抽象函数教师版

合集下载

高中数学抽象函数专题含答案-教师版

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版)抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难 ,所以特探究一下抽象函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法 .此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=1f(x),则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a 是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a 是它的一个周期.我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3 (1),其他命题的证明基本类似.设条件A: 定义在R上的函数f(x)是一个偶函数.条件B: f(x)关于x=a对称条件C: f(x)是周期函数,且2a是其一个周期.结论: 已知其中的任两个条件可推出剩余一个.证明: ①已知A、B→ C (2001年全国高考第22题第二问)∵f(x)是R上的偶函数∴f(-x)=f(x)又∵f(x)关于x=a对称∴f(-x)=f(x+2a)∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期②已知A、C→B∵定义在R上的函数f(x)是一个偶函数∴f(-x)=f(x)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a) ∴ f(x)关于x=a对称③已知C、B→A∵f(x)关于x=a对称∴f(-x)=f(x+2a)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x) ∴f(x)是R上的偶函数T由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f( )=02基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.1.求函数值例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值解:方法一∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x)∴8是f(x)的一个周期∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1方法二∵f(x)=-f(x+4),f(x)是奇函数∴f(-x)=f(x+4) ∴f(x)关于x=2对称又∵f(x)是奇函数∴8是f(x)的一个周期,以下与方法一相同.例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值解:由条件知f(x)1,故f (x + 2) =:f (x + 4) = = 1f(x)类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=22. 求函数解析式例3:已知f(x)是定义在R上的偶函数, f(x)= f(4-x),且当x[2,0]时, f(x)=-2x+1,则当x [4,6]时求f(x)的解析式解:当x [0,2]时x [2,0] ∴f(-x)=2x+1∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1当x [4,6]时 4 + x [0,2] ∴f(-4+x)=2(-4+x)+1=2x-7又函数f(x)是定义在R上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为4故f(-4+x)=f(x)∴当x [4,6]时求f(x)=2x-73.判断函数的奇偶性例4:已知f(x)是定义在R上的函数,且满足f(x+999)=1f(x),f(999+x)=f(999-x),试刘云汉判断函数f(x)的奇偶性.解:由f(x+999)=一1f(x),类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x)故f(x)=f(-x) :f(x)是偶函数 4.判断函数的单调性例5:已知f(x)是定义在R 上的偶函数, f(x)= f(4-x),且当x =[一2,0]时, f(x)是减函数, 求证当x =[4,6]时f(x)为增函数解:设4 共 x < x 共 6 则一2 共 一x + 4 < 一x + 4 共 01 2 2 1∵ f(x)在[-2,0]上是减函数∴ f (一x + 4) > f (一x + 4)2 1又函数f(x)是定义在R 上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为 4故f(x+4)=f(x ) ∴ f (一x ) > f (一x ) ∵ f(-x)=f(x) ∴ f (x ) > f (x )2 1 2 1故当 x =[4,6]时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈ [5,9]且f(x) 在[5,9]上单调.求a 的值.解:∵ f(x)=-f(6-x ) ∴f(x)关于(3,0)对称∵ f(x)= f(2-x ) ∴ f(x)关于x=1对称∴根据命题2 (4)得8是f(x)的一个周期 ∴f(2000)= f(0) 又∵f(a) =-f (2000) ∴f(a)=-f(0)又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a∈[5,9]且f(x)在[5,9]上单调∴a =6 5.确定方程根的个数例7:已知f(x)是定义在R 上的函数, f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0, 求在区间[-1000,1000]上f(x)=0至少有几个根?解:依题意f(x)关于x=2,x=7对称,类比命题2 (2)可知f(x)的一个周期是10故f(x+10)=f(x ) ∴f(10)=f(0)=0 又f(4)=f(0)=0即在区间(0,10]上,方程f(x)=0至少两个根又f(x)是周期为10的函数,每个周期上至少有两个根,因此方程f(x)=0在区间[-1000,1000]上至少有1+2人200010=401个根.两类易混淆的函数问题:对称性与周期性已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形这两个问题的已知条件形似而质异。

专题(9)构造法解决抽象函数问题教师版

专题(9)构造法解决抽象函数问题教师版

高三第二轮专题复习专题(9)——构造法解决抽象函数问题在导数及其应用的客观题中,有一个热点考查点,即不给出具体的函数解析式,而是给出函数()f x 及其导数满足的条件,需要就此条件构造抽象函数,再根据条件得出构造的函数的单调性,应用单调性解决问题的题目。

一、典例探究类型1、只含()f x 型例1、定义在R 上的函数()f x 满足(1)1f =,且对任意x R ∈都有1()2f x '<,则不等式221()2x f x +>的解集为( ).A.(1,2)B.(0,1)C.(1,)+∞D.(1,1)-答案:D.说明:利用[()]()f x kx b f x k ''++=+,构造函数()()g x f x kx b =++,利用导数,判断函数()g x 的单调性,在利用单调性比较函数值的大小,解抽象函数的不等式.类型2、含()()f x f x λ'±(λ为常数)型例2、定义在R 上的函数()f x 满足()2()0f x f x '+>恒成立,且1(2)f e=,则不等式2()0x x e f x e ->的解集为_______________.答案:(2,)+∞.x λ变式:已知定义在R 上的函数()f x 的导函数为()f x ',且对任意x R ∈,均有()()f x f x '>,则有( ).A.20152015(2015)(0),(2015)(0)e f f f e f -<>B. 20152015(2015)(0),(2015)(0)e f f f e f -<<C. 20152015(2015)(0),(2015)(0)e f f f e f ->>D. 20152015(2015)(0),(2015)(0)e f f f e f -><答案:D.说明:由于0xe >所以[()][()()]x x ef x f x f x e ''=+,其符号由()()f x f x '+的符号确定; ()()()[]x xf x f x f x e e '-'=,其符号由()()f x f x '-的符号确定.含有()()f x f x '±类的问题可以考虑构造以上两个函数.类型3、含()()xf x nf x '±型例3、设函数()f x '是奇函数()()f x x R ∈的导函数,且(2)0f -=.当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( ).A.(,2)(0,2)-∞- B.(2,0)(2,)-+∞ C.(,2)(2,0)-∞-- D.(0,2)(2,)+∞说明:由于2()()()[()]()(),[]f x xf x f x xf x f x xf x x x'-'''=+=,在含有()()xf x f x '±类的问题中,可以考虑构造以上函数. 变式:设函数()f x 在R 上的导函数为()f x ',且22()()f x x f x x '+>.下面的不等式在R 上恒成立的是( ).A.()0f x >B. ()0f x <C. ()f x x >D. ()f x x <答案:A.说明:对于()()0(0)xf x nf x x '->≠型,构造函数()()n f x F x x =,则1()()()n xf x nf x F x x +'-'=,需要注意对1n x +的符号进行讨论.特别地,当1n =时,()()0xf x f x '->,构造()()f x F x x =,那么2()()()0xf x f x F x x '-'=>. 类型4、含()()tan f x f x x '±型例4、已知函数()f x 的导函数为()f x ',当(0,)2x π∈时,()sin2()(1cos2)f x x f x x '<+成立,下列不等式一定成立的是( ).()()43ππ<()()43ππ>()()46ππ<()()46ππ>说明:由于当(0,)2x π∈时,[sin ()]cos ()sin ()x f x x f x x f x ''=+,其符号与()()tan f x f x x '+相同,2()()sin ()cos []sin sin f x f x x f x x x x'-'=,其符号与()tan ()f x x f x '-相同.在含有()()tan f x f x x '±的问题中,可以考虑构造函数()()()sin ,()cos ,,sin cos f x f x f x x f x x x x . 类型5、利用单调性构造函数例5、已知函数21()ln ,()2f x xg x x ==,若120x x >>,试问:(,1)m m Z m ∈≤取何值时,总有 121122[()()]()()m g x g x x f x x f x ->-恒成立.答案:1m =.二、课后巩固1、已知定义在R 上的奇函数()f x ,满足(1)0f -=.当0x >时,2(1)()2()0x f x xf x '+-<,则不等式()0f x >的解集为_____________.2、已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为_____________.答案:(0,)+∞.3、已知偶函数()f x 是定义在{|0}x R x ∈≠上的可导函数,其导函数为()f x '.当0x <时,()()f x f x x '>恒成立.设1m >,记4(1)4,2(2(1)()11mf m m a b c m f m m +===+++,则,,a b c 的大小关系为( ). A.a b c << B.a b c >> C.b a c << D.b a c >>答案:A.。

高一抽象函数五大模型总结教师版

高一抽象函数五大模型总结教师版

高一抽象函数五大模型总结模型一:正比例函数模型y =kx已知函数f x 对一切x ,y ∈R ,都有f x +y =f x +f y ,当x >0时,f x <01证明:f 0=0; 2证明:函数f x 为奇函数; 3证明:函数f x 在R 上为减函数.证明: 1令x =y =0⇒f 0=f 0+f 0⇒f 0=0 2令y =-x ⇒f 0=f x +f -x ,由于f 0=0⇒f -x =-f x ⇒函数f x 为奇函数3任取x 1<x 2,则f x 2=f x 1+ x 2-x 1=f x 1+f x 2-x 1由于x 2-x 1>0,所以f x 2-x 1<0,从而f x 1>f x 2即函数f x 在R 上为减函数。

