数值计算方法实验1非线性迭代法求方程

合集下载

数值计算方法

数值计算方法
>> fun=inline('x^3-sin(x)-12*x+1','x') fun =
Inline function: fun(x) = x^3-sin(x)-12*x+1 >> fplot(fun,[-6,6]);grid on;
取x初值为0,-4,3 1、牛顿法 源程序代码
function [x_star,k] = Newton1(fname,dfname,x0,ep,Nmax) %用牛顿法解线性方程组f(x)=0 %x=Newton(fname,dfname,x0,ep,Nmax),fname,和 dfname分别表示f(x)及其导数 %x0为迭代初值,ep为精度(默认值1e-5),x返回解,Nmax为迭代 次数上限以防发散(默认值是500) if nargin<5 Nmax=500;end if nargin<4 ep=1e-5;end x=x0; x0=x+2*ep; k=0; while abs(x0-x)>ep&k<Nmax k=k+1;x0=x;x=x0-
k= 3
②取初值为-4:
在Matlab命令窗口输入:
>> fname=inline('x^3-sin(x)-12*x+1') fname = Inline function: fname(x) = x^3-sin(x)-12*x+1 >> dfname=inline('3*x^2-cos(x)-12') dfname = Inline function: dfname(x) = 3*x^2-cos(x)-12 >> [x_star,k]=Newton1(fname,dfname,-4) x_star = -3.4912

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

《数值分析》实验报告学院:数学与计算机学院专业:班级:姓名学号实验组实验时间指导教师成绩实验项目名称利用迭代法求方程的根实验目的1、掌握迭代法求根的数学原理。

2、掌握迭代法求根的计算机算法。

实验内容及要求内容:1、用迭代法求方程cosx5.0=x的近似根,要求误差不超过710-。

2.详细描述算法步骤并画出算法流程图形。

3.用表格列出迭代法的中间和最终结果。

要求:1、利用C语言,或Asp环境,或Matlab数学软件实现上述算法。

2、程序运行结果用表格显示出来3、保存程序运行结果,并结合算法进行分析。

4、要求实验报告最多两页,正反两面都要求打印。

实验原理将方程改写成x=)(xϕ,当方程在指定的区间上具有唯一的不动点(即迭代收敛)时,求原方程的零点就等价于求)(xϕ的不动点,选择一个初值x代入等式右端可得新的x的值,通过如此反复迭代后,求得的x的值会越来越逼近方程的根,一直迭代到误差满足要求即可。

实验仪器1、计算机一台。

2、安装IIS。

实验步骤Step1:选定满足迭代收敛的自变量的区间;Step2:选择迭代初值;Step3: 开始迭代,产生迭代后的新根,计算此时的误差;Step4: 如果误差不满足要求,返回Step3,否则输出结果,过程结束。

实验流程图开始选择迭代初值x确定收敛区间[a,b]迭代)(1kkxxϕ=+,2,1,0=k计算误差kkxx-+1结束误差是否小于7-10输出结果是否实验结果实验总结通过本次实验,我对迭代法求方程的根有了更深的认识,对其所用到的数学原理通过编程理解的更加清晰。

我是用Asp完成本次实验的,因为这样可以将结果很方便的用表格显示出来,让结果看起来比较清楚、明白和友好。

同时,我也用C语言编程实现过,结果是一样的,这也说明实验结果的正确性。

因为所给迭代方程是收敛的,不需要收敛性的验证,只要迭代达到误差的要求即可。

实验中遇到的一个问题是如何将结果中的小数点前的0补上去,让显示的更完整,通过网上查询,了解到可以根据对结果的判断将0加上去已达到完整显示,最终解决了这个问题。

数值分析--非线性方程的迭代解法

数值分析--非线性方程的迭代解法

非线性方程的迭代解法1.迭代函数对收敛性的影响实验目的:初步认识非线性问题的迭代法及其收敛性,认识迭代函数对收敛性的影响,知道当迭代函数满足什麽条件时,迭代法收敛。

实验内容:用迭代法求方程 012)(3=--=x x x f 的根。

方案一: 化012)(3=--=x x x f 为等价方程 )(213x x x φ=+= 方案二: 化012)(3=--=x x x f 为等价方程 )(123x x x φ=-= 实验要求:分别对方案一、方案二取初值00=x ,迭代10次,观察其计算值,并加以分析。

