棒a、b两端点间的电势差为0.32 V
D.回路中的发热功率为0.06 W
图6
变式2 (多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边
长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界
D.环中产生的感应电动势大小为2 V
图11
12345
2.(2018·东台创新学校月考)一单匝矩形线框置于匀强磁场中,线框平面与磁场
方向垂直.先保持线框的面积不变,将磁感应强度在1 s时间内均匀地增大到原
来的两倍.接着保持增大后的磁感应强度不变,在1 s时间内,再将线框的面积

高考复习 第九章 电磁感应

高考复习 第九章 电磁感应

第九章 电磁感应知识网络:第1单元 电磁感应 楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

2.感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

二、右手定则伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。

三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 )2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致R其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

高中物理:第9章电磁感应

高中物理:第9章电磁感应

第9章电磁感应第1讲 电磁感应现象 楞次定律板块一主干梳理·对点激活知识点1磁通量Ⅰ1.磁通量(1)定义:匀强磁场中,磁感应强度(B )与垂直磁场方向的面积(S )的乘积叫作穿过这个面积的磁通量,简称磁通,我们可以用穿过这一面积的磁感线条数的多少来形象地理解。

(2)公式:Φ=BS 。

(3)适用条件:①匀强磁场;②S 是垂直磁场中的有效面积。

(4)单位:韦伯(Wb ),1 Wb =1_T·m 2。

(5)标量性:磁通量是标量,但有正负之分。

磁通量的正负是这样规定的,即任何一个平面都有正、反两面,若规定磁感线从正面穿入时磁通量为正,则磁感线从反面穿入时磁通量为负。

2.磁通量的变化量 在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。

3.磁通量的变化率(磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。

知识点2电磁感应现象Ⅰ1.电磁感应现象:当闭合电路的磁通量发生改变时,电路中有感应电流产生的现象。

2.产生感应电流的条件 (1)电路闭合。

(2)磁通量变化。

3.电磁感应现象的两种情况(1)闭合电路中部分导体切割磁感线运动。

(2)穿过闭合回路的磁通量发生变化。

4.电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。

5.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。

知识点3楞次定律Ⅱ1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)适用X 围:适用于一切回路磁通量变化的情况。

2.右手定则(1)内容:①磁感线穿入右手手心。

(从掌心入,手背穿出) ②大拇指指向导体运动的方向。

③其余四指指向感应电流的方向。

(2)适用X 围:适用于部分导体切割磁感线。

双基夯实一、思维辨析1.磁通量等于磁感应强度B 与面积S 的乘积。

法拉第电磁感应定律__自感和涡流

法拉第电磁感应定律__自感和涡流

方法一:利用公式 E=NΔΦ/Δt 设导体棒长为 L,绕 O 点转动角速度为 ω,则在 t 时间 1 内,其扫过一扇形面积 S= ωtL2 2 BΔS 1 则由公式得 E= t = BωL2 2
第九章 电磁感应
人 教 版 物 理
方法二:利用公式 E=BLv 上图中 O 点速度 v0=0,A 点速度 vA=ωL 1 则由公式 E=BLv,其中 v 取平均速度,得 E=BL·ωL 2 1 = BωL2. 2
人 教 版 物 理
2.感应电流与感应电动势的关系:遵守 ⑤闭合电路欧姆 定律, I= E . R+ r 二、感应电动势的大小——法拉第电磁感应定律 1. 法拉第电磁感应定律
(1)定律内容:电路中感应电动势的 ⑥大小 , 跟 穿
过这一电路的 ⑦磁通量的变化率 成正比.
ΔΦ (2)公式: ⑧E=n . Δt (3)公式说明:a. 上式适用于回路中磁通量发生变化的
量.严格地说,在变化的磁场中的一切导体内都有涡流产
生,只是涡电流的大小有区别,所以一些微弱的涡电流就 被我们忽视了.
第九章 电磁感应
人 教 版 物 理
五、电磁阻尼和电磁驱动 电磁阻尼是导体与磁场相对运动时,感应电流使导体 受到的安培力总是阻碍它们的相对运动,利用安培力阻碍 导体与磁场间的相对运动就是电磁阻尼.磁电式仪表的指 针能够很快停下,就是利用了电磁阻尼.“磁悬浮列车利 用涡流减速”其实也是一种电磁阻尼. 电磁驱动是导体与磁场相对运动时,感应电流使导体 受到的安培力总是阻碍它们的相对运动,应该知道安培力 阻碍磁场与导体的相对运动的方式是多种多样的.当磁场 以某种方式运动时 ( 例如磁场转动 ) ,导体中的安培力阻碍 导体与磁场间的相对运动而使导体跟着磁场动起来 (跟着转 动),这就是电磁驱动.