证毕!模型二:一次函数模型y =kx -c已知函数f x 对一切x ,y ∈R ,都有f x +y =f x +f y +c ,且当x >0时,f x >-c1证明:f 0=-c ; 2证明:函数g x =f x +c 为奇函数; 3证明:函数f x 在R 上为增函数.证明: 1令x =y =0⇒f 0=f 0+f 0+c ⇒f 0=-c 2令y =-x ⇒f 0=f x +f -x +c⇒f -x +c =- f x +c ⇒g -x =-g x ⇒函数g x =f x +c 为奇函数3任取x 1<x 2,则f x 2=f x 1+ x 2-x 1=f x 1+f x 2-x 1+c 由于x 2-x 1>0,所以f x 2-x 1>-c ,从而f x 2>f x 1即函数f x 在R 上为增函数.证毕!模型三:指数函数模型y =a x已知定义域为R 的函数f x 对任意的实数x ,y ∈R 均有 f x +y =f x f y ,且当x <0时,f x >11证明:f 0=1; 2证明:当x >0时,有0<f x <1; 3证明:函数f x 在R 上单调递减证明: 1令x =0,y =-1⇒f -1=f 0f -1,又f -1>1则f 0=12令y =-x ⇒f 0=f x f -x ⇒f -x = 1fx 当x >0时,f -x >1,f x =f - -x = 1f-x ∈ 0,1 3任取x 1<x 2,f x 2=f x 1+ x 2-x 1=f x 1f x 2-x 1易知f x 1>0,f x 2-x 1∈ 0,1,所以f x 2<f x 1即函数f x 在R 上单调递减.证毕!模型四:对数函数模型y =log a x已知定义在 0,+∞上的函数f x 对任意的x ,y ∈ 0,+∞均有f xy =f x +f y ,且当x >1时,f x >01证明:f 1=0; 2证明:当0<x <1时,f x <0; 3证明:函数f x 在 0,+∞上为增函数.证明: 1令x =y =1⇒f 1=f 1+f 1⇒f 1=02令y = 1x ⇒f 1=f x +f 1x ⇒f 1x=-f x ⇒当0<x <1时,f 1x >0⇒f x =f1 1x =-f 1x <0 3任取0<x 1<x 2, x 2x 1>1⇒f x 2x 1>0则f x 2=f x 1⋅ x 2x 1=f x 1+fx 2x 1>f x 1即函数f x 在 0,+∞上为增函数.证毕!模型五:幂函数模型y =x α已知定义在 0,+∞上的函数f x 对任意x ,y ∈R ∈均有f xy =f x f y ,且当x >1时,f x >11证明:f 0=0; 2证明:函数f x 在 0,+∞上单调递增.证明: 1令x =0,y =1⇒f 0=f 0f 1,又f 1>1故f 0=02令x =1,y =2⇒f 2=f 1f 2,又f 2>1⇒f 1=1令y = 1x ⇒f 1=f x f 1x ⇒f 1x = 1fx ⇒当x ∈ 0,1时,f 1x>1则f x =f1 1x = 1f 1x ∈ 0,1任取0<x 1<x 2,则f x 1>0,f x 2x 1>1f x 2=f x 1⋅ x 2x 1=f x 1fx 2x 1>f x 1即函数f x 在 0,+∞上单调递增.证毕!。

抽象函数课教案模板

抽象函数课教案模板

抽象函数课教案模板教案标题:抽象函数课教案模板教案概述:本节课的教学目标是引导学生了解抽象函数的概念、特点和应用,并能够运用抽象函数解决问题。

通过理论讲解、示例演示和实践练习,培养学生的抽象思维和问题解决能力。

教学目标:1. 理解抽象函数的概念和特点;2. 掌握抽象函数的定义和使用方法;3. 能够设计和实现简单的抽象函数;4. 运用抽象函数解决实际问题。

教学重点:1. 抽象函数的概念和特点;2. 抽象函数的定义和使用方法。

教学难点:1. 如何设计和实现抽象函数;2. 如何运用抽象函数解决实际问题。

教学准备:1. 教师准备:教案、投影仪、计算机、示例代码;2. 学生准备:纸笔、计算机。

教学过程:步骤一:导入(5分钟)1. 引入抽象函数的概念,与学生一起讨论抽象函数在日常生活和编程中的应用。

2. 提出本节课的教学目标,并激发学生的学习兴趣。

步骤二:理论讲解(10分钟)1. 讲解抽象函数的定义、特点和作用。

2. 通过示例代码和图示,解释抽象函数的使用方法和注意事项。

步骤三:示例演示(15分钟)1. 选择一个简单的问题,通过编写抽象函数的方式解决。

2. 详细讲解编写抽象函数的步骤和思路。

3. 演示运行代码,展示抽象函数的实际效果。

步骤四:实践练习(20分钟)1. 提供一些练习题,要求学生设计并实现相应的抽象函数。

2. 学生独立或分组完成练习,并相互交流、讨论解决思路和方法。

3. 教师巡回指导和解答学生的问题。

步骤五:总结归纳(5分钟)1. 与学生一起总结抽象函数的定义、特点和使用方法。

2. 强调抽象函数在问题解决中的重要性和应用价值。

步骤六:作业布置(5分钟)1. 布置相关的作业,要求学生运用抽象函数解决实际问题。

2. 强调作业的重要性,并提供必要的参考资料和指导。

教学反思:本节课通过理论讲解、示例演示和实践练习相结合的方式,引导学生理解和掌握抽象函数的概念和使用方法。

在教学过程中,学生积极参与,能够独立思考和解决问题。

大学抽象函数教案模板设计

大学抽象函数教案模板设计

一、教学目标1. 知识目标:使学生掌握抽象函数的基本概念、性质以及应用。

2. 能力目标:培养学生分析问题、解决问题的能力,提高学生的数学思维能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的团队合作精神。

二、教学重点1. 抽象函数的定义及性质。

2. 抽象函数的图像与性质。

3. 抽象函数的应用。

三、教学难点1. 抽象函数的定义理解。

2. 抽象函数的图像绘制。

四、教学过程(一)导入1. 复习初中函数知识,引出抽象函数的概念。

2. 提出问题:如何描述一个函数,使其更加抽象?(二)新课讲解1. 抽象函数的定义:给出抽象函数的定义,结合实例讲解。

2. 抽象函数的性质:介绍抽象函数的基本性质,如奇偶性、周期性、单调性等。

3. 抽象函数的图像与性质:讲解如何根据函数的性质绘制函数图像。

4. 抽象函数的应用:举例说明抽象函数在实际问题中的应用。

(三)课堂练习1. 完成课本中的相关习题,巩固所学知识。

2. 教师巡视指导,解答学生疑问。

(四)课堂小结1. 回顾本节课所学内容,总结抽象函数的定义、性质及应用。

2. 强调抽象函数在数学中的重要性。

(五)课后作业1. 完成课后习题,巩固所学知识。

2. 查阅资料,了解抽象函数在其他领域的应用。

五、教学反思1. 关注学生的学习情况,调整教学进度和方法。

2. 结合实际,引导学生将抽象函数知识应用于实际问题。

3. 激发学生的学习兴趣,培养学生的数学思维能力。

六、教学资源1. 教材:《高等数学》2. 教学参考书:《高等数学学习指导》3. 网络资源:相关数学网站、教学视频等七、教学时间1. 总课时:2课时2. 每课时教学内容分配:- 第1课时:抽象函数的定义及性质- 第2课时:抽象函数的图像与性质、应用注:以上教案模板仅供参考,教师可根据实际情况进行调整。

抽象函数的单调性奇偶性周期性课件高一上学期数学人教A版

抽象函数的单调性奇偶性周期性课件高一上学期数学人教A版

f (x)在R上是增函数
2a 3 2, 解得a 5 2
例题讲解
题型一 抽象函数的单调性
例3. f(x)的定义域为(0,+∞),且对任意都有 f(xy)=f(x)+f(y),
又当x>1时, f(x)>0且 f(3)=1.
(1) f (xy) f (x) f ( y)
(1)求 f(1)的值。(2)判断f(x)的单调性 f (11) f (1) f (1)
f ( x2 ) f [( x2 x1 ) x1]
归纳总结
题型一 抽象函数的单调性
抽象函数 (1)判断抽象函数单调性的方法 ①若给出的是“和型”抽象函数f(x+y)=…,判断符号时要变形为 f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)或f(x2)-f(x1)=f(x2)-f((x1-x2)+x2);
①利用定义证明单调性的一般步骤:
1、取值:在指定的区间上任意取两个数x1,x2,不妨设x1<x2 ; 2、 作差: f(x1) -f(x2) [或f(x2) - f(x1) ]; 3、变形 :通过因式分解,配方有理化等, 转化为易判断正负的式子 4、 定号:确定 f(x1) -f(x2) [或f(x2) - f(x1) ]的符号; 5、下结论。
第三章 函数
抽象函数的单调性、奇偶性、周期性
2024/9/26
探究新知
抽象函数 抽象函数主要研究赋值求值、证明函数的性质、解不等式等, 一般(1)通过代入特殊值(赋值法)求值、
(2)通过f(x1)-f(x2)的变换判定单调性、 (3)出现f(x)及f(-x)判定抽象函数的奇偶性, (4)换x为x+T确定周期性.
归纳总结
题型一 抽象函数的单调性

抽象函数课教案模板范文

抽象函数课教案模板范文

教学目标:1. 理解抽象函数的概念,掌握抽象函数的基本性质。

2. 学会运用抽象函数解决实际问题。

3. 培养学生的逻辑思维能力和抽象思维能力。

教学重难点:1. 教学重点:理解抽象函数的概念,掌握抽象函数的基本性质。

2. 教学难点:运用抽象函数解决实际问题,培养学生的逻辑思维能力和抽象思维能力。

教学准备:1. 多媒体课件2. 抽象函数实例资料3. 练习题教学过程:一、导入新课1. 提问:同学们,我们已经学习了具体函数,那么什么是抽象函数呢?请同学们思考并回答。

2. 介绍抽象函数的概念,引导学生理解抽象函数的定义。

二、新课讲授1. 抽象函数的概念- 介绍抽象函数的定义:设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y与之对应,那么称f:A→B为从集合A到集合B的一个函数。