实验程序:实验结果:2. 初值的选取对迭代法的影响实验目的:通过具体的数值实验,体会选取不同的初值对同一迭代法的影响。

实验内容:用牛顿迭代法求方程 013=--x x 在x =1.5附近的根。

实验要求:对牛顿迭代公式 131231----=+k k k k k x x x x x ,分别取00=x ,5.10=x 迭代10次,观察比较其计算值,并分析原因。

实验程序:实验结果:3.收敛性与收敛速度的比较实验目的:通过用不同迭代法解同一非线性方程,比较各种方法的收敛性与收敛速度。

实验内容:求解非线性方程 0232=-+-x e x x 的根,准确到106-。

实验要求:(1) 用你自己设计的一种线性收敛的迭代法求方程的根,然后用斯蒂芬森加速迭代计算。

输出迭代初值、各次迭代值及迭代次数。

(2) 用牛顿迭代法求方程的根,输出迭代初值、各次迭代值及迭代次数,并与(1)的结果比较。

实验程序:1.普通迭代,选用初值0.52. 斯蒂芬森加速迭代3.牛顿迭代法实验结果:。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法)).

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法)).

本科生实验报告实验课程数值计算方法学院名称信息科学与技术学院专业名称计算机科学与技术学生姓名学生学号指导教师实验地址实验成绩二〇一六年五月二〇一六年五月1实验一 非线性方程求根1.1问题描绘实验目的:掌握非线性方程求根的基本步骤及方法, 。

实验内容:试分别用二分法、简单迭代法、Newton 迭代法、弦截法(割线法、双点弦法),求x 5-3x 3+x-1=0在区间[-8,8]上的所有实根,偏差限为10-6。

要求:议论求解的全过程,对所用算法的局部收敛性,优弊端等作剖析及比 较,第2章算法思想2.1二分法思想:在函数的单一有根区间内,将有根区间不停的二分,找寻方程的解。

步骤:1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid 为方程的根,不然比较与两头的符号,若与f(x0) 异号,则根在[x0,mid]之间,不然在[mid,x1]之间。

3并重复上述步骤,直抵达到精度要求,则 mid 为方程的近似解。

开始读入a,b,emid=(a+b)/2 F(a)*f(b)<0是 a=mid b=mid no |a-b|<e? yes 输出mid结束22.2简单迭代法思想:迭代法是一种逐次迫近的方法,它是固定公式频频校订跟的近似值,使之逐渐精准,最后获得精度要求的结果。

步骤:1.结构迭代公式f(x),迭代公式一定是收敛的。

2.计算x1,x1=f(x0).3.判断|x1-x0|能否知足精度要求,如不知足则重复上述步骤。

4.输出x1,即为方程的近似解。

开始输入x0,eX1=f(x0)f为迭代函数X1=x0;No|x1-x0|<eyes输出x1结束32.3Newton迭代法思想:设r是的根,选用作为r的初始近似值,过点做曲线的切线L,L的方程为,求出L与x轴交点的横坐标,称x1为r的一次近似值。

过点做曲线的切线,并求该切线与x轴交点的横坐标,称为r的二次近似值。

重复以上过程,得r的近似值序列,此中,称为r的次近似值步骤:1.计算原函数的导数f’(x);结构牛顿迭代公式2.计算,若f’(x0)=0,退出计算,不然持续向下迭代。

非线性方程数值求解法总结

非线性方程数值求解法总结

(一)非线性方程的迭代解法1.非线性方程的一般形式:f(x)=02.非线性方程的分类:⎩⎨⎧=为其他函数。

超越方程,次代数多项式;为代数方程,)()(0)(x f n x f x f 3.方程的根:若存在常数s 使f(s)=0,则称s 是方程(4.1)的根,又称s 是函数f(x)的零点。

4.重根:若f(x)能分解为)()()(x s x x f m ϕ-= 则称s 是方程(4.1)的m 重根和f(x)的m 重零点。

当m=1时,s 称为方程(4.1)的单根和f(x)的单零点。

5.结论:(1)零点存在定理:设函数f(x)在闭区间[a,b]上连续,且f(a)•f(b)<0,那么在开区间(a,b )内至少有一点ξ,使f(ξ)=0.(2)根的唯一性判别:一阶导数不变号且不为零(3)n 次代数方程在复数域上恰有n 个根(4)高于4次的代数方程没有求根公式6.方法:(1)搜索根方法:①作图法:②逐步搜索法:确定方程根的范围的步骤:步骤1 取含f(x)=0根的区间[a,b],即f(a)•f(b)<0;步骤2 从a 开始,按某个预定的步长h ,不断地向右跨一步进行一次搜索, 即检查kh a x k +=上的函数)(k x f 值的符号。