大学物理 第九章 电磁感应 电磁场理论的基本概念

大学物理 第九章 电磁感应 电磁场理论的基本概念

选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B


L
A
1 2 m B dS BS AOCA B L 2
o

C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt

d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同

高二物理第九章知识点

高二物理第九章知识点

高二物理第九章知识点高二物理第九章主要涉及电磁感应和电磁波的知识。

本章包括以下几个知识点:法拉第电磁感应定律、感生电动势的方向和大小、自感与互感、电磁感应中的能量转化、电磁波的概念和特性等。

下面将逐一介绍这些知识点。

一、法拉第电磁感应定律在研究电磁感应现象时,我们可以根据法拉第电磁感应定律来分析。

该定律表明,当一个导体回路中的磁通量发生变化时,回路中就会感应出电动势,导致电流的产生。

这个电动势的大小与磁场变化率成正比。

二、感生电动势的方向和大小根据法拉第电磁感应定律,我们可以判断感生电动势的方向和大小。

当磁场增强或减弱时,感生电动势的方向与磁场的变化方向相反。

而感生电动势的大小与磁场的变化率成正比,导线的长度和磁场的强度也会影响电动势的大小。

三、自感与互感自感是指电流通过导线产生的磁场,对导线自身形成的电动势的影响。

而互感是指两个或多个导线之间的磁场相互影响,导致彼此感应出电动势。

自感和互感对电磁感应现象起到了重要的作用。

四、电磁感应中的能量转化在电磁感应中,能量可以从磁场转化为电能,或从电能转化为磁场能。

例如,变压器中的能量转换主要是通过变化的磁场产生感应电流,从而实现从输入端到输出端能量转化的过程。

五、电磁波的概念和特性电磁波是由变化的电场和磁场相互耦合形成的波动现象。

电磁波具有许多特性,例如电磁波可以传播在真空中,具有波长和频率特性,可以被反射、折射和衍射等。

在高二物理学习的过程中,通过深入理解和掌握以上知识点,可以更好地理解电磁感应和电磁波相关的现象和应用。

从而提高解决实际问题的能力,并为进一步学习和研究电磁学奠定坚实的基础。

总结起来,高二物理第九章的知识点主要包括法拉第电磁感应定律、感生电动势的方向和大小、自感与互感、电磁感应中的能量转化、电磁波的概念和特性等。

通过对这些知识点的学习和掌握,我们可以更好地理解电磁学中的重要概念和原理,建立起扎实的物理基础。

希望同学们能够认真学习和应用这些知识,提高物理学习的兴趣和能力。

高三物理第九章知识点归纳总结

高三物理第九章知识点归纳总结

高三物理第九章知识点归纳总结高三物理第九章主要介绍了电磁感应、电磁场和电磁波等相关知识。

本章知识点归纳总结如下:一、电磁感应电磁感应是指在导体中或磁场中产生电动势的现象。

主要包括法拉第电磁感应定律和楞次定律。

1. 法拉第电磁感应定律法拉第电磁感应定律描述了导体中感应电动势的产生与变化。

定律表达式为:感应电动势的大小与导体中磁场的变化率成正比。

2. 楞次定律楞次定律描述了通过电磁感应产生的电流方向。

根据楞次定律,感应电动势的方向总是使通过电路的电流产生一个方向上的磁场,以阻碍磁场变化的方式。

二、电磁场电磁场是由带电粒子产生的电场和磁场组成的。

学习电磁场需要了解库仑定律、电场强度、电势能、真空中的光速等相关知识。

1. 库仑定律库仑定律描述了两个电荷之间的力与电荷之间的距离、大小和性质之间的关系。

定律表达式为:两个点电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。

2. 电场强度电场强度是描述电场的物理量,定义为单位正电荷所受的力。

电场强度的大小与电荷量成正比,与距离的平方成反比。

3. 电势能电势能是电荷在电场中位置的一种衡量,定义为单位正电荷所具有的电势能。

电势能的大小与电荷量成正比,与距离成反比。

4. 真空中的光速真空中的光速是指电磁波在真空中传播的速度,约为3.00 x 10^8 m/s。

三、电磁波电磁波是由变化的电场和磁场相互作用而产生的能量传播现象。

本节重点学习电磁波的特性和电磁波谱。

1. 电磁波的特性电磁波有很多特性,包括振幅、波长、频率、传播速度等。

其中,波长和频率是互相关联的,与传播速度有一定的关系。

2. 电磁波谱电磁波谱是根据电磁波的不同波长和频率进行分类的。

按照波长从小到大的顺序,电磁波谱可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等七个区域。

总结:高三物理第九章主要介绍了电磁感应、电磁场和电磁波等知识点。

电磁感应涉及法拉第电磁感应定律和楞次定律,电磁场包括库仑定律、电场强度、电势能和真空中的光速等,电磁波涵盖电磁波的特性和电磁波谱。

大学物理第九章+电磁感应

大学物理第九章+电磁感应
• 磁体能使邻近铁块感应带 磁
• …… • 所以, 磁也可能产生电 8
9-1 电磁感应定律
1834 楞次(Lenz)
楞次定律
1845 诺埃曼(Neumann) 电磁感应数学表达
1864 麦克斯韦(Maxwell) 麦克斯韦电磁场理论
9
9.1 电磁感应定律
一、电动势*
