19秋七年级数学上册第2章有理数2.13有理数的混合运算第2课时运算律在有理数混合运算中的应用习题课

合集下载

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)

七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)

《有理数的加减混合运算》知识点解读知识点1 将有理数的加减混合运算统一为加法运算(重点)★在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).★在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.★和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.★省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2 计算:11(0.5)(3) 3.75(8).42---+-+ 分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)97224422244-++-=--++=-+=-. 点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 有理数加减混合运算的注意事项①运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉,因为一个数包括两个方面,一方面是符号,另一方面是绝对值.例如8-5+7应变成8+7-5,而不能变成8-7+5;②应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便;③当分数、小数混在一块运算时,可以把它们统一成分数或小数再运算; ④如果有大括号和小括号应当先转化小括号里的运算,再转化大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.【例3】 计算:⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312; 分析:异分母分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312 =-837-7.5-2147+312=-837-2147-7.5+312=-30-4=-34.知识点4 既含小数又含分数的有理数加减混合运算解题时先将减法转化为加法,再按照以下的四条思路进行转化:一是将小数统一化成分数,二是将分数统一化成小数,三是将小数与小数,分数与分数分别结合,四是将各数的整数部分和分数(小数)部分分别结合.析规律 有理数加减混合运算的运算顺序 注意运算的顺序,如果是同一级的运算,可以同时完成化简绝对值符号和减法变加法的运算过程.有括号的要先计算括号里面的,有绝对值符号的也要先根据数或式的取值范围化去绝对值符号再进行运算.【例4】 计算:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8);(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13. 分析:有多重括号的,先计算小括号里面的,再计算大括号里面的,有绝对值符号的要先把绝对值符号化简.解:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8)=-4.2-[(-0.2)-(-7.1)]+(-3.8)=-4.2-[(-0.2)+(+7.1)]+(-3.8)=-4.2+(-6.9)+(-3.8)=-14.9.(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13 =(-1)-⎣⎢⎡⎦⎥⎤-2+(+4)+12+⎝ ⎛⎭⎪⎫-13 =(-1)-216=-316. 知识点5 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3 一名潜水员在水下80米处发现一条鲨鱼在离他不远处的上方25米的位置往下游追逐猎物,当它向下游42米后追上猎物,此时猎物做垂死挣扎立刻反向上游,鲨鱼紧紧尾随,又游了10米后被鲨鱼一口吞吃.(1)求鲨鱼吃掉猎物时所在的位置;(2)与刚开始潜水员发现鲨鱼的位置相比,鲨鱼的位置有什么变化?解析:本题主要考查应用有理数的加减混合运算解释实际问题,向上游与向下游是一对具有相反意义的量,可以用正数、负数来表示.若设向上游的高度为正数,则向下游的高度为负数.求出几个有理数的和,就可以判断鲨鱼吃掉猎物时所在的位置.答案:(1)设鲨鱼向上游的高度为正,潜水员在水下80米记为-80米,依据题意可得,鲨鱼吃掉猎物时所在的位置是-80+25-42+10=(-80-42)+(25+10)=-122+35=-87(米).(2)鲨鱼原来的位置是-80+25=-55(米).所以鲨鱼原来在水下55米处.所以与刚开始潜水员发现鲨鱼的位置相比,它向下游了32米.点拨:题目中已知条件给出一对具有相反意义的量,但没规定正负,解题时应先规定正、负才能解决问题.【类型突破】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.知识点6 折线统计图(难点)根据相关数据,在图中标出能反映这些数据特征的点,然后再按照事物发展的一种趋势,将标出的点连成折线,这样就得到了折线统计图.★画折线统计图的步骤:(1)首先确定题目中折线统计图的标题,即应弄清楚要画的是说明什么问题的折线统计图.(2)确定一个量或一个数值为0点,有的题目直接给出0点.(3)标出横线和竖线的单位,使看图的人能够看懂,并能正确使用.(4)恰当选择单位长度,使画出的折线统计图既不太靠上,又不太靠下,有明显的上升和下降的幅度,能清楚地看出变化的情况.(5)竖线上选取的最高点最好比实际最高值略高一些,最低点比实际最低值略低些,这样能突出最大值和最小值的变化幅度.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38 +0.63 +1.17 +1.30 +0.85 +1.21 +1.02 以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。

人教版七年级数学上册《有理数的减法》有理数的运算PPT课件(第2课时)

人教版七年级数学上册《有理数的减法》有理数的运算PPT课件(第2课时)

