第3章 刚体力学
合集下载
第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
第三章 刚体力学分析
连续分布
J r 2 dm
J S r 2 dS
J V r 2 dV
2
J l r dl
【例】如图所示,在不计质量的细杆组成的正三角形的顶 角上,各固定一个质量为m的小球,三角形边长为l。求: ⑴系统对过C点,且与三角形平面垂直轴的转动惯量; ⑵系统对过A点,且与三角形平面垂直轴的转动惯量; ⑶若A处质点也固定在B处,⑵的结果如何? m
h
代入数据,得
F 5.91×1010 N
2018/11/1
【例】 有一圆盘质量为m,均匀分布,圆盘半径为R 可绕过盘中心的光滑竖直轴在水平桌面上转动,圆 盘与桌面间的滑动摩擦系数为μ,求圆盘转动后受的 摩擦力矩。 解:摩擦力距在圆盘的不同 R部位是不相同的,在圆盘 上取一半径r—r+dr的圆环 圆环质量: r dr
T' T
o
r
T T
m
m g T m a Tr J
a r
2 gt 2 J mr ( 1) 2S
1 2 S at 2
mg
【思考】组合轮可以绕通过其中心且垂直于盘面的光滑水 平固定轴o转动,对o轴的转动惯量J=9mr2/2 。两圆盘边缘 上分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和 B,这一系统从静止开始运动,绳与盘无相对滑动且长度不 变。已知小圆盘的半径为r,质量为m;大圆盘的半径 r’=2r,质量m’ = 2m 。 求:组合轮的角加速度的大小。
与质点匀变速直线运动公式相对应.
0 t
(6) 角量与线量的关系
线量——质点做圆周运动的v、a 角量——描述刚体转动整体运动的 ,, 弧长 线速度 切向加速度
s r
y
第三章 刚体力学3
结论:平面平行运动=随基点的平动+绕基点的转动
上页 下页 返回 结束
第三章 刚体力学
静系:O-xyz 固着在固定平面 动系:A xyz 固着在薄片 P点:
在 z 轴上
y
y P v v A r v A (r r0 ) d dr r r a aA r x A dt dt r0 dr x O ( r ) dt z ( r ) r ( ) z d 2 法向加速度 a aA r r dt
xc x0 v Ay
v x v Ax ( y y0 ) 0
v y v Ay ( x x0 ) 0
动系中
v Ax yc y0
xc v Ay
v x v Ax y 0
v y v Ay x 0
xi Ri cos ,yi Ri sin,zi 常数 xi y i i xi 2 yi x z 0, 0 z 则 2 i y i xi yi x i y mx c 2 m y c N Ax N Bx F ix
c a b sin
a b
bc 2
2
1 cos i j 2 sin sin 1 cos cos i cos j sin i cos j 2 sin sin
不能求约束反力 N C O’
上页 下页
xC
O
2 实心圆柱体 C g sin x 3 1 空心圆柱体 C g sin x 2
上页 下页 返回 结束
第三章 刚体力学
静系:O-xyz 固着在固定平面 动系:A xyz 固着在薄片 P点:
在 z 轴上
y
y P v v A r v A (r r0 ) d dr r r a aA r x A dt dt r0 dr x O ( r ) dt z ( r ) r ( ) z d 2 法向加速度 a aA r r dt
xc x0 v Ay
v x v Ax ( y y0 ) 0
v y v Ay ( x x0 ) 0
动系中
v Ax yc y0
xc v Ay
v x v Ax y 0
v y v Ay x 0
xi Ri cos ,yi Ri sin,zi 常数 xi y i i xi 2 yi x z 0, 0 z 则 2 i y i xi yi x i y mx c 2 m y c N Ax N Bx F ix
c a b sin
a b
bc 2
2
1 cos i j 2 sin sin 1 cos cos i cos j sin i cos j 2 sin sin
不能求约束反力 N C O’
上页 下页
xC
O
2 实心圆柱体 C g sin x 3 1 空心圆柱体 C g sin x 2
理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
第3章刚体力学基础
将圆盘视为一个系统,破裂后其受合 外力矩为零,所以其角动量守恒。
§3-3 刚体的能量
一、力矩的功
α
二、力矩的功率
说明:1、变力矩情况
2、此式的简单应用 三、转动动能 对刚体上任一质点mi, ri Vi ω 和质点的动能形式进行比较。
四、动能定理