1 .非静电力与电源
(1).有源情况下形成稳恒电流的条件
= =
p(υ×B)⋅dl =
o
− L ω lBdl = 0
LυB sin 90 cos180
0
−ωB
L
ldl
=−
0
dl = − 1 ω BL
2
LυBdl
0
2<0
(3)判断电动势方向 P端为负极,O端为正极。
40
9-1 电磁感应
七、发电机
电磁感应定律最伟大 应用之一——发电机
水轮发 电机
法拉第圆 盘发电机
22
四、Faraday电磁感应定律
1 .定律的表述
当穿过以闭合回路为边界的任意曲面的磁通量发生 变化时,产生的感应电动势正比于磁通量变化率的 负值,即(国际单位制下)
ε = − dΦ
dt
2 .感应电动势的大小:与磁通量无关,仅与磁通量的时 间变化率成正比。
23
3.“-”号的意义—确定感应电动势方向(反映
=
μ0I0L 2π
⎢⎣⎡ω
sin(ωt) ln
b + vt a + vt
− vHale Waihona Puke cosωt⎜⎛⎝b
1 + vt

a
1 + vt
⎟⎠⎞⎥⎦⎤

第九章 电磁感应

第九章  电磁感应

选修3-2 第九章 电磁感应第1讲 电磁感应产生的条件 楞次定律磁通量 Ⅰ(考纲要求)1.磁通量的计算(1)公式:Φ=BS .(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.(3)单位:韦伯,1 Wb =1 T·m 2.2.碰通量的物理意义(1)可以形象地理解为磁通量就是穿过某一面积的磁感线的条数.(2)同一个平面,当它跟磁场方向垂直时,磁通量最大,当它跟磁场方向平行时,磁通量为零.电磁感应现象 Ⅰ(考纲要求) 1.当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象. 2.产生感应电流的条件表述1 闭合电路的一部分导体在磁场内做切割磁感线运动.表述2 穿过闭合电路的磁通量发生变化.3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流.楞次定律 Ⅱ(考纲要求) 1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用条件:所有电磁感应现象.2.右手定则(如图9-1-1所示)(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.2.判断感应电流方向的“三步法”规律 适用范围 基本现象 安培定则 电流的磁效 应 运动电荷、电流产生磁场 左手 定则 磁场力 磁场对运动电荷、电流的作用 右手定则 楞次定律 电磁电应 导体做切割磁感线运动 回路的磁通量变化图9-1-1图9-1-2 图9-1-4 3.右手定则掌心——磁感线垂直穿入, 拇指——指向导体运动的方向, 四指——指向感应电流的方向.1.下图中能产生感应电流的是( ).2.如图9-1-2所示,小圆圈表示处于匀强磁场中的闭合电路一部分导线的横截面,速度v 在纸面内.关于感应电流的有无及方向的判断正确的是( ).A .甲图中有感应电流,方向向外B .乙图中有感应电流,方向向外C .丙图中无感应电流D .丁图中a 、b 、c 、d 四位置上均无感应电流3.(2011·杭州高三检测)如图9-1-3所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平行)通电导线,则穿过线框的磁通量将( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章电磁感应1. (2013全国新课标理综II第16题)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。

导线框以某一初速度向右运动。

t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。

下列v--t图象中,可能正确描述上述过程的是2. (2013全国新课标理综1第17题)如图.在水平面(纸面)内有三报相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。

空间存在垂直于纸面的均匀磁场。

用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。

下列关于回路中电流i与时间t的关系图线.可能正确的是3.(2013高考浙江理综第15题)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。

其E-t关系如右图所示。

如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是4.(2013高考上海物理第11题)如图,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘。

当MN 中电流突然减小时,线圈所受安培力的合力方向 (A)向左(B)向右 (C)垂直纸面向外(D)垂直纸面向里5.(2013高考安徽理综第16题)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m ,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。