巩固练习
计算:
(1) 7 6 5 5
12 11 12 11
(2) (18.25) 4 2 (18 1) 4.4
5
4
巩固练习
解:(1)原式
=
7 12
5 12
6 11
5 11
= -1+1
=0
(2)原式=
(18.25 18
1) (4 2
4
5
4.4)
= 0+0
=0
探究新知
素养考点 2 加减混合运算的应用
为书写简单,省略算式中的括号和加号写为 ( –20+3+5–7 )
我们可以读作 负20、 正3、正5、负7 的和, 或读作 负20 加 3 加 5 减 7 .
探究新知【ຫໍສະໝຸດ 一练】把下列算式改写为省略括号和加号的形式.
(1) (–40)–(+27)+19–24–(–32) (2) (–9)–(–2)+(–3)–4
按有理数加法法则计算 =16
探究新知
方法二:去括号法
解:原式=–2+30+15–27 省略括号
=–2–27+(30+15) 运用加法交换律、结合律使同号两数分别相加
=–2+(–27)+45 按有理数加法法则计算
=–29+45
=16
探究新知
归纳总结
有理数加减混合运算的步骤: (1)将减法转化为加法运算; (2)省略加号和括号; (3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算.
答:此时飞机比起飞点高了1千米.
巩固练习
红新中学一超市一星期内收入和支出情况如下: +853.5元,+237.2元,–325元,+138.5元,–280元, –520元,+103元. 这一星期内该超市是盈利还是亏损? 盈利或亏损多少元?

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

D.-1-(-3)-6-(-8)
4 -2-3+5的读法正确的是( A )
A.负2,负3,正5的和 B.负2,减3,正5的和
C.负2,3,正5的和
D.以上都不对
(来自《典中点》)
知1-练
5 将-3-(+6)-(-5)+(-2)写成省略括号和加号 的和的形式,正确的是( D ) A.-3+6-5-2 B.-3-6+5+2 C.-3-6-5-2 D.-3-6+5-2
1 课堂讲解 有理数的加减运算统一成加法
加法运算律在加减混合运算中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 加法的交换律: 两个数相加,交换加数的位置,和不变.
ab ba
加法的结合律: 三个数相加,先把前两个数相加或先把 后两个数相加,和不变.
(a b) c a (b c)
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每隔 10min记录下自己的跑步情况(向南为正方向,单位:m):
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小明共 跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
159 162 160 154 163 165 -1 +2 0 -6 +3 +5
(2)谁最高?谁最矮? 小山最高,小亮最矮 (3)最高与最矮的学生身高相差多少? 11厘米 (4)求平均身高?

2024版人教版数学七年级上册第二章有理数的运算2.3.1 乘方 第2课时 教学课件ppt

2024版人教版数学七年级上册第二章有理数的运算2.3.1  乘方  第2课时 教学课件ppt

= –54+12+15
= –8+(–3)×18–(–4.5)
= –27
= –8–54+4.5 = –57.5
巩固练习
计算: (1)(1)10 2 (2)3 4
(2)22 36 ( 1 1 )2 23
(3)(5)3 3 ( 1 )4
2
巩固练习
(1)(1)10 2 (2)3 4
探究新知
素养考点 2 混合运算的简便运算
例2 计算:(3)2 [ 2 ( 5 )].
3
9
探究新知
例2 计算:(3)2 [ 2 ( 5 )].
3
9
解法一: 原式= 9 ( 11)
9
= –11
解法二:
原式= 9 ( 2) 9 ( 5)
3
9
= –6+(–5)
= –11
点拨:在运算 过程中,巧用 运算律,可简 化计算.
课堂小结
1 有理 数混 合运 2 算的 顺序
3
先乘方,再乘除,最后加减
同级运算,从左到右进行; 有括号的,先做括号内的运算,按先小括号、 再中括号、后大括号的顺序依次进行;
第二章 有理数的运算
2.3.1 乘方 第2课时
学习目标
1.掌握有理数的混合运算顺序,能熟练地进行有理数的混合 运算. 2.会根据一组数的特点,探究与乘方有关的规律性问题.
导入新课
【思考】 (1)我们学习了哪些运算? (2)在2+32×(–6)这个式子中,存在着哪些运
算?这些运算如何进行呢?
探究新知
知识点 1 有理数的混合运算
某公园里花坛的花朵枯萎了,现在需要重新栽种, 我们一起去看看有什么数学问题吧!