若0)()(1<•-k k x f x f ,则可以确定一个有根区间],[1k k x x -.步骤3 继续向右搜索,直到找出[a,b]上的全部有根区间],[1k k x x -(k=1,2,…,n).(2)二分法①基本思想:含根区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列 {}k I ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。

②迭代终止的条件ε<)(k x fε2<-k k a b或者ε<-≤-2k k k a b s x(3)简单迭代法及其收敛性)(0)(x x x f ϕ=⇔=,2,1,0),(1==+k x x k k ϕ迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使之逐 步精确化,最后得到满足精度要求的解。

《数值分析实验》实验

《数值分析实验》实验

数值分析实验实验1 方程求根一、实验目的:1.掌握常用的求非线性方程近似根的数值方法,用所学方法求非线性方程满足指定精度要求的数值解,比较各种方法的异同点并进行收敛性分析。

2.通过对二分法与牛顿迭代法作编程练习与上机运算,进一步体会二分法与牛顿迭代法的不同特点。

3.编写割线迭代法的程序,求非线性方程的解,并与牛顿迭代法作比较。

二、实验内容:1.用二分法求方程0104)(23=-+=x x x f 在1.5附近的根。

2.用牛顿迭代法求方程033)(23=--+=x x x x f 在1.5附近的根。

3.用简单迭代法求解非线性方程3sin )1(2=-+x x 的根。

取迭代函数)1sin 3(*5.0)(2x x x --+=ϕ,精度取2101-⨯4.(选做)用牛顿法求下列方程的根: (1)02=-x e x ; (2)01=-x xe ; (3)02lg =-+x x 。

5.(选做)编写一个弦截法程序,求解题目4中的方程。

6.(选做)Matlab 函数fzero 可用于求解非线性方程的根。

例如,fzero(@(x) x^3+4*x^2-10, 1.5)可以求解题目1。

尝试用此方法求解实验中的其他题三、实验要求:1.程序要添加适当的注释,程序的书写要采用缩进格式。

2.程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应,如插入删除时指定的位置不对等等。

3.程序要做到界面友好,在程序运行时用户可以根据相应的提示信息进行操作。

四、实验步骤1.按照实验内容和实验要求编写代码 2.编译并运行代码 3.检查是否发生错误五、实验源代码与实验结果实验1源代码:运行结果:实验2源代码:运行结果:实验3源代码:运行结果:4(1)的源代码:运行结果:4(2)的源代码:运行结果:4(3)的源代码:运行结果:5(3)的源代码:运行结果:六、实验心得体会通过本次实验我加深了对二分法、简单迭代法、牛顿迭代法和弦截法算法思想的了解,并对各个不同方法的优劣有了更深的理解。

数值分析非线性方程求根实验

数值分析非线性方程求根实验

实验报告一、实验目的1.迭代函数对收敛性的影响。

2.初值的选择对收敛性的影响。

二、实验题目1.用简单迭代法求方程01)(3=--=x x x f 的根。

分别化方程为如下等价方程: 31+=x x ;13-=x x ;x x 11+=;213-+=x x x 取初值5.10=x ,精度为410-,最大迭代次数为500,观察其计算结果并加以分析。

2.①用牛顿法求方程01)(3=-+=x x x f 在0.5附近的根,分别取初值1000,100,2,1,5.0,5.0,1,2,100,10000-----=x观察并比较计算结果,并加以分析。