意义:合外力矩对定轴转动的刚体所作的功, 等于刚体转动动能的增量。
第三章 刚体力学基础
§3-1 刚体运动的描述 一、刚体(rigid body) 刚体:在任何外力作用下,其形状和大小均不发生 改变的物体。 说明:
1)理想模型。
2)在外力的作用下,物体的形状和大小的变化很小 ,可以忽略不计,该物体仍可视为刚体。
二、刚体的运动 1、平动(translation)
刚体内任意两点的连线在
由平行轴定理
6g sinq 由(1)、(2)得: w = 2 7l v v v + mg = ma c 应用质心运动定理: N
(3) (4)
7 = ml 48
2
(2)
l = w2 a cl 4 6 = g sin q 7 l a = ct 4
(5)
由 (3)(4)(5)(6) 可解得:
l l 4 mg cos q = 4 J o 3 g cos q = (6) 7 13 N = mg sin q , l 7
解得:
应用型问题研究时以ω 绕轴旋转,在Δt 时间内其 角速度变为零。 d X C 碰撞过程中受力图为: ω Nx L/2 在图示坐标中, NY 依角动量定理: Z Y F
∵X方向无运动,∴NX = 0 结论:门碰装在离轴2/3处,开门时对轴的冲击力最小。
3)刚体匀变速转动公式
同匀变速直线运动公式。
大学物理 第3章 刚体力学基础
2 1
Jd
1 2
J22
1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF
第三章 刚体力学
y’
y,η x
ψ
N
x,ξ
实际上,据刚才的分析, O 轴 可认为 是刚体绕 转动的角速度 ,绕ON轴 转动的角速度 ,和绕 z轴转动的角速度 的矢量
z θ
z
ψ
y
M ’
y’
sin sini sin cosj cosk
F2
d o1o2
P
O1 A
rAB
B
F1 F2 F
O2
为力偶面
F1
力偶臂:两平行力之间的垂直距离 如图所示的O1O2 力偶对任意一点P的力矩等于两平 行力对同一点P的力矩之代数和
M F2 .PO2 F1.PO1 F.O1O2
M
力偶矩:力和力偶臂的乘积,方向右手螺旋法则
二 角速度矢量 角速度:
lim
t 0
既然角位移 且与角位移的方向相同 转动瞬轴: 定点转动时某时刻的转轴
n是矢量,则角速度也是矢量,
线速度:因转动而具有的速度 线速度和角速度之间的关系:
r 为刚体内某质点到点O的位矢, 是刚体绕通过
该点某轴线的角速度
dr dn r v r dt dt
y,η
k
ψ N
cosi sinj
y
x,ξ
x’
x
cos sin sin x
sin sin cos y
x
cos z
已知 (t ) ,θ(t),ψ(t)可以求得ω,反之亦然。
二、刚体的运动微分方程 1.质心运动方程 根据质心运动定理,取质心为简化中心, d r 为刚体质心相对于 m F F 则 dt 某定点O的位矢 分量式: m C Fx x
大学物理-第三章 刚体力学
向力的作用点P的矢量。 M rF
大小:M rF sin Fd
M
O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页
2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2
mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。
m 2
r
2
左滑轮Tr
T1r
m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T
T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J
大小:M rF sin Fd
M
O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页
2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2
mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。
m 2
r
2
左滑轮Tr
T1r
m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T
T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J
第3章 刚体力学基础
M = F1 d 1
r Ft 2 r2 F2 d 2 = Ft 叉乘右螺旋 1 r1
转动定律
瞬时 角加速度 瞬时 角速度
某质元
Fi
t
qi
n
fi
∑ Fi ri sin j i + ∑ f i ri sin q i = ∑
合外力矩 M 内力矩成对抵消= 0
得
O
ji