2022秋七年级数学上册 第2章 有理数2.13 有理数的混合运算课件华东师大版

2022秋七年级数学上册 第2章 有理数2.13 有理数的混合运算课件华东师大版

1.【中考·宜昌】计算 4+(-2)2×5 的结果是( D ) A.-16 B.16 C.20 D.24
2.【中考·杭州】计算下列各式,值最小的是( A ) A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9
3.下面是小刚同学做的一道题:-23÷49×-322.解:原式=8÷49×94 =8.四位同学看了小刚的解答,给出 4 个看法:①运算顺序
(2)写出正确的计算过程. 解:原式=-4÷-265×6=-4×-265×6=12454.
15.计算: -194+127-251÷-211+32×|-110-(-3)2|.
解:原式=-194+97-251×(-21)+32×|-1-9|= -194×(-21)+97×(-21)-251×(-21)+32×10=227-27+5+15= 13 2.
7.利用运算律简便计算 52×(-999)+49×(-999)+999 正确的是 ( B)
A.-999×(52+49)=-999×101=-100 899 B.-999×(52+49-1)=-999×100=-99 900 C.-999×(52+49+1)=-999×102=-101 898 D.-999×(52+49-99)=-999×2=-1 998
8.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得 简便的运算律是( C )
A.乘法交换律 B.乘法结合律 C.乘法交换律、结合律 D.乘法对加法的分配律
9.计算: (1)(-2)×-274+(-8)×274-5×-274+274;
解:原式=274×(2-8+5+1)=0.
错了;②计算-23 时符号错了,应为-8;③计算结果是-8;
④第一步应该等于-8×94×94.其中正确的是( C )

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。

北师大版数学七年级上册第二章 有理数及其运算 有理数的加减混合运算(第2课时)

北师大版数学七年级上册第二章 有理数及其运算 有理数的加减混合运算(第2课时)

时间
价格变化 /(元/吨)
1月14日 3月25日 6月1日 -140 +290 +400
6月30日 7月28日 9月1日 +600 -220 +300
9月29日 11月Байду номын сангаас日 -190 +480
解:因为-140+290+400+600-220+300-190+480=1520(元), 所以上升了1520元.
变式训练
计算:
解:原式=
=0+7-2 =5
连接中考 计算:
解:原式=
课堂检测 基础巩固题
1.-5+3+7-1=(-5-1)+(3+7)应用了( D ) A.加法交换律 B.加法结合律 C.乘法分配律 D.加法交换律和加法结合律
2.计算-2.5-3.25+4.25的结果是( B ) A.1.5 B.-1.5 C.0.5 D.-2.25
课堂检测
能力提升题
某人用400元购买了8套儿童服装,准备以一定价格出售,如 果以每套儿童服装55元的价格为标准,超出的记作正数,不足
的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.
当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了 多少钱?
课堂检测
能力提升题
=-1-15 =-16.
探究新知
(写成省略加号和括号的形式)
方法点拨:有同分母、有相反数、有整数进行有理数的加减 混合运算时,可以考虑加法的交换律、结合律使运算简便,在 利用运算律时要注意:1.相加得整的可先相加;2.同分母的可 先相加;3.互为相反数的可先相加;4.正数、负数可分别相加.

华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)

华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)

2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。

2024秋七年级数学上册第二章有理数2.13有理数的混合运算说课稿(新版)华东师大版

2024秋七年级数学上册第二章有理数2.13有理数的混合运算说课稿(新版)华东师大版
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解有理数的混合运算的基本规则和计算方法,结合实例帮助学生理解。
突出有理数的混合运算的重点,强调运算顺序和运算律,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕有理数的混合运算问题展开讨论,培养学生的合作精神和沟通能力。
设计课堂互动环节,提高学生学习有理数的混合运算的积极性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入有理数的混合运算学习状态。
回顾旧知:
简要回顾上节课学习的有理数的基本概念和运算,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为有理数的混合运算新课学习打下基础。
学生预习:
发放预习材料,引导学生提前了解有理数的混合运算的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习有理数的混合运算内ห้องสมุดไป่ตู้做好准备。
教师备课:
深入研究教材,明确有理数的混合运算教学目标和有理数的混合运算重难点。
准备教学用具和多媒体资源,确保有理数的混合运算教学过程的顺利进行。
- 3 × 4 ÷ (7 - 2)
- (2 + 3) × 4 - 5
- 2 × (3 + 4) ÷ 5
- (3 - 2) × 4 + 5
答案:
- 2(3 - 4) + 5 = 2 × (-1) + 5 = -2 + 5 = 3
- 3 × 4 ÷ (7 - 2) = 12 ÷ 5 = 2.4
- (2 + 3) × 4 - 5 = 5 × 4 - 5 = 20 - 5 = 15