②用牛顿法求方程0)(3=-=x x x f 所有根。

三、实验原理简单迭代法程序,牛顿迭代法程序。

四、实验内容及结果fun=inline('x^3-x-1');dfun=inline('3*x^2-1');-1000,x1=manewton(fun,dfun,-1000,1e-4) -100,x2=manewton(fun,dfun,-100,1e-4)-2,x3=manewton(fun,dfun,-2,1e-4)-1,x4=manewton(fun,dfun,-1,1e-4)-0.5,x5=manewton(fun,dfun,-0.5,1e-4) 0.5,x6=manewton(fun,dfun,0.5,1e-4)1,x7=manewton(fun,dfun,1,1e-4)2,x8=manewton(fun,dfun,2,1e-4)100,x9=manewton(fun,dfun,100,1e-4) 1000,x10=manewton(fun,dfun,1000,1e-4)3)在MA TLAB的主程序窗口输出以下结果:ans =-1000k=21x1 =0.682327804075895ans =-100k=16x2 =0.682327803903413ans =-2k=6x3 =0.682327803828020ans =-1k=5x4 =0.682327803828020ans =-0.500000000000000k=4x5 =0.682327803903932ans =0.500000000000000k=3x6 =0.682327803828347五、实验结果分析(1)实验1中用简单迭代法求方程01)(3=--=x x x f 的根:取初始值5.10=x 的时候,等价方程2和4是不收敛的。

数值计算方法实验1

数值计算方法实验1

学院(系)名称:)()()()(0101112x x x f x f x f x x ---=附录(源程序及运行结果):一.二分法#include<stdio.h>#include<math.h>double f(double x){return x*x-x-1;}void main(){float a=0,b=0,x=1,m,e;int k;while(f(a)*f(b)>0){printf("请输入区间a,b的值。

以及精度e\n");scanf("%f,%f,%f",&a,&b,&e);}k=0;if(f(a)*f(b)==0){if(f(a)==0)printf("使用二分法输出:a=%f,k=%d\n",a,k);elseprintf("使用二分法输出:b=%f,k=%d\n",b,k);}else{while(f(a)*f(b)!=0){m=(a+b)/2;if(fabs(a-b)/2<e){printf("使用二分法输出:m=%f,k=%d\n",m,k);break;}else {if(f(a)*f(m)>0)a=m;else b=m;k=k+1;}}}}运行结果:二.迭代法与牛顿迭代法#include<stdio.h>#include<math.h>double f(double x){return exp(-x);}double f1(double x){return (x*exp(x)-1);}double ff(double x){return (exp(x)+x*exp(x));}void diedaifa(double x0,double e,int N){double x1;int k=1;while(k!=N){x1=f(x0);if(fabs(x1-x0)>=e){k++;if(k==N)printf("迭代失败!\n");x0=x1;}else{printf("使用迭代法输出结果:%lf\n",x1);break;}}}void NDdiedaifa(double x0,double e,int N){int k=1;double x1;while(k!=N){if(ff(x0)==0)printf("公式f(x)奇异!\n");else{x1=x0-f1(x0)/ff(x0);if(fabs(x1-x0)>=e){k++;if(k==N)printf("迭代失败!\n");x0=x1;}else{printf("使用牛顿迭代法输出结果:%lf\n",x1);break;}}}}void main(){double x0,e;int N;printf("请输入初值:");scanf("%lf",&x0);printf("精度:");scanf("%lf",&e);printf("以及判定迭代失败的最大次数N:");scanf("%d",&N);diedaifa(x0,e,N);NDdiedaifa(x0,e,N);}运行结果:四.双点弦截法#include<stdio.h>#include<math.h>double f(double x){return (x*x*x+3*x*x-x-9);}void main(){double x0,x1,x2,e;int N;int k=1;printf("请输入初值x0和x1:");scanf("%lf,%lf",&x0,&x1);printf("精度:");scanf("%lf",&e);printf("以及判定迭代失败的最大次数N:");scanf("%d",&N);while(k!=N){x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0));if(fabs(f(x2))>=e){k++;if(k==N)printf("迭代失败!\n");x0=x1;x1=x2;}else{printf("使用双点弦截法输出结果:%lf\n",x2);break;}}}运行结果:。

数值计算方法实验报告

数值计算方法实验报告

本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点: 506 专业班级:学号:学生姓名:指导教师:2012 年 6 月 20 日太原理工大学学生实验报告b=c;printf("%f\n",b);}printf("X的值为:%f\n",c);}五、实验结果与分析二分法割线法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。

相比之下,割线法程序代码量较少,精简明了。

六、讨论、心得本次数值计算方法程序设计实验从习题练习中跳脱出来,直接面对实用性较强的程序代码编写。

效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。

将理论知识成功地转化成实践结果。

实验地点北区多学科综合楼4506指导教师太原理工大学学生实验报告x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。