- 强调抽象函数的三个要素:定义域、对应关系和值域。

2. 抽象函数的性质- 介绍抽象函数的性质,如:单调性、奇偶性、周期性等。

- 通过实例讲解如何判断抽象函数的性质。

3. 抽象函数的应用- 举例说明抽象函数在实际问题中的应用,如:物理学中的运动规律、经济学中的供需关系等。

- 引导学生运用抽象函数解决实际问题。

三、课堂练习1. 分组讨论,让学生运用所学知识解决实际问题。

2. 教师巡视指导,解答学生提出的问题。

四、课堂小结1. 总结抽象函数的概念、性质和应用。

2. 强调抽象函数在实际问题中的重要性。

五、课后作业1. 完成课后习题,巩固所学知识。

2. 搜集有关抽象函数的实际应用案例,进行拓展学习。

教学反思:本节课通过讲解抽象函数的概念、性质和应用,使学生掌握了抽象函数的基本知识。

在课堂练习环节,通过实际问题的解决,提高了学生的逻辑思维能力和抽象思维能力。

在教学过程中,要注意以下几点:1. 注重抽象函数概念的讲解,引导学生理解抽象函数的三个要素。

2. 结合实例讲解抽象函数的性质,帮助学生掌握判断方法。

抽象函数的定义域和求值(教师版)

抽象函数的定义域和求值(教师版)

抽象函数的定义域和求值1、抽象函数的定义域:记住两句话:地位相同范围相同,定义域是关于x 的。

所谓抽象函数就是指没有给出具体解析式的函数。

此类题目的关键是注意对应法则,在同一对应法则作用下,不管接受法则的对象是什么字母或代数式,其制约条件是一致的,即都在同一取值范围内。

该类型题目中最常见的是求复合函数的定义域,其有三种情况:(1)已知()f x 的定义域是[],a b ,求()f g x ⎡⎤⎣⎦的定义域。

该类题目实质上是由不等式()a g x b ≤≤所求x 的取值范围就是()f g x ⎡⎤⎣⎦的定义域。

例 2:已知函数()f x 的定义域是[]0,9,求函数()2f x 的定义域解:由题意知:209x ≤≤ 解得:33x -≤≤ 即函数()2f x 的定义域为[]3,3-。

(2)已知函数()f g x ⎡⎤⎣⎦的定义域是[],a b ,求函数()f x 的定义域。

该类型题目的实质是由x 的取值范围所求得的()g x 的取值范围就是函数()f x 的定义域。

例 3:已知函数()32f x +的定义域是(],3-∞,求函数()f x 的定义域。

解:∵3x ≤ ∴39x ≤ ∴3211x +≤ 即函数()f x 的定义域为(],11-∞。

(3)已知函数()f g x ⎡⎤⎣⎦的定义域是[],a b ,求函数()f h x ⎡⎤⎣⎦的定义域。

该类题目的解决方法是:先由函数()f g x ⎡⎤⎣⎦的定义域求出函数()f x 的定义域,再由函数()f x 的定义域取得函数()f h x ⎡⎤⎣⎦的定义域。

例 4:已知函数()12f x -的定义域是1,52⎡⎤⎢⎥⎣⎦,求函数()2f x -的定义域。

解:∵152x ≤≤ ∴1021x -≤-≤- ∴9120x -≤-≤ 即函数()f x 的定义域为[]4,9 ∴290x -≤-≤ 解得:解得:33x -≤≤ 即函数()2f x -的定义域为[]3,3-。

高一数学知识点 —抽象函数—教师版

高一数学知识点 —抽象函数—教师版

抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开.研究抽象函数首先要注意函数的定义域,尤其是在解答抽象函数对应的不等式时,通过抽象函数的单调性转变为自变量的大小关系式,不能忽视自变量的取值范围;其次抽象函数都是依据一类具体函数的性质抽象出来的,如()()()f x y f x f y +=+就是从正比例函数抽象出来的; ()()()f xy f x f y =+根据对数函数的性质抽象出来的;()()()f x y f x f y +=根据指数函数的性质抽象出来的.因此在解决此类问题可以先类比具体函数的性质研究我们要解答的抽象函数的性质,解答抽象函数问题要注意赋值法的应用,通过赋值可以找到函数的不变性质,这个不变性质往往是解决问题的突破口.抽象函数性质的证明是一种代数推理,要注意推理的严谨性,每一步推理都要有充分的条件,不可以漏掉条件,更不要臆造条件,推理过程层次分明.一、抽象函数的概念抽象函数就是没有给出具体函数解析式的函数。

常见的解题方法有赋值法、换元法、具体化法等。

若()x f 的定义域是[]b a ,,则对()[]x g f 来说,必有()[]b a x g ,∈,从而可以得到函数()[]x g f 的定义域。

若()[]x g f 的定义域是[]b a ,,则[]b a ,应作为函数()x g 的定义域,进而求出()x g 的值域,从而得到函数()x f 的定义域。

总而言之,外层函数的定义域就是内层函数在复合函数的定义域上的值域。

抽象函数的值域和最值问题,一般先根据条件确定函数的单调性,然后再求其值域或最值。

对于选择、填空题也可以利用奇函数在对称区间上具有相同的单调性、偶函数在对称区间上具有相反的单调性等结论来求解。

【例1】函数()x f 对任意实数x 、y ,均满足()()()[]222y f x f y x f +=+,且()01≠f ,则()=2016f【难度】★★ 【答案】1008【解析】令1=y ,则()()()[]2121f x f x f +=+,即()()()[]2121f x f x f =-+,再令0=x ,1=y ,得()()()[]21201f f f +=,令0==y x ,得()00=f ,故()211=f ,则()()211=-+x f x f ,累加可得()10082016=f【例2】函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___. 【难度】★★【答案】[2,⋃-【解析】因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得22<≤x 或-≤<-22x .【例3】已知()211xf x x =++,求()f x . 【难度】★ 【答案】1()1xf x x+=- 【解析】设1x u x =+,则1u x u =-∴1()2111u u f u u u +=+=--∴1()1xf x x+=-【例4】如果奇函数()x f 在[]7,3上是增函数且有最小值为5,那么()x f 在[]3,7--上是()A .增函数且有最小值为5-B .增函数且有最大值为5-C .减函数且有最小值为5-D .减函数且有最大值为5-【难度】★★ 【答案】B【例5】设)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,若函数)()(x g x f +的值域为)3,1[,则)()(x g x f -的值域为 .【难度】★★ 【答案】]1,3(--【解析】在()()f x g x -代入x -,因为)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,()()[()()]f x g x f x g x ---=-+,所以值域为]1,3(--,因为定义域为关于原点对称,所以值域是一样的,)()(x g x f -值域为]1,3(--【巩固训练】1.定义在R 上的函数()x f 满足()()()xy y f x f y x f 2++=+,()21=f ,则()=-3f 【难度】★★ 【答案】62.已知函数)1(-x f 的定义域为[2,4],求函数)2(x f 的定义域.【难度】★【答案】⎥⎦⎤⎢⎣⎡23,213.若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域. 【难度】★ 【答案】]1,1[-.【解析】函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-.4.已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 【难度】★★ 【答案】21()1f x x =-.2()1xg x x =- 【解析】∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.【难度】★★ 【答案】[]-42,【解析】设x x 12<且x x R 12,∈,则x x 210->, 由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0得f ()00= ∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二、抽象函数的性质1、抽象函数的单调性抽象函数单调性的求解与证明一般按照单调性的定义来解决,但由于解析式的缺乏,往往只能对题设条件中的等量关系进行适当的拼与凑,来处理()()21x f x f -与0的大小比较,如将1x 变形成()221x x x +-、221x x x ⋅等。

专题-高考中的抽象函数-教师版

专题-高考中的抽象函数-教师版

高考中的抽象函数特殊模型抽象函数正比例函数f(x)=kx (k ≠0)f(x+y)=f(x)+f(y) ;幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =]指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或]》对数函数 f(x)=log a x (a>0且a ≠1)f(xy)=f(x)+f(y)[)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx&)y (f )x (f 1)y (f )x (f )y x (f -+=+例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为11≤≤-x 。

解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。

评析:已知f(x)的定义域是A ,求()()x f ϕ的定义域问题,相当于解内函数()x ϕ的不等式问题。

练习:已知函数f(x)的定义域是[]2,1- ,求函数()⎪⎪⎭⎫⎝⎛-x f 3log 21 的定义域。

;例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。

[]11log ,13评析: 已知函数()()x f ϕ的定义域是A ,求函数f(x)的定义域。

相当于求内函数()x ϕ的值域。

二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

例3.①对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______. 解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:),)]1([2)()1(,1,2f n f n f y n x +=+==得令 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,令x=y=0,得:f(0)=0,∴f(1)=21,.22001)2001(f ,2n )n (f ,21f(n)-1)f(n =∴==+故即练习: 1. f(x)的定义域为(0,)+∞,对任意正实数x,y 都有f(xy)=f(x)+f(y) 且f(4)=2 ,则f = (12 ) ¥2.(2)(4)(6)(2000)()()(),(1)2,(1)(3)(5)(1999)f f f f f x y f x f y f f f f f +==++++如果且则的值是 。

抽象函数+练习(含答案)教师版

抽象函数+练习(含答案)教师版

抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开.研究抽象函数首先要注意函数的定义域,尤其是在解答抽象函数对应的不等式时,通过抽象函数的单调性转变为自变量的大小关系式,不能忽视自变量的取值范围;其次抽象函数都是依据一类具体函数的性质抽象出来的,如()()()f x y f x f y +=+就是从正比例函数抽象出来的; ()()()f xy f x f y =+根据对数函数的性质抽象出来的; ()()()f x y f x f y +=根据指数函数的性质抽象出来的.因此在解决此类问题可以先类比具体函数的性质研究我们要解答的抽象函数的性质,解答抽象函数问题要注意赋值法的应用,通过赋值可以找到函数的不变性质,这个不变性质往往是解决问题的突破口.抽象函数性质的证明是一种代数推理,要注意推理的严谨性,每一步推理都要有充分的条件,不可以漏掉条件,更不要臆造条件,推理过程层次分明.一、抽象函数的概念抽象函数就是没有给出具体函数解析式的函数。