2024秋七年级数学上册第2章有理数及其运算2.6有理数的加减混合运算教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.6有理数的加减混合运算教案(新版)北师大版
简短介绍有理数加减混合运算的基本概念和重要性,为接下来的学习打下基础。
2. 有理数加减混合运算基础知识讲解(10分钟)
目标: 让学生了解有理数加减混合运算的基本概念、运算规则和计算方法。
过程:
讲解有理数加减混合运算的定义,包括其运算规则和计算方法。
3. 有理数加减混合运算案例分析(20分钟)
目标: 通过具体案例,让学生深入了解有理数加减混合运算的特性和重要性。
4. 有理数加减混合运算的运算律:
- 加法结合律:a + (b + c) = (a + b) + c
- 加法交换律:a + b = b + a
- 减法性质:a - b = a + (-b)
5. 有理数加减混合运算的注意事项:
- 注意运算符号的正确使用。
- 注意运算顺序,尤其是括号的使用。
- 计算过程中要注意正负号的正确性。
- 异号有理数相减:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2. 有理数加减混合运算的计算方法:
- 先进行括号内的运算。
- 按照从左到右的顺序进行计算。
- 如果有多个运算符号,先算乘除,再算加减。
3. 有理数加减混合运算的应用:
- 解决实际问题:如购物找零、制作食谱等。
- 数学题目:如解方程、计算几何图形的面积等。
总体来说,这节课的教学效果还是不错的,大多数学生能够理解和掌握有理数加减混合运算的知识。在今后的教学中,我将继续改进教学方法和策略,以提高学生的学习效果和兴趣。
课后作业
1. 计算题:
a) 计算:3 + (-2) - 4 + 5
b) 计算:-8 + 2 + (-3) - (-6)

七年级数学上册第2章《有理数的加减混合运算(2)》名师教案(北师大版)

七年级数学上册第2章《有理数的加减混合运算(2)》名师教案(北师大版)

北师大版数学七年级2.6有理数的加减混合运算(2)教学设计高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5 - 3.2 + 1.1 - 1.4 =?教师引导学生思考得出今天学生内容有理数的加减混合运算。

而引入有理数的加减混合运算。

为载体,继续学习有理数的加减混合运算,调动学生的积极性,成功引入了新课讲授新课2、出示课件想一想:教师引导学生观看课件4.5 - 3.2 + 1.1 - 1.4 =?方法一:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)方法二:4.5-3.2+1.1-1.4=4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=1.3+1.1-1.4=2.4-1.4=1(千米)教师引导学生比较以上两种算法,你发现了什么?找出不同点和相同点。

相同点:都是从左向右计算;不同点:方法二是先把减法统一成加法,然后再从左向右计算。

教师引导学生进一步总结加减混合运算法则:有理数的加减混合运算可以统一成加法运算:议一议:4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=4.5 + 1.1 + [ ( -3.2 ) + ( -1.4 ) ]学生自主观察、分析、对比、思考、总结,用通过两种方法解决有理数的混合运算得出有理数的混合运算法则,分组交流、汇报,然后教师加以矫正主要为了鼓励学生主动思考问题.通过通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.为进一步学习有理数的加减法混合运算做好铺垫。

通过例题教学使学生巩固解(加法的交换律和结合律)= 5.6 + ( -4.6 )= 1.教师追问学生你发现了什么?加减混合运算时可运用加法交换律和结合律简化运算(2)加减混合运算时可运用加法交换律和结合律简化运算.做一做:教师引导学生学习例题教师追问学生还有别的解法吗?进行有理数的加减混合运算可以省略到加数的括号和前面的加号进行运算。

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算考试要求:重难点:1.理解并掌握加减法法则且能熟练运用法则计算2.理解并掌握乘除法法则且能熟练运用法则计算3.能利用有理数的运算法则简化运算4.能借助数轴比较有理数的大小例题精讲:模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;①求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)①三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.a b c a b c++=++(加法结合律)()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.①带分数可分为整数与分数两部分参与运算.①多个加数相加时,若有互为相反数的两个数,可先结合相加得零.①若有可以凑整的数,即相加得整数时,可先结合相加.①若有同分母的分数或易通分的分数,应先结合在一起.①符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。

华东师大版七年级数学上册《第2章有理数2.13有理数的混合运算 》说课稿

华东师大版七年级数学上册《第2章有理数2.13有理数的混合运算 》说课稿

华东师大版七年级数学上册《第2章有理数2.13有理数的混合运算》说课稿一. 教材分析华东师大版七年级数学上册《第2章有理数2.13有理数的混合运算》这一节主要讲述了有理数的混合运算。