即,为了节约内存及时效,可以不必计算出主元素下方数据。

列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。

列主元素消元法的耗时比完全主元素法少很多,常采用之。

对于LU分解法,分解矩阵为单位下三角阵L与上三角阵U的乘积,然后解方程组Ly=b,回代,解方程组Ux=y。

其中的L为n阶单位下三角阵、U为上三角阵.六、讨论、心得本次试验中,感觉是最难的一次,完全主元素消元法程序编写过程相对来说花了好长时间。

非线性方程的数值计算方法实验

非线性方程的数值计算方法实验

非线性方程的数值计算方法实验《数值方法》实验报告1【摘要】在利用数学工具研究社会现象和自然现象,或解决工程技术等问题?0的求解问题,时,很多问题都可以归结为非线性方程f(x)无论在理论研究方面还是在实际应用中,求解非线性方程都占了非常重要的地位。

综合当前各类非线性方程的数值解法,通过比较分析,二分法,迭代法,牛顿―拉夫森方法,迭代法的收敛阶和加速收敛方法,以上的算法应用对某个具体实际问题选择相应的数值解法。

关键词非线性方程;二分法;迭代法;牛顿-拉夫森法;割线法等。

一、实验目的通过本实验的学习,应掌握非线性方程的数值解法的基本思想和原理,深刻认识现实中非线性方程数值的意义;明确代数精度的概念;掌握二分法、不动点迭代法、牛顿迭代法、割线法等常用的解非线性方程的方法;培养编程与上机调试能力。

二、实验原理二分法:单变量函数方程: f(x)=0其中,f(x)在闭区间[a,b]上连续、单调,且f(a)*f(b)<0,则有函数的介值定理可知,方程f(x)=0在(a,b)区间内有且只有一个解x*,二分法是通过函数在区间端点的符号来确定x*所在区域,将有根区间缩小到充分小,从而可以求出满足给定精度的根x*的近似值。

下面研究二分法的几何意义:设a1=1, b1=b, 区间?a1,b1?,中点x1=a1?b1及f?x1?,若f?x1?=0,则x*=x1,2若 f(a1)*f(x1)<0,令a2=a1,b2=x1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],若 f(b1)*f(x1)<0,令a2=x1,b2=b1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],即f(a2)f(b2)<0,此时b2-a2=b1?a1,对有根区间[a2,b2]重复上述步骤,即分半求中点,判断中2电处符号,则可得长度有缩小一半的有根区间[a2,b2],《数值方法》实验报告2如图所示:重复上述过程,第n步就得到根x*的近似序列?xn?及包含x*的区间套,如下:(1)[a1,b1]?[a2,b2]?....[an,bn]?... (2)f(an)f(bn)?0,x*?[an,bn] (3)an-bn=1=…=2(an?1?bn?1)(4) xn?b?a 2n?1an?bnb?a,且|x*-xn|?n?1 (n=1,2,3…..) 22显然limxn,且xn以等比数列的收敛速度收敛于x*,因此用二分法求f(x)=0的实根x*可以达到任意指定精度。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法1. 引言1.1 介绍迭代法迭代法是一种重要的数值计算方法,广泛应用于非线性方程的求解、函数极值点的求解等问题中。