常见的解题方法有赋值法、换元法、具体化法等。

若()x f 的定义域是[]b a ,,则对()[]x g f 来说,必有()[]b a x g ,∈,从而可以得到函数()[]x g f 的定义域。

若()[]x g f 的定义域是[]b a ,,则[]b a ,应作为函数()x g 的定义域,进而求出()x g 的值域,从而得到函数()x f 的定义域。

总而言之,外层函数的定义域就是内层函数在复合函数的定义域上的值域。

抽象函数的值域和最值问题,一般先根据条件确定函数的单调性,然后再求其值域或最值。

对于选择、填空题也可以利用奇函数在对称区间上具有相同的单调性、偶函数在对称区间上具有相反的单调性等结论来求解。

【例1】函数()x f 对任意实数x 、y ,均满足()()()[]222y f x f y x f +=+,且()01≠f ,则()=2016f【难度】★★【答案】1008【解析】令1=y ,则()()()[]2121f x f x f +=+,即()()()[]2121f x f x f =-+,再令0=x ,1=y ,得()()()[]21201f f f +=,令0==y x ,得()00=f ,故()211=f ,则()()211=-+x f x f ,累加可得()10082016=f【例2】函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___.【难度】★★【答案】2][2,⋃-【解析】因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得 22<≤x 或-≤<-22x .【例3】已知()211x f x x =++,求()f x . 【难度】★ 【答案】1()1x f x x +=- 【解析】设1x u x =+,则1u x u =-∴1()2111u u f u u u +=+=--∴1()1x f x x+=- 【例4】如果奇函数()x f 在[]7,3上是增函数且有最小值为5,那么()x f 在[]3,7--上是( )A .增函数且有最小值为5-B .增函数且有最大值为5-C .减函数且有最小值为5-D .减函数且有最大值为5-【难度】★★【答案】B【例5】设)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,若函数)()(x g x f +的值域为)3,1[,则)()(x g x f -的值域为 .【难度】★★【答案】]1,3(--【解析】在()()f x g x -代入x -,因为)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,()()[()()]f x g x f x g x ---=-+,所以值域为]1,3(--,因为定义域为关于原点对称,所以值域是一样的,)()(x g x f -值域为]1,3(--【巩固训练】1.定义在R 上的函数()x f 满足()()()xy y f x f y x f 2++=+,()21=f ,则()=-3f【难度】★★【答案】62.已知函数)1(-x f 的定义域为[2,4],求函数)2(x f 的定义域.【难度】★ 【答案】⎥⎦⎤⎢⎣⎡23,213.若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域.【难度】★【答案】]1,1[-.【解析】函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-.4.已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 【难度】★★ 【答案】21()1f x x =-.2()1x g x x =- 【解析】∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……② 显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1x g x x =-5.已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.【难度】★★【答案】[]-42,【解析】设x x 12<且x x R 12,∈,则x x 210->, 由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00= ∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二、抽象函数的性质1、抽象函数的单调性抽象函数单调性的求解与证明一般按照单调性的定义来解决,但由于解析式的缺乏,往往只能对题设条件中的等量关系进行适当的拼与凑,来处理()()21x f x f -与0的大小比较,如将1x 变形成()221x x x +-、221x x x ⋅等。

高三文科暑期第4讲 复合函数与抽象函数 教师版

高三文科暑期第4讲 复合函数与抽象函数 教师版

2
⑵ 函数 y log1 x log1 x 2 的定义域为_________,值域为____________.
2
2
【解析】⑴
1,1

1 2
,
1


0
,12
4


[0

)

尖子班学案 2
【铺 1】 设 f x ln 1 3x 9x a ,若当 x , 0 时, f x 恒有意义,则实数 a 的取值范围为_____.
A. 0
B.1
C. 1 2
D. 1 2
⑵ 若 f (x) 是定义在 (0 , ) 上的增函数,对正实数 x ,y 都有 f (xy) f (x) f ( y) 成立.则不
等式 f (log2 x) 0 的解集为_______. 【解析】⑴ D;
⑵ (1,2) ;
目标班学案 3
【拓 2】 已知函数 y f (x) 是定义在 R 上的奇函数,且 f (3) 0 ,对任意 x R ,都有
y
1 2
x2 x2
的单调递增区间是(
A.
1 ,
1 2
B. , 1
C.2 ,
【解析】D

D.
1 2
,
2
尖子班学案 3
【铺 1】 已知 [1,3] 是函数 y x2 4ax 的单调递减区间,则实数 a 的取值范围是( )
A.
,1 2
B. ( ,1]
C.
1 2
,3 2
D.
3 2
2
A.
5 2

B. (3, )
C.
,5 2
D. ( ,2)
⑵ 函数 y 4x 2x 1 的值域为_______,单调递减区间为________.

8.抽象函数(教师版)

8.抽象函数(教师版)

如东县马塘中学高一年级数学学科暑假作业7月20日 姓名 学号抽象函数——抽象函数要求有较高的抽象思维和逻辑推理能力,在高考命题中也有逐渐加强的趋势一、知识梳理1.抽象函数——没有给出函数解析式,只是给出函数所满足的一些性质。

2.抽象函数问题一般是由所给的性质,讨论函数的单调性、奇偶性、周期性及图象的对称性,或是求函数值、解析式等。

3.抽象函数处理方法,主要是“赋值法”,通常是抓住函数特性是定义域上恒等式,利用变量代换解题。

也常联系具体的函数模型可以简便地找到解题思路,及解题突破口。

4. “函数式变换与图象的对称性之间的关系” (在2.4函数图象变换中已详述)。

二、自我检测1.定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f = 02. 已知y=f (2x +1)是偶函数,则函数y=f (2x )的图象的对称轴是 x =21 f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称3.函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若f (1)=-5,则f (f (5))=_______. 1()(4)(2)f x f x f x ==++, 周期是4 111((5))((1))(5)(3)(1)5f f f f f f f ==-===-- 4.已知函数()f x 满足:()()()f a b f a f b +=⋅,(1)2f =,则2(1)(2)(1)f f f ++222(2)(4)(3)(6)(4)(8)(3)(5)(7)f f f f f f f f f +++++= 。

由已知:(1)(1)()f n f f n +==2,∴()2n f n =,原式=16 5.设f (x )是R 的奇函数,f (x+2)=-f (x ),当0≤x ≤1,时,f (x )=x ,则f(7.5)= 0.56.设f(x)定义在实数集上的周期为2的函数,且为偶函数,当x ∈[0,1]时,11998()f x x =,则98101104(),(),()191715f f f 由小到大的顺序是____________ 周期是2且偶函数可得98981616101110414()(6)()(),()(),()()1919191917171515f f f f f f f f =-=-===同理 又在[0,1]上f(x)=x -2008,是增函数,且116141019814()()()171915171915f f f <<<<,故 7.已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,求证:(1)()f x 是奇函数;(2)若f (x )的图象关于直线x =1对称,则f(x)恒等于0. 解:(1)在()()()f x y f x f y +=+中,令y x =-,得(0)()()f f x f x =+-,令0x y ==,得(0)(0)(0)f f f =+,∴(0)0f =,∴()()0f x f x +-=,即()()f x f x -=-, ∴()f x 是奇函数(2)f(x)是奇函数,则f (-x )=-f (x ).且f(0)=0图象关于直线x =1对称,即点(x ,y),(2-x ,y )同在曲线上,有f (2-x )=f (x ),且f(2)=f(0)=0 又已知f(x+y)=f(x)+f(y)∴f (x )= f (2-x )=f(2)+f(-x)=f(2)-f(x)⇒2f(x)=f(2)=0即f(x)≡0.方法提炼:1.赋值法.赋值的目的要明确,本题就是要凑出f(0),f (-x)与f(x)的关系;2.领会函数式变换的依据、目的和策略的灵活性。

高中数学抽象函数(教师版)

高中数学抽象函数(教师版)

