抽屉原理课件

合集下载

《抽屉原理》(PPT课件

《抽屉原理》(PPT课件
算法分析
在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。

《抽屉原理》公开课PPT课件

《抽屉原理》公开课PPT课件

1、如果把6个苹果放入5个抽屉中,至 少有几个放到同一个抽屉里? (2个) 2、如果把7个苹果放入6个抽屉中,至 少有几个放到同一个抽屉里呢? (2个)
3、如果把100个苹果放入99个抽屉中, 至少有几个放到同一个抽屉里呢? (2个)
你有什么发现?
1、如果把6个苹果放入4个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢?
( 367名学生 )→ 待分的物体 366天 ( ) → 抽屉
2. 任意的( 13 )名学生中,至少有2名学生 的生肖一样。为什么? ( ( 13名学生 12生肖 )→ )→ 待分的物体 抽屉
咱们班共40人,至少 有几人是同一属相?
• 请判断下面的说法对吗?为什么? 1、我们班的13位同学中,至少有2位同学的 生日在同一个月。 2、我校五、六年级共369人,至少有2人的生 日在同一天。
2、如果把8个苹果放入5个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢?
你发现了什么规律?
只要物体数量是抽屉数 量的1倍多,总有一个抽屉 里 至少放进2个物体。
铅笔/支 5
笔筒/个 列出的算式 2 5÷2=2……1
至少数 2+1=3
7
8 19
2
3 4
பைடு நூலகம்
7÷2=3……1
8÷3=2……2 19÷4=4……3
3+1=4
2+1=3 4+1=5
20
5
20÷5=4
4
求至少数是否存在着规律呢? 我发现了(
有余数时,至少数=商+1 没余数时,至少数=商
)。
三、深入研究 验证模型
看看有几种 放法?通过 观察,你发 现了什么?
如果一共有9 7本书会怎样呢? 本书会怎样呢? 如果一共有

抽屉原理PPT课件

抽屉原理PPT课件

例5 五年一班共有学生53人,他们 的年龄都相同,请你证明至少有两个 小朋友出生在一周。
1年有52周 53个生日 52个 53个
例6 有十只鸽笼,为保证每只鸽笼中最多住
一只鸽子(可以不住鸽子),那么鸽子总数最多
能有几只?请你用抽屉原理说明你的结论。
最不利原则: ⑴ 保证发生的最少情况 ⑵ 保证=最倒霉+1
求证:对于任意的8个自然数,一定 能从中找到6个数 a、b、c、d、e、f,使得(a-b)(c- d)(e-f)是105的倍数.
1、把15个球放进4个箱子 里,至少有( 4 )个球 要放进同一个箱子里。
15÷4=3……3 3+1=4(个)
2、六(1)班有54位同学, 至少有( )人是同一个 5 月过生日的。
例7 在一只口袋中有红色与黄色球各4只, 现有4个小朋友,每人可从口袋中随意取出2个 小球,请你证明必有两个小朋友,他们取出的 两个小球的颜色完全一样。
每个小朋友取出两种颜色的球的颜色组合只有3种可 能:
例8 从电影院中任意找来13个观众, 至少有两个人属相相同。
12属
12个抽屉
13人
13个苹果
将3个苹果放到2个抽屉里,可以肯定一定有 一个抽屉里至少有2个苹果,5只鸽子飞进4个鸽 笼,那么一定有一个鸽笼里至少飞进2只鸽子, 这两个简单的例子所体现的数学原理就是“抽屉 原理”,也叫“鸽笼原理”。 抽屉原理1:将多于n件的物品任意放到n个抽 屉里,那么至少有一个抽屉里的物品不少于2件。
鸽笼原理
54÷12=4……6 4+1=5(人)
3、把红、黄两种颜色的球 各6个放到一个袋子里,任 意取出5个,至少有( 3) 个同色。
5÷2=2……1 2+1=3(人)

抽屉原理 (最终版).ppt

抽屉原理  (最终版).ppt

小游戏 投飞镖
张叔叔参加飞镖比赛,投了5镖, 成绩是41环。张叔叔至少有一镖不低 于9环。为什么?
谢谢
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/11/92020/11/9Monday, November 09, 2020
放,总有一个笔筒里至少有两只铅笔, 你同意这种说法吗?
活动探究一:
把4枝笔放入3个笔筒里,有几种
不同的放法?
合作要求:
1、四人小组互相摆一摆,说一说。
2、把摆的结果用喜欢的方式记 枝铅笔
假设法:
4÷3=1……1
把4枝铅笔平均分到3个笔筒,每个笔筒 中就放了1枝铅笔,还剩下1枝,把剩下 的一枝铅笔不管放入哪里笔筒里, 总有一个笔筒里至少放进2枝铅笔。
11 ÷ 4 = 2……3
至少数
4 3
3
m ÷ n = a……b a+1
抽屉原理:
把m个物体放进n个抽里, 不管怎么放,总有一个抽屉至少 放进a+1个物体。
7只鸽子飞回5个鸽舍,至少有( 2 )只鸽 子要飞进同一个鸽舍里。
7÷5=1……2
至少数=1+1=2(只)
挑战
第一关:13个同学坐5张椅子,至少有( 3 )个同
问题1:把 7 本书放进 2 个抽屉中,不管怎么放, 总有一个抽屉至少放进( )本书?
问题2:把 8 本书放进 3 个抽屉中,不管怎么放, 总有一个抽屉至少放进( )本书?
问题3:把 11 本书放进 4 个抽屉中,不管怎么放, 总有一个抽屉至少放进( )本书?
问题1:把 7 本书放进 2 个抽屉中,不管怎么放, 总有一个抽屉至少放进( )本书?