迭代法的基本思想是通过逐步逼近的方式,找到函数的根或者极值点。

这种方法在面对复杂的数学问题时具有很大的优势,可以通过简单的计算步骤逐渐接近最终解。

与解析解相比,迭代法更适用于无法通过代数运算求解的问题,或者求解过程较为繁琐的问题。

迭代法的实现通常需要选择一个初始值,并通过反复迭代计算来逼近真实解。

在每一步迭代中,都会根据当前的估计值计算新的估计值,直到满足一定的精度要求为止。

迭代法虽然不能保证每次都能得到精确解,但在实际应用中往往能够取得较好的结果。

迭代法是一种简单而有效的数值计算方法,尤其适用于非线性方程求解等复杂问题。

通过逐步逼近的方式,迭代法可以帮助我们解决那些传统方法难以处理的问题,为现代科学技术的发展提供重要支持。

1.2 非线性方程的求解意义非线性方程在数学和工程领域中广泛存在,其求解具有重要的理论和实际意义。

非线性方程的求解能够帮助解释和预测许多自然现象,包括流体动力学、电路分析、材料力学等领域中的问题。

非线性方程的求解也是许多科学研究和工程设计中必不可少的一环,例如在经济学、生物学、物理学等多个学科中都有非线性方程存在。

传统的解析方法难以解决非线性方程,因此迭代法成为求解非线性方程的重要工具。

迭代法是一种通过不断逼近解的方法,逐步逼近方程的解。

通过迭代法,可以在复杂的非线性方程中找到数值解,从而解决实际问题。

非线性方程的求解意义在于帮助我们更好地理解和掌握复杂系统的性质和行为。

通过求解非线性方程,我们可以揭示系统中隐藏的规律和关系,为科学研究和工程设计提供重要的参考和支持。

发展高效的迭代法求解非线性方程具有重要意义,可以推动科学技术的进步,促进社会的发展和进步。

2. 正文2.1 牛顿迭代法牛顿迭代法是一种非常经典的求解非线性方程的方法,其基本思想是通过不断逼近函数的零点来求解方程。

数值计算方法实验报告

数值计算方法实验报告

数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。

问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。

非线性方程的数值计算方法实验解析

非线性方程的数值计算方法实验解析

非线性方程的数值计算方法实验一、实验描述:在科学研究和工程实践中,经常需要求解大量的非线性方程。

本实验正是通过计算机的程序设计,使用迭代法、波尔查诺二分法、试值法、牛顿-拉夫森法和割线法,来实现非线性方程的求解。

本实验中通过对各种方法的实践运用,可以比较出各种方法的优缺点。

并且,通过完成实验,可加深对各种方法的原理的理解,熟悉掌握C语言在这些方法中的运用。

二、实验内容:1、求函数cos(x)=的不动点(尽可能多)近似值,答案g x-(x)x精确到小数点后12位;2、如果在240个月内每月付款300美元,求解满足全部年金A为500000美元的利率I,的近似值(精确到小数点后10位)。

3、利用加速牛顿-拉夫森算法,用其求下列函数M阶根p的近似值。

(a)、f(x)=(x-2)5,M=5,p=2,初始值p0=1。

(b)、f(x)=sin(x3),M=3,p=0,初始值p0=1。

(c)、f(x)=(x-1)ln(x),M=2,p=1,初始值p0=2。

4、设投射体的运动方程为:y=f(t)=9600(1-e-t/15)-480tx=r(t)=2400(1-e -t/15)(a)求当撞击地面时经过的时间,精确到小数点后10位。

(b)求水平飞行行程,精确到小数点后10位。

三、实验原理:(1)、不动点迭代法:它是一种逐次逼近的方法,即用某个固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度要求的结果。

它利用计算机运算速度快,适合做重复性操作的特点,让计算机对一个函数进行重复执行,在每次执行这个函数时,都从变量的原值推出它的一个新值,直至推出最终答案为止。

迭代法一般可用于寻找不动点,即:存在一个实数P ,满足P=g(P),则称P 为函数g(x)的一个不动点。

且有定理:若g(x)是一个连续函数,且{p n }n=0∞是由不动点迭代生成的序列。

如果lim n→∞p n =P ,则P 是g(x)的不动点。

所以,不动点的寻找多用迭代法。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法迭代法是一种数值计算方法,用来解非线性方程组或方程的近似解。

在实际运用中,我们经常遇到非线性方程的求解问题,这时迭代法是一种常用的方法。

迭代法的基本思想是通过不断地迭代计算,逐步逼近方程的解。

在本文中,我们将介绍三种新的迭代法来求解非线性方程。

1. 不动点迭代法不动点迭代法是一种简单而有效的迭代法,它的基本思想是将原始方程变形成 x=g(x) 的形式,其中 g(x) 称为不动点迭代函数。

具体的迭代过程如下:给定初始值 x0,计算 x1=g(x0)计算 x2=g(x1)不断地重复上述步骤,直到收敛于方程的解不动点迭代法的收敛性取决于 g(x) 的性质,一般来说,如果 g(x) 在解的附近有连续的一阶导数,并且 |g'(x)|<1 则迭代法收敛。

2. 牛顿迭代法牛顿迭代法是一种高效的迭代法,它的基本思想是通过不断地使用方程的切线来逼近方程的解。

具体的迭代过程如下:3. 龙贝格迭代法给定初始值 x0,计算 x1通过 Richardson 拟差法计算 x2不断地重复上述步骤,直到收敛于方程的解龙贝格迭代法的收敛速度非常快,尤其对于级数收敛速度较慢的情况下,可以加速收敛。