抽象函数的证明一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。

例2和例1形式上正相反。

二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

赋值法是解此类问题的常用技巧。

三、解析式问题例4. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。

高三理科数学暑期讲义 第4讲.复合函数、抽象函数、函数零点 教师版

高三理科数学暑期讲义 第4讲.复合函数、抽象函数、函数零点 教师版

1、复合函数的性质:对于单调性,有“同步增,异步减”.对于奇偶性,若每层函数均有奇偶性,则有“全奇才奇,有偶则偶”. 对于周期性,内层函数为周期函数的复合函数仍为周期函数.2、抽象函数往往有它所对应的具体函数模型,常见的抽象函数模型有: ⑴ 正比例函数:()()()f x y f x f y +=+; ⑵ 指数函数:()()()f x y f x f y +=; ⑶ 对数函数:()()()f xy f x f y =+; ⑷ 幂函数:()()()f xy f x f y =.3、函数的零点⑴ 满足()0f a =的a 叫做函数()f x 的零点,即方程()0f x =的实数根,也即函数()y f x =的图象与x 轴的交点的横坐标.⑵ 零点定理:若函数()y f x =在闭区间[],a b 上的图象是连续不断的曲线,并且在区间端点的函数值符号相反,即()()0f a f b ⋅<.则在区间(),a b 内,函数()y f x =至少有一个零点.特别的,如果函数在此区间上单调,则函数()y f x =在此区间上有且只有一个零点.⑶ 零点个数的判断通常借助函数图象,零点问题和交点问题往往需要通过互相转化解决. 知识梳理知识结构图第4讲 复合函数、 抽象函数、函数零1、 (2007北京理)对于函数①()()lg 21f x x =-+,②()()22f x x =-,③()()cos 2f x x =+,判断如下三个命题的真假: 命题甲:()2f x +是偶函数;命题乙:()f x 在(),2-∞上是减函数,在()2,+∞上是增函数; 命题丙:()()2f x f x +-在(),-∞+∞上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是 .A .①③B .①②C .③D .②【解析】 D2、 (2011北京理13)已知函数()()32212x x f x x x ⎧⎪=⎨⎪-<⎩,≥,,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 .【解析】 ()0,1;1、()213log 54y x x =-+的单调递增区间为( )A .(),1-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .5,42⎛⎫⎪⎝⎭D .()4,+∞ 2、设函数()xf x a -=(0a >且1a ≠),()24f =,则( )A .()()21f f ->-B .()()12f f ->-C .()()12f f >D .()()22f f ->3、已知()()log 2a f x ax =-是[]0,1上的减函数,则a 的值可能为( ) A .12 B .32C .2D .3 4、已知函数()2x f x x =+,()2log g x x x =+,()2log 2h x x =-的零点分别为a 、b 、c ,则( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<5、已知函数()()()2f x x a x b =---(a b <),并且α、β是方程()0f x =的两个根(αβ<),则实数a 、b 、α、β的大小关系是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<6、已知函数()22f x x x c =-+,()()1f x f x =,()()()1n n f x f f x -=(2n ≥,n *∈N ),若函数()n f x x -不存在零点,则c 的取值范围是( ) A .14c <B .34c ≥C .94c >D .94c ≤ 7、下列关于函数()()log 1x a f x a =-(0a >且1a ≠)的命题:小题热身真题再现① 无论a 取何值,()f x 均为R 上的增函数; ② 无论a 取何值,()f x 的值域均为R ; ③ 无论a 取何值,()f x 一定有零点; ④ 存在某个a ,使得()f x 恰好有两个零点.其中正确的命题个数为( )A .0B .1C .2D .38、若单调函数()f x (x ∈R )满足()()()f x y f x f y +=⋅,则()f x 的值域为( ) A .R B .()(),00,-∞+∞ C .()0,+∞ D .不能确定9、已知函数()2243f x x x -=-+-,设()()()()F x p f f x f x =⋅+,其中p 为负实数.若()F x 在区间(),3-∞-上是减函数,在区间()3,0-上是增函数,则p 的值为( )A .1-B .18- C .116- D .12-10、已知函数()2f x ax bx c =++(0a ≠),则关于x 的方程()()20m f x nf x p ++=⎡⎤⎣⎦(实数,,,,,0a b c m n p ≠)的解集不可能是( )A .{}1,2B .{}1,4C .{}1,2,3,4D .{}1,4,16,64考点:复合函数的定义域与值域 【例1】⑴函数()12f x ⎛= ⎪⎝⎭的定义域为 ,值域为 .⑵函数1()2f x ⎛= ⎪⎝⎭的定义域为 ,值域为 .⑶函数y =_________,值域为____________. 【解析】 ⑴ [)0,+∞,(]0,1;⑵ [11]-,,1,12⎡⎤⎢⎥⎣⎦;⑶ [)1042⎛⎤+∞ ⎥⎝⎦,,,[0)+∞,;【例2】 ⑴已知函数()()2lg 21f x ax x =++的定义域为R ,求实数a 的取值范围.⑵已知函数()()2lg 21f x axx =++的值域为R ,求实数a 的取值范围.4.1复合函数经典精讲【解析】 ⑴ ()1,+∞;⑵[]0,1;【拓1】 ⑴ 已知()32log f x x =+,[]1,9x ∈,求函数()()22y f x f x =+⎡⎤⎣⎦的值域.⑵ 设2,1(),1x x f x x x ⎧⎪=⎨<⎪⎩≥,()g x 是二次函数,若()f g x ⎡⎤⎣⎦的值域是[)0,+∞,求函数()g x 的值域.⑶ 设[]2,8x ∈,函数()()21()log log 2a a f x ax a x =⋅的最大值是1,最小值是18-,求a 的值.【解析】 ⑴ []6,13⑵ [)0,+∞. ⑶ 12a =.考点:复合函数的性质初步【例3】 ⑴函数()212log 56y x x =-+的单调增区间为( )A .52⎛⎫+∞ ⎪⎝⎭,B .(3)+∞,C .52⎛⎫-∞ ⎪⎝⎭, D .(2)-∞,⑵函数12y ⎛= ⎪⎝⎭的单调递增区间是( )A .11,2⎡⎤-⎢⎥⎣⎦B .(],1-∞-C .[)2,+∞D .1,22⎡⎤⎢⎥⎣⎦⑶函数421x x y =-+的值域为_______,单调递减区间为________.【解析】 ⑴ D ;⑵ D ;⑶ 3,4⎡⎫+∞⎪⎢⎣⎭;(),1-∞-.考点:复合函数的性质综合【例4】⑴函数()()212log 23f x x ax =-+,若()f x 在(],1-∞内是增函数,则a 的取值范围为________;若()f x 的单调递增区间是(],1-∞,则a 的取值范围为________. ⑵已知函数())1f x a =≠,若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是 . ⑶若函数()()2log 2a f x x x =+(0a >且1a ≠)在区间10,2⎛⎫⎪⎝⎭内恒有()0f x >,则()f x 的单调增区间是 .【解析】 ⑴ [12),;{1}.⑵()(],01,3-∞;⑶1,2⎛⎫-∞- ⎪⎝⎭考点:抽象函数的函数值问题 【例5】 ⑴若奇函数()f x (x ∈R )满足()21f =,()()()22f x f x f +=+,则()1f = ; ⑵定义在实数R 上的函数()y f x =具有如下性质: ①对任意x ∈R ,都有()()33f x f x =⎡⎤⎣⎦;②对任意12x x ∈R ,,且12x x ≠,都有()()12f x f x ≠. 则()()()101f f f -++=________. ⑶已知函数()f x (x ∈R )满足()12f =,()()()2f x y f x f y xy +=++,则 ()2f = ,()3f = ,()3f -= .⑷()f x 是定义在(0)+∞,上的增函数,对正实数x 、y 都有()()()f xy f x f y =+成立.则不等式()2log 0f x <的解集为_ ______.【解析】 ⑴12; ⑵ 0;⑶ 6,12,6; ⑷ ()1,2;【拓2】 定义在[]0,1上函数()f x 满足:① ()00f =;② ()()11f x f x +-=; ③ ()132x f f x ⎛⎫= ⎪⎝⎭;④ 对任意12,x x []0,1∈,若12x x <,则()()12f x f x ≤. 则()1f = ,12f ⎛⎫= ⎪⎝⎭ ,13f ⎛⎫= ⎪⎝⎭ ,18f ⎛⎫= ⎪⎝⎭. 【追问】12013f ⎛⎫= ⎪⎝⎭.【解析】 ()11f =;1122f ⎛⎫= ⎪⎝⎭;1132f ⎛⎫= ⎪⎝⎭;1184f ⎛⎫= ⎪⎝⎭. 【追问】112013128f ⎛⎫= ⎪⎝⎭.考点:抽象函数的性质4.2抽象函数【例6】 ⑴若函数()f x (x ∈R ,且0x ≠)对任意的非零实数,x y 满足()()()f xy f x f y =+.求证:()f x 为偶函数.⑵定义在R 上的函数()f x 同时满足下列条件:① 对任意x ,y ∈R ,恒有()()()f x y f x f y +=+; ② 当0x >时,()0f x <,且()12f =-.判断函数()f x 的奇偶性,并求函数()f x 在区间[]2,4-上的最大值和最小值.【解析】 ⑴ 令1,1x y ==-得(1)(1)(1)f f f -=+-,于是(1)0f =;再令1x y ==-得(1)2(1)0f f =-=,于是(1)0f -=.令1y =-得()()(1)()f x f x f f x -=+-=,又()f x 的定义域关于原点对称.故()f x 为偶函数. ⑵ ()f x 在区间[]2,4-上的最大值是(2)4f -=,最小值为(4)8f =-.【备注】本题可以通过函数原型快速得到答案或得到启发.对于⑴()ln f x x =(x ∈R )是符合函数的函数原型; 对于⑵()2f x x =-(x ∈R )是符合函数的函数原型.【拓3】 函数()f x 的定义域为R ,且()f x 的值不恒为0,又对于任意的实数m ,n ,总有()()22n m f m f n mf nf ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭成立.⑴ 求(0)f 的值;⑵ 求证:()0t f t ⋅≥对任意的t ∈R 成立; ⑶ 求所有满足条件的函数()f x .【解析】 ⑴ (0)0f =;⑵ 对任意t ∈R ,令2m n t ==,得2(2)4()f t t f t =⋅,于是21()(2)04t f t f t ⋅=≥; ⑶ ()f x x =.考点:零点定理【例7】 ⑴函数()237x f x x =+-在区间[02],上的零点必在下面的区间( )内.A.102⎡⎤⎢⎥⎣⎦, B.112⎡⎤⎢⎥⎣⎦,C.312⎡⎤⎢⎥⎣⎦, D.322⎡⎤⎢⎥⎣⎦, ⑵设函数()32log x f x a x+=-在区间()1,2内有零点,则实数a 的取值范围是( ) A .()31,log 2-- B .()30,log 2 C .()3log 2,1 D .()31,log 4 【解析】 ⑴ C ;⑵ C ;考点:函数图象与零点、交点问题【例8】 ⑴方程2log (3)2x x +=的解的情况是( )A .仅有一根B .有两个正根4.3函数零点C .有一个正根和一个负根D .有两个负根⑵已知()2881651x x f x x x x -⎧=⎨-+>⎩,≤,,()ln g x x =,则()f x 与()g x 的图象的交点个数为( )A .1B .2C .3D .4 ⑶若函数()x f x a x a =--(0a >且1a ≠)有两个零点,则实数a 的取值范围是 . ⑷若不等式2log 0a x x -<对102x ⎛⎫∈ ⎪⎝⎭,恒成立,则实数a 的取值范围是_______.【解析】 ⑴ C ;⑵ C ;⑶ (1,)+∞;⑷ 1116⎡⎫⎪⎢⎣⎭,;考点:复合函数的零点问题【例9】 ⑴已知函数()y f x =和()y g x =在[]2,2-的图象如下所示:f xg x 给出下列四个命题:①方程()0f g x =⎡⎤⎣⎦有且仅有6个根 ②方程()0g f x =⎡⎤⎣⎦有且仅有3个根 ③方程()0f f x =⎡⎤⎣⎦有且仅有5个根 ④方程()0g g x =⎡⎤⎣⎦有且仅有4个根 其中正确的命题是 .(将所有正确的命题序号填在横线上).⑵设1,11()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=⎡⎤⎣⎦有三个不同的实数解123,,x x x ,则222123x x x ++等于 . 【解析】 ⑴ ①③④;⑵ 5;【拓4】 已知()2f x x px q =++,关于x 的方程()()0f f x =有且只有一个实数根,求证:p 与q 同时大于0或者p 与q 同时等于0.【解析】 关于x 的方程()()0f f x =有且只有一个实数根,()f x 的图象只有如图两种情形(分别对应0∆>和0∆=的情形).进而容易证明命题成立.21一、选择题 1、设()()23132x x f x k =-+⋅+,当0x >时()f x 恒取正值,则k 的取值范围为( ) A .(),1-∞- B.(),1-∞ C.()1,1- D.()1,1-【解析】 B ;2、设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),【解析】 B ;3、关于x 的方程1log (0x aa x a =>且1)a ≠( )A .仅当1a >时,有唯一解B .仅当01a <<时,有唯一解C .有唯一解D .无解【解析】 C .4、 设函数()f x x x bx c =++,给出下列四个命题:①当0c =时,()y f x =是奇函数;②当00b c =>,时,方程()0f x =只有一个实根; ③函数()y f x =的图象关于点(0)c ,对称; ④方程()0f x =至多有两个实根;其中正确命题的个数为( )A .1个B .2个C .3个D .4个【解析】 C ;二、填空题 5、设函数22()log log (1)f x x x =+-,则()f x 的定义域是_______;()f x 的最大值是_____.【解析】 (0,1);2-.6、函数22()log (3)log (1)f x x x =++-的值域是___________,单调递增区间为_______.【解析】 (,2]-∞,(3,1)--.课后习题7、 若log (2)a y ax =-在[]01,上是x 的减函数,则a 的取值范围是______. 【解析】 (12)a ∈,;三、解答题 8、已知定义域为R 的函数()f x 满足:()()()f x y f x f y +=,且()31f >. ⑴求()0f ;⑵求证:()41f -<.【解析】 ⑴ (0)1f =;⑵ 3(3)(2)(1)(1)1f f f f ==>,故(1)1f >,从而24(4)(2)(1)1f f f ==>.令4,4x y ==-得,(4)(4)(0)1f f f -==,故1(4)1(4)f f -=<.命题得证. 【备注】()()()f x y f x f y +=的函数原型是指数函数()x f x a =,由(3)1f >知,1a >. 9、函数()2x f x =和()3g x x =的图象的示意图如图所示.设两函数的图象交于点()11,A x y 、()22,B x y ,且12x x <.⑴ 请指出示意图中曲线1C 、2C 分别对应哪一个函数?⑵ 若[]1,1x a a ∈+,[]2,1x b b ∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出a 、b 的值,并说明理由;⑶ 结合函数图象示意图,请把()πf 、()πg 、()2013f 、()2013g 四个数从小到大顺序排列.【解析】 ⑴ 1C 对应函数()3g x x =,2C 对应函数()2x f x =;⑵ 如下表,可得1a =,9b =.10、已知关于x 的二次方程22210x mx m +++=.⑴ 若方程有两根,其中一根在区间()1,0-内,另一根在区间()1,2内,求m 的范围. ⑵ 若方程两根均在区间()0,1内,求m 的范围.【解析】 ⑴5162m -<<-.⑵112m -<-≤。