抽屉原理ppt(共10篇)

抽屉原理ppt(共10篇)

抽屉原理ppt(共10篇)抽屉原理ppt(一): 什么叫抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果.这一现象就是我们所说的“抽屉原理”.抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素.” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”).它是组合数学中一个重要的原理.抽屉原理ppt(二): 人教版小学数学六年级数学广角《抽屉原理》的小组活动怎样设计人教版小学数学六年级数学广角《抽屉原理》的学生小组活动怎样设计我这样设计可以吗活动1、如果把3根小棒放进2个杯子里,或4根小棒放进3个杯子里,你们摆一摆会有什么发现活动2、把5根小棒或7根小棒放进2个杯子里,会出现什么情况活动3、8根小棒放进3个杯子里,总有一个杯子里至少有几根小棒学生填写的表格:小棒杯子记录实验过程(用画图、数字或其它方法)实验结果这样能达到最佳的教学效果吗请专家指点,不甚感激!抽屉原理一、知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k=(当n能整除m时)〔〕+1 (当n不能整除m时)(〔〕表示不大于的最大整数,即的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本试证明:必有两个学生所借的书的类型相同证明:若学生只借一本书,则不同的类型有A、B、C、D四种若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种共有10种类型把这10种类型看作10个“抽屉”把11个学生看作11个“苹果”如果谁借哪种类型的书,就进入哪个抽屉由抽屉原理,至少有两个学生,他们所借的书的类型相同例6、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同证明:设每胜一局得一分由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能以这49种可能得分的情况为49个抽屉现有50名运动员得分则一定有两名运动员得分相同例7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的解题关键:利用抽屉原理2.根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉将这50个同学看作苹果=5.5 (5)由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的抽屉原理ppt(五): "抽屉原理"是谁提出的抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素.”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”).它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理.它是组合数学中一个重要的原理.抽屉原理ppt(六): 数学中抽屉原理是什么抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件.抽屉原理2:将多于mxn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件.抽屉原理的本质是最差原则,很多题目不能直接用抽屉原理来解答的,均可以通过最差原则来求解.抽屉原理ppt(七): “抽屉原理”中,至少数=()+()急哦是物体数!!!!!!(总数/抽屉数)+1抽屉原理ppt(八): 抽屉原理的由来是什么抽屉原理日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果. 千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2. 将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.抽屉原理ppt(九): 根据抽屉原理的理解,编一道利用抽屉原理解决的问题六年二班共有37名学生,问:至少有几人在同一月出生(假设所有人年龄相同)抽屉原理ppt(十): 抽屉原理的为什么该怎么答如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素. 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果.这一现象就是我们所说的“抽屉原理”. 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素.” 抽屉原理有时也被称为鸽巢原理.它是组合数学中一个重要的原理.为小学六年级课程.【第一抽屉原理】:原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件.抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能.原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体.证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体.原理1 、2 、3都是第一抽屉原理的表述.【第二抽屉原理】:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2).证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能.抽屉原理ppt课件简单抽屉原理ppt。