一导体棒MV 垂直于导轨放置,质量为0.2kg ,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T 。

将导体棒MV 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s 2,sin37°=0.6)A .2.5m/s ,1WB .5m/s ,1WC .7.5m/s ,9WD .15m/s ,9W6.(2013高考四川理综第7题)如图所示,边长为L 、不可形变的正方形导体框内有半径为r 的圆形区域,其磁感应强度B 随时间t 的变化关系为B =kt(常量k >0)。

回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=12R 0。

闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势。

则 A .R 2两端的电压为7U B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 27. .(2013高考北京理综第17题)如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动, MN 中产生的感应电动势为E l ;若磁感应强度增为2B,其他条件不变,MN 中产生的感应电动势变为E 2。

则通过电阻R 的电流方向及E 1与E 2之比E l ∶ E 2分别为 A. c →a ,2∶1 B. a →c ,2∶1C.a→c,1∶2D.c→a,1∶28. (2013高考山东理综第14题)将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中。

回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图像如图乙所示。

用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是9.(2013全国高考大纲版理综第17题)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化。

一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示。

若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是()10 (2013高考福建理综第18题)如图,矩形闭合线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。

线框下落过程形状不变,ab边始终保持与磁场水平边界OO’平行,线框平面与磁场方向垂直。

设OO ’下方磁场区域足够大,不计空气影响,则下列哪一个图像不可能反映线框下落过程中速度v 随时间t 变化的规律11.(2013高考天津理综物理第3题)如图所示,纸面内有一矩形导体闭合线框abcd .ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN 。

第一次ab 边平行MN 进入磁场.线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1:第二次bc 边平行MN 进入磁场.线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则 A .Q 1>Q 2 ,q 1=q 2 B .Q 1>Q 2 ,q 1>q 2 C .Q 1=Q 2 ,q 1=q 2 D .Q 1=Q 2 ,q 1>q 22012年高考题精选1.(2012·北京理综)物理课上,老师做了一个奇妙的“跳环实验”。

如图,她把一个带铁芯的线圈I 、开关S 和电源用导线连接起来后.将一金属套环置于线圈L 上,且使铁芯穿过套环。

闭合开关S 的瞬间,套环立刻跳起。

某同学另找来器材再探究此实验。

他连接好电路,经重复试验,线圈上的套环均末动。

对比老师演示的实验,下列四个选项中,.导致套环未动的原因可能是 A.线圈接在了直流电源上. B.电源电压过高. C.所选线圈的匝数过多,D.所用套环的材料与老师的不同2.(2012·海南物理)如图,一质量为m 的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过。

现将环从位置I 释放,环经过磁铁到达位置II 。

设环经过磁铁上端和下端附近时细线的张力分别为T 1和T 2,重力加速度大小为g ,则A .T 1>mg ,T 2>mgB .T 1<mg ,T 2<mgC .T 1>mg ,T 2<mgD .T 1<mg ,T 2>mg3.(2012·新课标理综)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.。

使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。

现使线框保持图中所示位置,磁感应强度大小随时间线性变化。

为了产生与线框转动半周过程中同样大小的电流,磁感应强度B 随时间的变化率tB∆∆的大小应为 A.πω04B B.πω02B C.πω0B D.πω20B6.(2012·重庆理综)如题图21图所示,正方形区域MNPQ 内有垂直纸面向里的匀强磁场,在外力作用下,一正方形闭合刚性导线框沿QN 方向匀速运动,t=0时刻,其四个顶点M’、N’、P’、Q’恰好在磁场边界中点,下列图像中能反映线框所受安培力f 的大小随时间t 变化规律的是7.(2012·新课标理综)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。

已知在t =0到t =t 1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。

设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是8.(2012·福建理综)如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴始终保持重合。

若取磁铁中心O 为坐标原点,建立竖直向下正方向的x 轴,则图乙中最能正确反映环中感应电流i 随环心位置坐标x 变化的关系图像是9. (2012·福建理综)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。

一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。

已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中T 0=02qB m。

设小球在运动过程中电量保持不变,对原磁场的影响可忽略。

(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0; (2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。

试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ; ②电场力对小球做的功W 。

11.(2012·上海物理)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。

一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。

棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。

导轨bc段长为L,开始时PQ 左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。

以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。

在t=0时,一水平向左的拉力F 垂直作用在导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。

(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多长时间拉力F达到最大值,拉力F的最大值为多少?(3)某过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

12.(18分)(2012·天津理综)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻。

一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T。

棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动。

当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。

导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。

求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F。

相关文档
最新文档