第1,2讲:抽象函数老师

第1,2讲:抽象函数老师

抽象函数抽象函数是将具体的函数或者函数的性质用抽象的函数表达式表示出来,并通过给定的条件来解决问题,这种条件往往是某个式子对任意的数恒成立,可操作性很强,只要取定一些特殊的值(赋值)就可以使得问题得到解决。

所以适当的赋值是解决这类问题的关键,并通过赋值来证明单调性,奇偶性,周期性。

同时因为抽象函数来源于具体函数和函数性质,所以在解决选择填空题时,可以大胆用特殊值法和特殊化的办法。

一:求值问题例1:○1若0,0m n >>时,()()()f m n f m f n ⋅=+,且(2)1f =-,求1(1),()2f f 。

解答:令1(1)2(1)(1)0m n f f f ==⇒=⇒= 令1112,(1)(2)()()(2)1222m n f f f f f ==⇒=+⇒=-= (另解:如果是选择填空题,()()()f m n f m f n ⋅=+正是对数函数的性质,结合(2)1f =-,猜想12()log f x x =,得到相应答案)○2.已知函数()f x 是定义在实数集R 上的偶函数,且对任意实数x 都有(1)(1)(x f x x f x +=+,则5(())2f f 的值是( D ) A.52 B.12C.1D. 0解答:令=0(0)0x f ⇒=令11111111=--()(-)=()()=022222222x f f f f ⇒=⇒ 令113313=()()=0()=0222222x f f f ⇒=⇒令335535=()()=0()=0222222x f f f ⇒=⇒()()(),()(),()(+)()()(-)()()()()()()-(),f x y f x f y a f a x f a x f x f x y f x f y f x y f y x f xy f x f y f f x f y y ———————————————————————————————————————————————常见的抽象函数有:其具体函数模型为其具体函数模型为,其具体函数模型为抽象函数其具体函数模型为如何利用抽象条件求值+=+++=-=⇔=⇔=+⇔=—————————————————————————————————————————————————————————————————————————————如何证明抽象函数的奇偶性如何证明抽象函数的单调性⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所以:5(())=(0)02f f f =法二:构造函数()0f x =,满足条件。

抽象函数及其应用高考真题教师版

抽象函数及其应用高考真题教师版

抽象函数及其应用一.选择题(共6小题)1.(2017•全国)函数()y f x =的图象与函数(1)y ln x =-的图象关于y 轴对称,则()(f x = ) A .(1)ln x --B .(1)ln x -+C .(1)ln x --D .(1)ln x +2.(2014•陕西)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) A .12()f x x =B .3()f x x =C .1()()2x f x =D .()3x f x =3.(2014•陕西)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) A .3()f x x =B .()3xf x =C .12()f x x =D .1()()2x f x =4.(2014•安徽)设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π<时,()0f x =,则23()(6f π= )A .12B C .0D .12-5.(2014•山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是( )A .()f x =B .2()f x x =C .()tan f x x =D .()cos(1)f x x =+6.(2011•广东)设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x ︒和(()()f g x 对任意x R ∈,()()(())f g x f g x ︒=;()()()()f g x f x g x =,则下列等式恒成立的是( )A .(())()(()())()f g h x f h g h x ︒=︒B .(())()(()())()f g h x f h g h x ︒=︒︒C .(())()(()())()f g h x f h g h x ︒︒=︒︒︒D .(())()(()())()f g h x f h g h x =二.填空题(共1小题)7.(2015•福建)若函数||()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[m ,)+∞上单调递增,则实数m 的最小值等于 .三.解答题(共2小题)8.(2020•上海)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[x a ∈,)+∞,若()f x 具有A 性质,求a 的取值范围;(3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值. 9.(2018•全国)1x 、2x R ∈,(0)0f ≠,且121212(2)(2)()()f x f x f x x f x x +=+-. (1)求(0)f ;(2)求证()f x 为偶函数;(3)若()0f π=,求证()f x 为周期函数.抽象函数及其应用参考答案与试题解析一.选择题(共6小题)1.(2017•全国)函数()y f x =的图象与函数(1)y ln x =-的图象关于y 轴对称,则()(f x = ) A .(1)ln x --B .(1)ln x -+C .(1)ln x --D .(1)ln x +【解答】解:根据题意,函数()y f x =的图象与函数(1)y ln x =-的图象关于y 轴对称, 则有()(1)f x ln x -=-, 则()(1)f x ln x =--; 故选:C .2.(2014•陕西)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) A .12()f x x =B .3()f x x =C .1()()2x f x =D .()3x f x =【解答】解:A .12()f x x =,12()f y y =,12()()f x y x y +=+,不满足()()()f x y f x f y +=,故A 错;B .3()f x x =,3()f y y =,3()()f x y x y +=+,不满足()()()f x y f x f y +=,故B 错;C .1()()2x f x =,1()()2y f y =,1()()2x y f x y ++=,满足()()()f x y f x f y +=,但()f x 在R 上是单调减函数,故C错.D .()3x f x =,()3y f y =,()3x y f x y ++=,满足()()()f x y f x f y +=,且()f x 在R 上是单调增函数,故D 正确;故选:D .3.(2014•陕西)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) A .3()f x x =B .()3xf x =C .12()f x x =D .1()()2x f x =【解答】解:A .3()f x x =,3()f y y =,3()()f x y x y +=+,不满足()()()f x y f x f y +=,故A 错;B .()3x f x =,()3y f y =,()3x y f x y ++=,满足()()()f x y f x f y +=,且()f x 在R 上是单调增函数,故B 正确;C .12()f x x =,12()f y y =,12()()f x y x y +=+,不满足()()()f x y f x f y +=,故C 错;D .1()()2x f x =,1()()2y f y =,1()()2x y f x y ++=,满足()()()f x y f x f y +=,但()f x 在R 上是单调减函数,故D错. 故选:B .4.(2014•安徽)设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π<时,()0f x =,则23()(6f π= )A .12B C .0D .12-【解答】解:函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π<时,()0f x =,2317()()66f f πππ∴=+ 1717()sin66f ππ=+ 111117()sin sin666f πππ=++ 551117()sin sin sin6666f ππππ=+++ 51117sin sin sin666πππ=++ 111222=-+ 12=. 故选:A .5.(2014•山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是( )A .()f x =B .2()f x x =C .()tan f x x =D .()cos(1)f x x =+【解答】解:对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,∴函数的对称轴是x a =,0a ≠,选项A 函数没有对称轴;选项B 、函数的对称轴是0x =,选项C ,函数没有对称轴. 函数()cos(1)f x x =+,有对称轴,且0x =不是对称轴,选项D 正确. 故选:D .6.(2011•广东)设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x ︒和(()()f g x 对任意x R ∈,()()(())f g x f g x ︒=;()()()()f g x f x g x =,则下列等式恒成立的是( )A .(())()(()())()f g h x f h g h x ︒=︒B .(())()(()())()f g h x f h g h x ︒=︒︒C .(())()(()())()f g h x f h g h x ︒︒=︒︒︒D .(())()(()())()f g h x f h g h x =【解答】解:A 、()()(())f g x f g x ︒=,()()()()f g x f x g x =, (())()()()()(())()f g h x f g x h x f g x h x ∴︒=︒=;而(()())()()(()())(()())(()())f h g h x f h g h x f g x h x h g x h x ︒==; (())()(()())()f g h x f h g h x ∴︒≠︒B 、(())()()(())(())(())f g h x f g h x f h x g h x ︒==(()())()()()()()(())(())f h g h x f h x g h x f h x g h x ︒︒=︒︒=(())()(()())()f g h x f h g h x ∴︒=︒︒C 、(())()(()(())((()))f g h x f g h x f g h x ︒︒=︒=,(()())()(((())))f h g h x f h g h x ︒︒︒= (())()(()())()f g h x f h g h x ∴︒︒≠︒︒︒;D 、(())()()()()f g h x f x g x h x =,(()())()()()()()f h g h x f x h x g x h x =, (())()(()())()f g h x f h g h x ∴≠.故选:B .二.填空题(共1小题)7.(2015•福建)若函数||()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[m ,)+∞上单调递增,则实数m 的最小值等于 1 .【解答】解:因为(1)(1)f x f x +=-, 所以,()f x 的图象关于直线1x =轴对称,而||()2x a f x -=,所以()f x 的图象关于直线x a =轴对称, 因此,1a =,|1|()2x f x -=,且该函数在(-∞,1]上单调递减,在[1,)+∞上单调递增, 又因为函数()f x 在[m ,)+∞上单调递增, 所以,1m ,即实数m 的最小值为1. 故答案为:1.三.解答题(共2小题)8.(2020•上海)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[x a ∈,)+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值. 【解答】解:(1)()f x x =-为减函数,()(1)f x f x ∴<-, ()f x x ∴=-具有A 性质; ()2g x x =为增函数, ()(1)g x g x ∴>-,()2g x x ∴=不具有A 性质;(2)依题意,对任意(0,1)t ∈,()()f x f x t +恒成立,∴1()()f x x x a x=+为增函数(不可能为常值函数), 由双勾函数的图象及性质可得1a ,当1a 时,函数单调递增,满足对任意(0,1)t ∈,()()f x f x t +恒成立, 综上,实数a 的取值范围为[1,)+∞. (3)D 为整数集,具有A 性质的函数均为常值函数,∴当2t =-,()(2)f x f x =-恒成立,即(2)()f k p k Z =∈,(21)()f n q n Z -=∈,由题意,p q =,则(2)(21)f k f n =-,当2x k =,()(221)f x f x n k =+--,221(,)m n k n k Z ∴=--∈, 当21x n =-,()(221)f x f x k n =+-+,221(,)m k n n k Z ∴=-+∈, 综上,m 为奇数.9.(2018•全国)1x 、2x R ∈,(0)0f ≠,且121212(2)(2)()()f x f x f x x f x x +=+-. (1)求(0)f ;(2)求证()f x 为偶函数;(3)若()0f π=,求证()f x 为周期函数.【解答】解:(1)121212(2)(2)()()f x f x f x x f x x +=+-, 可令120x x ==,可得(0)(0)(0)(0)f f f f +=, 由(0)0f ≠, 可得(0)2f =; (2)证明:可令12xx =,22x x =-,则()()(0)()2()f x f x f f x f x +-==, 可得()()f x f x -=, 则()f x 为偶函数; (3)证明:可令12xx π=+,22x x =,则(2)()()()0f x f x f x f πππ++=+=, 即有(2)()f x f x π+=-, 将x 换为2x π+,可得(4)(2)()f x f x f x ππ+=-+=,可得()f x 为最小正周期为4π的函数.。