在实际应用中,以上三种新的迭代法可以根据具体问题的特点来选择合适的方法。

不动点迭代法适用于一般的非线性方程,牛顿迭代法适用于具有一阶导数的方程,而龙贝格迭代法适用于级数收敛速度较慢的情况下。

在使用迭代法求解非线性方程时,应根据实际问题的特点合理选择迭代方法,并注意迭代的收敛性和初始值的选取。

NonNullNonDenseDetNogle_preStoppedSe vi i Danmark har haft danskhosvistes, somblev fundet i marts i år, og som vi ikke vidste hvad var.Efter at have undersøgt dem i flere måneder, hedder det nu en prælunar.」Praeslunar betyder før-månen, og det henviser til det faktum, at det ikke er en asteroid eller en komet, men snarere en klippe, der holder fast på Jorden, inden den falder ind i den.TextSe vi i Danmark har haft sanskosmiske partikler, som blev fundet i marts i år, og som vi ikke vidste hvad var.Efter at have undersøgt dem i flere måneder, hedder det nu en prælunar.」Praeslunar betyder før-månen, og det henviser til det faktum, at det faktum, at det ikke er en asteroid eller en komet, men snarere en klippe, der holder fast på Jorden, inden den f alder ind i den.Vores forskning har vist, at den er dannet, da asteroidebælteren var meget tættere på Solen, end den er nu.。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

数值计算方法实验指导(Matlab版)

数值计算方法实验指导(Matlab版)

《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。

数值计算方法实验报告

数值计算方法实验报告
#include<stdio.h>
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1实验名称实验1非线性方程的迭代法2实验题目设方程f(x)=x^3-3x-1=0有3个实根x1*=1.8793,x2*=-0.34727,x3*= -1.53209,现采用下面6种不同计算格式,求f(x)=0的根x*,x*.(a)x=(3x+1)/x^2(b)x=(x^3-1)/3(c)x=(x^3-1)^1/3(d)x=1/(x^2-3)(e)x=(3+1/x)^1/2(f)x=x-(x^3-3*x-1)/(3*(x^2-1))3流程图源代码:#include<stdio.h>#include<math.h>int N;double x0,x,y,z,T;void out1(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=(3*x0+1)/(pow(x0,2));z=(3*y+1)/(pow(y,2));x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void out2(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=(pow(x0,3)-1)/3;z=(pow(y,3)-1)/3;x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void out3(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=pow((3*x0+1),1.0/3);z=pow((3*y+1),1.0/3);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void out4(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=1/(pow(x0,2)-3);z=1/(pow(y,2)-3);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void out5(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=pow((3+1/x0),1.0/2);z=pow((3+1/y),1.0/2);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void out6(){int n=1;printf("请输入初值x0:");scanf("%lf",&x0);printf("请输入精度T:");scanf("%lf",&T);printf("请输入迭代次数N:");scanf("%d",&N);printf("\n");printf("迭代结果如下:\n");while(n<=N){y=x0-(1.0/3)*(pow(x0,3)-3*x0-1)/(pow(x0,2)-1);z=y-(1.0/3)*(pow(y,3)-3*y-1)/(pow(y,2)-1);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("%d %lf\n",n,x);if(fabs(x-x0)<T){printf("该方程的值为%lf\n",x);break;}else{n=n+1;x0=x;}}}void main(){int select;printf("方程:f(x)=x^3-3*x-1\t\t");printf("结束请选0\n");printf("1. x=(3*x+1)/x^2\t\t");printf("2. x=(x^3-1)/3\t\t");printf("\n");printf("3. x=(3*x+1)^(1/3)\t\t");printf("4. x=1/(x^2-3)\t\t");printf("\n");printf("5. x=(3+1/x)^(1//2)\t\t");printf("6. x=x-(x^3-3*x-1)/(3*(x^2-1))\t\t");printf("\n");printf("请选择计算格式或结束:");scanf("%d",&select);printf("\n");while(select!=0){switch(select){case 1:out1();break;case 2:out2();break;case 3:out3();break;case 4:out4();break;case 5:out5();break;case 6:out6();break;};printf("\n");printf("请选择计算格式或结束:");scanf("%d",&select);printf("\n");}printf("\n");}。

相关文档
最新文档