第六讲、抽屉原理PPT课件

第六讲、抽屉原理PPT课件
一个小朋友多分到一个苹果,那么一共可以分掉1+2+3+..+9+10=55(个 )苹果。还剩下100-55=45(个);
1、假设,如果第一个小朋友分1个,第二个小朋友分2个......后一个小朋友比前
2、将剩下的45个苹果再分给10个小朋友,因为45÷10=4......5,所以每个小朋
友可以再分到4个苹果,还余5个; 3、为了使每个小朋友分得的苹果数不一样多,每个小朋友可以按照下面的方法 分到苹果:5,6,7,8,9,11,12,13,14,15,所以分得的苹果个数最多的小朋友至 少可以分到15个苹果。
抽 屉 原 理
主讲:刘志军
同学们都知道,如果把三个苹果放进两个抽屉里,无 论怎样放,都有一个抽屉里面至少放进去了2个苹果。推 广一下,如果将多余N个的元素任意放进N个抽屉里,那 么至少有一个抽屉至少放进2个或两个以上的元素,这就 是“抽屉原理” 。
例1:将8个苹果分给7个小朋友,如果苹果不许切开,无 论怎样分,有一个小朋友至少拿到了2个苹果,对吗?
点拨:(观察题目)
1、1年有12个月,将这12个月看做12个抽屉,13个小朋友看做13个元素;
2、根据抽屉原理,将13个元素放进12个抽屉中,至少有一个抽屉里面放进去了 2个元素,也就是13个小朋友中肯定有2个小朋友在同一个月里过生日;
拓展:育才小学五(1)班有54名学生,是否有2名学 生在同一个星期过生日?
有2个颜色不同的球;
2、因此,一次至少摸出7个球,才能保证有2个颜色不同的球;
拓展:一个盒子里面有3个黑球,4个红球,5个花球, 如果不用眼睛看,从盒子中摸出球,每次只需摸1个球 ,至少摸几次,才能保证摸出的球中至少有2个颜色相 同的球?

《抽屉原理》PPT课件

《抽屉原理》PPT课件
小学数学六年级下册
例1、把4枝笔放进3个笔筒里,总有一 个笔筒里至少放进几枝笔?
至少放进2枝
如果我们先让每个笔筒里放1枝笔,最 多放3枝。剩下的1枝还要放进其中的一 个笔筒。所以不管怎么放,总有一个笔 筒里至少放进2枝笔。
把5枝笔放进4个笔筒里,总有 一个笔筒里至少放进几枝笔?
把6枝笔放进5个笔筒ห้องสมุดไป่ตู้,结果会 怎样呢?
5÷2 = 2‥‥‥1
7÷2 = 3‥‥‥1
9÷2 = 4‥‥‥1
9本书放进2个 抽屉, 有一个抽 屉至少放5本书.
如果每个抽 屉放3本 书,2个抽屉 放6本.剩下 的1本放进 其中的一个 抽屉.所以至 少有4本书 放进同一个 抽屉.
抽屉原理:
… … m÷n=a b
( m>n>1)
把m个物体放进n个抽屉里 ( m>n>1),不管怎么放总有 一个抽屉至少放进( +1 )个 物体。
a
“抽屉原理”又称“鸽巢原理”,
最先是由19世纪的德国数学家 狄利克雷提出来的,所以又称 “狄利克雷原理”。抽屉原理的应
狄利克雷 (1805~1859)
用是千变万化的,用它可以解决许
多有趣的问题,并且常常能得到一
些令人惊异的结果。
8只鸽子飞回3个鸽舍,至少有3只鸽子 飞回同一个鸽舍里。为什么? 8 ÷3 = 2 ‥‥‥ 2 2+1=3
三.在学习中,同学们要着重注意在每一道题中怎样 识别“抽屉”,又把什么当作“物体”,而且“物 体”的数目一定要大于“抽屉”的数目。
综合应用: 1、34个小朋友要进4间屋子,至少有( 9)个小朋 友要进同一间屋子。 2、13个同学坐5张椅子,至少有( 3 )个同学坐在 同一张椅子上。 3、新兵训练,战士小王6枪命中了43环,战士小王 总有一枪至少打中( 8 )环。 4、咱们班上有57个同学,至少有(5 )人在同一个 月出生。 5、从街上人群中任意找来20个人,可以确定,至少 有( )个人属相相同。

《抽屉原理PPT课件》

《抽屉原理PPT课件》
人教新课标六年级数学下册
至少
老师任意点13位同学 就可以肯定,至少有2 个同学的生日是在同 一个月,你们信吗?
看看有几种放法? 通过观察,你发 现了什么?
我把情况记 录下来.
(0,0) (3,1,0) (2,2,0) (2,1,1)
不管怎么放总有一个文具盒 里至少放进2枝铅笔 。
一盒围棋棋子,黑白子混放,我们任意摸出 3个棋子,至少有2个棋子是同颜色的,为什 么?
一幅扑克,拿走大、小王后还 有52张牌,请你任意抽出其中 的5张牌,那么你可以确定什 么?为什么?
六年级四个班的学生去春游,自由活动时, 有6个同学在一起,可以肯定, 。为什 么?
六(2)班有学生39人,我们可以肯定,在
(2,1,1)“平均分”才最少
(4,0,0) (3,1,0) (2,2,0)
4÷3= 1……1
至少数:1+1=2
(商+1)
看看有几种 放法?通过 观察,你发 现了什么?
如果一共有7本书会怎样呢? 如果一共有9本书会怎样呢?
“ 抽屉原理”又称“鸽笼原理”,最先是 由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
这39人中,至少有
人的生日在同一
个月?想一想,为什么?
请你任意写出4个自然数,在这4个 自然数中,必定有这样的两个数,它 们的差是3的倍数,试一试,想一想, 为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档