33.5.5 抽象函数-(人教A版2019必修第一册) (教师版)

33.5.5 抽象函数-(人教A版2019必修第一册) (教师版)

抽象函数1概念我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2 常见抽象函数模型【题型一】求值问题【典题1】已知函数f(x)是定义在(0 ,+∞)上的函数,且对任意x ,y∈(0 ,+∞),都有f(xy)=f(x)+f(y),f(2)=1,求f(4) ,f(8).【解析】∵对任意x,y∈(0 ,+∞),都有f(xy)=f(x)+f(y),f(2)=1,∴f(4)=f(2×2)=f(2)+f(2)=2,f(8)=f(2×4)=f(2)+f(4)=3.【点拨】①对于抽象函数求值问题,可大胆取特殊值求解;②抽象函数f(xy)=f(x)+f(y)是对数函数f(x)=log a x型,由f(2)=1可知f(x)=log2x,则易得f(4)=2,f(8)=3,作选填题可取.又如f(x+y)=f(x)f(y)且f(1)=2,求f(3);由f(x+y)= f(x)f(y)可令f(x)=a x,又因f(1)=2,得f(x)=2x,故易得f(3)=8.故要对常见抽象函数对应的函数模型比较熟悉.【典题2】对任意实数x ,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.【解析】令x =y =0,得f(0)=0,令x =n ,y =1,得f (n +1)=f (n )+2[f (1)]2令n =1,得f (1)=f (0)+2f [(1)]2=2f [(1)]2,∴f (1)=12,∴f (n +1)−f (n )=12, ∴f (n )=n 2,即f (2001)=20012.【点拨】 ① 常常需要赋予一些特殊值(如取x =0等)或特殊关系(如取y =x , y =−x 等),要观察等式方程的特点寻找目标,也要大胆下笔多些尝试找些规律;② 比如本题中所求的f(2001)中自变量的取值2001较大,往往要从周期性或者函数的解析式的方向入手.【题型二】单调性问题设函数y =f(x)是定义在R +上的函数,并且满足下面三个条件①对任意正数x ,y ,都有f(xy)=f(x)+f(y);②当x >1时,f(x)<0;③f (3)=−1.(1)求f(1) ,f(19)的值;(2)证明f(x)在R +是减函数;(3)如果不等式f(x)+f(2−x)<2成立,求x 的取值范围.【解析】(1)令x =y =1,∴f (1)=f (1)+f (1),∴f (1)=0,令x =y =3,∴f (9)=f (3)+f (3)=−1−1=−2,且f(9)+f(19)=f(1)=0 ,得f(19)=2.(2) (利用函数单调性的定义证明)取x 2>x 1>0,则x 2x 1>1 ∴由②得 f(x2x 1)<0 ∵f(xy)=f(x)+f(y)∴f (x 2)−f(x 1)=f(x2x 1)<0∴f(x)在R +上为减函数.(3)由条件①得f[x(2−x)]<2 , (凑项f (m )=2,再利用单调性求解)由f (19)=2得f [x (2−x )]<f (19),又∵f(x)在R +上为减函数,∴x(2−x)>19又∵x >0,2−x >0,(注意函数定义域)解得x 的范围是(1−2√23 ,1+2√23).【点拨】① 抽象函数的单调性常用单调性定义证明◆ 任取x 1 ,x 2∈D ,且x 1<x 2;◆ 作差f(x 1)-f(x 2)(根据题目给出的抽象函数特征来“构造”出f(x 1)-f(x 2))此步有时也会用作商法:判断f (x 1)f (x 2)与1的大小; ◆ 变形;◆ 定号(即判断差f (x 1)−f(x 2)的正负);◆ 下结论(指出函数f(x)在给定的区间D 上的单调性).② 在解不等式时,往往需要利用函数的单调性求解.③ 抽象函数f (xy )=f (x )+f (y )符合对数函数f (x )=log a x 型,由f (3)=−1可知f (x )=log 13x ,作选填题可用.【题型三】奇偶性问题定义在R 上的增函数y =f(x)对任意x ,y ∈R 都有f(x +y)=f(x)+f(y),则(1)求f(0);(2)证明:f(x)为奇函数;(3)若f(k ∙3x )+f(3x −9x −2)<0对任意x ∈R 恒成立,求实数k 的取值范围.【解析】(1)在f(x +y)=f(x)+f(y)中,令x =y =0可得,f(0)=f(0)+f(0),则f(0)=0,(2) (定义法证明函数奇偶性)令y =−x ,得f(0)=f(x)+f(−x),又f(0)=0,则有0=f(x)+f(−x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k∙3x)<−f(3x−9x−2)=f(−3x+9x+2),即有k∙3x<−3x+9x+2,得k<3x+23x−1,(分离参数法)又有3x+23x−1≥2√2−1(当x=log3√2时取到等号),即3x+23x−1有最小值2√2−1,所以要使f(k∙3x)+f(3x−9x-2)<0恒成立,只要使k<2√2−1即可,故k的取值范围是(−∞ ,2√2−1).【点拨】②判断或证明抽象函数的奇偶性,从奇偶性的定义入手,判断f(−x)与f(x) 的关系.②抽象函数f(x+y)=f(x)+f(y)是正比例函数f(x)=kx(x≠0)型,由f(x)是增函数,可知k>0,选填题可用.【题型四】周期性问题奇函数f (x)定义在R上,且对常数T>0,恒有f (x + T )= f (x),则在区间[0 ,2T]上,方程f (x)= 0根的个数最小值为.【解析】∵函数f(x)是定义在R上的奇函数,故f(0)=0,又∵f(x+T)=f(x),即周期为T,∴f(2T)=f(T)=f(0)=0,又由f(−T2)=f(−T2+T)=f(T2),且f(−T2)=−f(T2)∴f(T2)=0,∴f(3T2)=f(T2)=0,故在区间[0 ,2T],方程f(x)=0根有x=0,T2,T,3T2,2T,个数最小值是5个,【点拨】抽象函数的周期性常与奇偶性,对称性放在一起,记住有关周期性和对称性的结论,做题时常画图像更容易找到思路.巩固练习1 (★★) f(x)的定义域为(0 ,+∞),对任意正实数x ,y 都有f(xy)=f(x)+f(y) 且f(4)=2,则f(√2)= .【答案】 12【解析】取x =y =2,得f(4)=f(2)+f(2)⇔ f(2)=1;取x =y =√2,得f(2)=f(√2)+f(√2) ⇔ f(√2)=12;2(★★★)已知f(x)是定义在R 上的偶函数,对任意x ∈R 都有(f (x +2)−1)2=2f(x)−f 2(x),则f(2019)= .【答案】 1±√22【解析】根据题意,f(x)为偶函数且f(x)满足(f (x +2)−1)2=2f(x)−f 2(x),变形可得[f (x +2)−1]2+[f 2(x)−2f(x)+1]=1,即[f (x +2)−1]2+[f (x )−1]2=1,令x =−1可得[f (−1)−1]2+[f (1)−1]2=1,即2[f (1)−1]2=1,解可得:f(1)=f(−1)=1±√22,又由f(x)满足[f (x +2)−1]2+[f (x )−1]2=1,则有[f (x +4)−1]2+[f (x +2)−1]2=1,联立可得:[f (x +4)−1]2=[f (x )−1]2,变形可得:f(x +4)=f(x)或f(x +4)+f(x)=2,若f(x +4)=f(x),则有f(2019)=f(−1+505×4)=f(−1)=1±√22,此时有f(2019)=1±√22, 若f(x +4)+f(x)=2,即f(x +4)=2−f(x),则有f(x +8)=2−f(x +4)=f(x),则有f(2019)=f(3+2016)=f(3),则f(3)=2−f(−1)=1±√22, 综合可得:f(2019)=1±√22, 故答案为:1±√22.3(★★) f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间[−6 ,6]内解的个数的最小值是.【答案】13【解析】∵f(x)是定义在R上的以3为周期的奇函数,∴f(x+3)=f(x),且f(-x)=-f(x),则f(0)=0,则f(3)=f(6)=f(−6)=f(0)=0,f(−3)=−f(3)=0,∵f(2)=0,∴f(5)=f(−1)=f(−4)=0,f(−5)=0,f(1)=0,f(4)=0,f(-2)=0,方程的解可能为0,3,6,-6,-3,2,5,−5,−2,-1,1,4,−4共13个,故选:D.4 (★★★)已知定义在(−∞ ,0)∪(0 ,+∞)上的函数f(x)满足①对任意x ,y∈(−∞ ,0)∪(0 ,+∞),都有f(xy)=f(x)+f(y);②当x>1时,f(x)>0且f(2)=1;(1)试判断函数f(x)的奇偶性;(2)判断函数f(x)在区间[−4 ,0)∪(0 ,−4]上的最大值;(3)求不等式f(3x−2)+f(x)≥4的解集.【答案】(1)偶函数(2)2(3)x≤−2或x≥8 3【解析】(1)∵f(xy)=f(x)+f(y);令x=y=a,则f(a2)=f(a)+f(a)=2f(a),令x=y=−a,则f(a2)=f(−a)+f(−a)=2f(−a),即f(a)=f(−a),故函数f(x)是偶函数,(2)任取0<x1<x2,则x2-x1>0,∵f(xy)=f(x)+f(y);∴f(xy)-f(x)=f(y);∴f(x2)-f(x1)=f(x2x1)∵x2x1>1,x>1时,f(x)>0,∴f(x2)-f(x1)=f(x2x1)>0,得到f(x1)<f(x2),故函数f(x)在区间(0,-4]上的最大值为f(4)=f(2)+f(2)=2,又由函数f(x)是偶函数,∴函数f(x)在区间[-4,0)上的最大值也为2,故函数f(x)在区间[-4,0)∪(0,-4]上的最大值为2;(3)由(2)得f(4)=2,则f(16)=f(6)+f(6)=4,故不等式f(3x -2)+f(x)≥4可化为:f[(3x -2)x]≥f(16),由(2)中结论可得:|(3x -2)x|≥16,即(3x -2)x ≥16或(3x -2)x ≤-16,解得x ≤-2或x ≥835 (★★★) 已知定义在(0 ,+∞)的函数f(x),对任意的x 、y ∈(0 ,+∞),都有f(xy)=f(x)+f(y),且当0<x <1时,f(x)>0.