混合运算是指包含了加、减、乘、除四种基本运算的数学运算。

这部分内容是有理数运算的重要组成部分,对于学生理解和掌握有理数运算有着重要的意义。

二. 学情分析学生在学习这一节内容之前,已经学习了有理数的基本概念和加、减、乘、除四种基本运算。

但是对于混合运算,学生可能还存在一些困惑和问题,比如对运算顺序的理解,对括号的运用等。

因此,在教学过程中,需要引导学生理解和掌握混合运算的规则,提高学生的运算能力。

三. 说教学目标1.知识与技能目标:使学生理解和掌握有理数的混合运算规则,能够正确进行混合运算。

2.过程与方法目标:通过实例讲解和练习,培养学生的运算能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心。

四. 说教学重难点1.教学重点:有理数的混合运算规则。

2.教学难点:对混合运算中括号的运用,以及运算顺序的理解。

五. 说教学方法与手段在教学过程中,我将采用讲解法、示范法、练习法等多种教学方法,结合多媒体教学手段,帮助学生理解和掌握混合运算的规则。

六. 说教学过程1.导入新课:通过复习有理数的基本运算,引导学生进入混合运算的学习。

2.讲解新课:通过实例讲解,使学生理解和掌握混合运算的规则。

3.课堂练习:布置一些混合运算的题目,让学生独立完成,检验学生对混合运算的理解和掌握程度。

4.总结提升:对混合运算的规则进行总结,提醒学生注意运算顺序和括号的运用。

5.布置作业:布置一些混合运算的题目,让学生课后巩固。

七. 说板书设计板书设计如下:有理数的混合运算1.运算顺序:先乘除后加减,同级从左到右2.括号的运用:改变运算顺序八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和课后反馈来进行。

2024年秋人教版七年级数学上册 第2章 “有理数的运算”《有理数的加减乘除混合运算》精品课件

2024年秋人教版七年级数学上册 第2章 “有理数的运算”《有理数的加减乘除混合运算》精品课件
7
解:(1)3+5÷
=-3+5÷1
=2.

(- )

× (-)
1 1
(2)5-12×( - ).
3 4

解:(2)5-12×( - )



=5-(12× -12× )


=5-(4-3)
=4.
知识点2 有理数的加减乘除混合运算的实际应用
ቤተ መጻሕፍቲ ባይዱ【例3】某公司去年1-3月平均每月亏损1.5万元,4-6月平均每月盈
1
(1)10-18÷3×(- );
3

解:(1)10-18÷3×(- )


=10+6×

=12.
3
(2)-2+(- )÷[4+7×(-1)].
2

解:(2)-2+(- )÷[4+7×(-1)]


=-2+(- )÷(-3)


=-2+ × =-1.5.

【变式2】计算:
1
(1)-3+5÷[(- )×(-7)];
所示:
第一季度
+1.5
第二季度
-4.5
第三季度
+2.4
问这个公司2022年总的盈亏情况如何?
解:+1.5+(-4.5)+2.4+(-5.2)
=1.5+2.4-4.5-5.2
=-5.8(万元).
答:这个公司2022年总的亏损为5.8万元.
第四季度
-5.2
1.计算(-3)×(-2)-10的结果是
2.计算:
标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录
如下:
质量/千克
袋数
-0.5
8

七年级数学上册第二章有理数2.13有理数的混合运算有理数的混合运算的顺序素材新版华东师大版

七年级数学上册第二章有理数2.13有理数的混合运算有理数的混合运算的顺序素材新版华东师大版

有理数的混合运算的顺序
难易度:★★★
关键词:有理数
答案:
从左到右,依次计算1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算,已学过的第三级运算是乘方; 2,同一级运算按照从左往右的顺序行; 3,不同级运算的运算顺序是先算乘方,再算乘除,最后算加减;4、有括号的先算小括号再算中括号最后算大括号。

【举一反三】
典例:
计算:(1);(2

思路导引:当混合运算中有括号时,要按小括号、中括号的顺序计算,同时还要巧妙地运用运算律,使解题简便,更具灵活性。

标准答案:(1
)原式
(2
)原式
文末学习倡导书:学习不是三天打鱼,两天晒网。

即使你拥有一个良好的学习心态和准确的学习方法,如果只是一曝十寒,没有坚持不懈的精神,那也无法达到学习的顶峰。

我们要真正学到一点东西,就要虚心。

譬如一个碗,如果已经装得满满的,哪怕再有好吃的东西,象海参,鱼翅之类,也装不进去,如果碗是空的,就能装很多东西。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档