(1)证明:当x >1时,f(x)<0;(2)判断函数f(x)的单调性并加以证明;(3)如果对任意的x 、y ∈(0 ,+∞),f(x 2+y 2)≤f(a)+f(xy)恒成立,求实数a 的取值范围.【答案】(1) 略 (2)减函数,函数单调性定义证明 (3) (0 ,2]【解析】(1)∵f(xy)=f(x)+f(y),令x =y =1,则f(1)=f(1)+f(1),所以f(1)=0,再令y =1x ,则f(1)=f(x)+f(1x )=0,当x >1时,0<1x <1.∵f(1x )>0.∴f(x)=-f(1x )<0(2)任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 2)-f(x 1)=f(x2x 1) ∵x 1<x 2,所以x 2x 1>1,则f(x2x 1)<0,f(x 2)<f(x 1), ∴f(x)在(0,+∞)上是减函数,(3)f(x 2+y 2)≤f(a)+f(xy)恒成立,∴f(x 2+y 2)≤f(axy)恒成立,∴x 2+y 2≥axy ,∴0<a ≤x 2+y 2xy =y x +x y ≥2,当且仅当x =y 取等号,∴实数a 的取值范围(0,2]6 (★★★) 定义在R 上的单调增函数f(x)满足:对任意x ,y ∈R 都有f(x +y)=f(x)+f(y)成立(1)求f(0)的值;(2)求证:f(x)为奇函数;(3)若f(1+2x )+f(t ∙3x )>0对x ∈(−∞ ,1]恒成立,求t 的取值范围.【答案】 (1) 0 (2)略,定义证明 (3) t >−1【解析】 (1)令x =y =0,则f(0)=f(0)+f(0),∴f(0)=0.(2)令y =-x ,则f(0)=f(x)+f(-x),∵f(0)=0,∴f(-x)=-f(x),∴f(x)为奇函数.(3)∵f(t •3x )>-f(1+2x ),∴f(t •3x )>f(-1-2x ),∴t •3x >-1-2x∴t >−(13)x −(23)x 恒成立,而−(13)x −(23)x 单调递增,∴−(13)x −(23)x ≤−1从而t >-1.挑战学霸已知f (x )是定义在R 上不恒为0的函数,满足对任意x ,y ∈R ,f (x +y )=f (x )+f (y ), f(xy)=f(x)f(y).(1)求f(x)的零点;(2)判断f(x)的奇偶性和单调性,并说明理由;(3)①当x ∈Z 时,求f(x)的解析式;②当x ∈R 时,求f(x)的解析式.【解析】(1)记f(x +y)=f(x)+f(y) ①,f(xy)=f(x)f(y) ②在①中取y =0得f(0)=0.若存在x ≠0,使得f(x)=0,则对任意y ∈R ,f(y)=f(x ⋅y x )=f(x)f(y x )=0,与f(x)不恒为0矛盾.所以x ≠0时,f(x)≠0,所以函数的零点是0.(2)在①中取y =−x 得f(x)+f(−x)=f(0)=0,即f (−x )=−f(x), 所以f(x)是奇函数.x ,y ∈R , y >x 时,f(y)−f(x)=f(y)+f(−x)=f(y −x)=(f(√y −x))2>0, 可得f (y )>f(x).所以函数f(x)在R 上递增.(3)①由f(xy)=f(x)f(y)中取x ,y =1得f (1)=f 2(1).因为f(1)≠0,所以f(1)=1,对任意正整数n ,由①得f(n)=f(1)+⋯+f(1)⏟ n 个=n ×1=n ,f (−n )=−f (n )=−n ,又因为f(0)=0,所以x ∈N 时,f(x)=x ;对任意有理数m n (m ∈N ∗,n ∈N ∗),由①, f(m)=f(n ⋅m n )=f(m n )+⋯+f(m n )=nf(m n)⏟ n 个, 所以f(m n )=f(m)n =m n,即对一切x ∈Z ,f(x)=x . ②若存在x ∈R ,使得f(x)≠x ,不妨设f(x)>x (否则以−f(−x)代替f(x),−x 代替x 即可), 则存在有理数α,使得x <α<f(x)(例如可取n =[1f(x)−x ]+1,m =[nx]+1,α=m n). x <α但f(x)>α=f(α),与f(x)的递增性矛盾.所以x ∈R 时,f(x)=x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x ,∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈二、利用函数性质,解()f x 的有关问题1.判断函数的奇偶性: 例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。

证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。

2.确定参数的取值范围 例8:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。

解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关题目 例9:如果()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴又∵其开口向上∴f(2)最小,f(1)=f(3)∵在[2,+∞)上,()f x 为增函数∴f(3)<f(4),∴f(2)<f(1)<f(4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。

例1、已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。

分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。

解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。

在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f (x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2]。

例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。

分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。

解:设,∵当,∴,则,即,∴f(x)为单调增函数。

∵,又∵f(3)=5,∴f(1)=3。

∴,∴,即,解得不等式的解为-1 < a < 3。

2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。

求:(1)f(0);(2)对任意值x,判断f(x)值的正负。

分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。

解:(1)令y=0代入,则,∴。

若f(x)=0,则对任意,有,这与题设矛盾,∴f(x)≠0,∴f(0)=1。

(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,f(x)>0恒成立。

例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。

同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。

分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。

(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。

综上所述,x为一切自然数时。

3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。

例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围。

分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。

解:(1)∵,∴f(1)=0。

(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9。

例6、设函数y=f(x)的反函数是y=g(x)。

如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。

分析: 由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。

解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a +b)=g(a)·g(b)。

4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数。

例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0。

试问:(1)f(x)的奇偶性如何?说明理由。

(2)在(0,4a)上,f(x)的单调性如何?说明理由。

分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。

解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有,∴在定义域中。

∵,∴f(x)是奇函数。

(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。

又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0。

设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零。

f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。

综上所述,f(x)在(0,4a)上是增函数。

5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数。

例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。

相关文档
最新文档