ri
等式两边乘以 i 并对所有质元及其所受力矩求和
∑ ∑
∑
是矢量式 与质点平动对比
刚体的角动量守恒定律
由 若 则 刚体所受合外力矩 即
当刚体所受的合外力矩 刚体的角动量
等于零时, 保持不变。
乘积
角动量守恒的另一类现象 角动量守恒的另一类现象 保持不变, 变小则 变大, 变大则
变小。
张臂
大
用外力矩 启动转盘后 撤除外力矩
收臂
小 大
小
乘积
角动量守恒的另一类现象 花样滑冰中常见的例子 保持不变, 变小则
刚体系统的角动量定理
若一个系统包含多个共轴刚体或平动物体 系统的总合外力矩 ∑ ∑ 系统的总角动量的变化率 系统的总角动量增量 轻绳 (忽略质量) 同向 ∑ 而 解得
系统的总冲量矩 例如 求角加速度
∑
系统:
静 止 释 放
∑ 总合外力矩 对O的角动量 对O的角动量 ∑ 由 得
主要公式归纳
(微分形式) (积分形式)
3
转动:分定轴转动和非定轴转动
刚体的平面运动
4
刚体的一般运动可看作: 随质心的平动
+
绕质心的转动
的合成
5
第二节
平 动
定轴转动
第三章-刚体力学基础
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O
Frsin
l
)
2
重力矩所做的功为
dm dl
gdm
A dA 1 mgl cosd 1 mgl sin
02
2
初位置: 0 0 Ek0 0 O
转动动能与质点动能的对比
Ek
1 2
J 2
Ek
1 2
mv 2
三 刚体定轴转动的动能定理 由刚体的转动定律
当θ=θ1时,ω=ω1 所以:
A
2 1
M d
1 2
J22
1 2
J12
刚体定轴转动的动能定理
合外力矩对定轴转动刚体所做的 功等于刚体转动动能的增量
机械能守恒定律
条件 刚体在转动过程中,若只有重力矩对刚体做功,
75 (rad )
6
所以在30秒时间内飞轮所转过的圈数为
N 75 37.5(圈) 2 2
(2)
0
t
5
(
6
)6
4
(rad
/
s)
(3) 在t=6秒时刻飞轮边缘上任一点的线速度和加速 度可分别由公式得
v r 0.2 4 0.8 (m / s)
an r 2 0.2 (4 )2 3.2 2 (m / s2 )
Z
OR dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
Z
dm dV 2rdr l
第3章 刚体力学基础
刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R
⑤
J 1 mR2
理论力学第3章刚体力学
§3.2 角速度矢量
1 有限转动与无限小转动
▪在普通物理学中处理定轴转动时,曾直接把 角速度 作为一个矢量,这样处理在逻辑上 其实是不够严谨的。 ▪但在定轴转动中角速度方向始终不变,所以 它是不是矢量关系不大。
▪ 但在刚体绕固定点转动时,转动轴方向随 时改变,因而角速度的方向也随时改变, 所以必须首先证明角速度是一个矢量。 ▪ 并不是有量值有方向的量就一定是矢量。 它还必须遵守平行四边形加法所应遵守的 对易律,即:
§3.1 刚体运动的分析
1 什么是刚体?
▪刚体是一种理想化的特殊的质点组,质点组 中任意两点之间的距离保持不变。 ▪在处理实际问题时,当物体的大小和形状的 变化可以忽略不计时,可以把它当作刚体看 待。
2 确定刚体的空间位置需要几个独立变量?
▪在空间确定一个质点的位置需要三个独立变 量。那么由 n个质点组成的质点组需要 3n 个
亦即矢量
r
经 n 微小转动后的线位移为
r
现在来看两个微小转动n 和n 的合成是不是遵
守对易律?
▪ 转动前,P 的位矢:r ▪ 转动 n后: r n r ▪ 再转动 n 后:r n r n (r n r )
有限转动角位移不是矢量,因它不遵守 对易律
考查无限小转动时角位移是否是矢量?
▪ 如图可见,若r 为无限小量 则 r 必与包含 r 及n 的平面
垂直,且 r PM
▪ 但 PM r sin
▪ 因此 r r sin r n sin ▪ 即 r n r
▪ 定轴转动。 如果刚体运动时,其中有两个点始终不动, 因为两点可以决定一条直线,整个刚体就绕 着这条直线转动,叫定轴转动。只要知道刚 体绕这条轴线转了多少角度,就能确定刚体 的位置。因此刚体作定轴转动时只有一个独 立变量。
第3章 刚体力学基础
3-7如图所示,长为 的均匀细杆水平地放置在桌面上,质心离桌边缘的距离为 ,从静止开始下落。已知杆与桌边缘之间的摩擦系数为 。试求:杆开始滑动时的临界角。
分析细杆滑动前以 点为轴在重力矩作用下转动,细杆质心做以 点为圆心的圆周运动,根据转动定律及质心运动定律即可求出 点摩擦力 与 角关系,细杆开始滑动的临界条件为 。
(1)
(2)
式中 为圆环对 轴的转动惯量,圆环绕过中心且垂直环面的轴的转动量为 ,根据垂直轴定理
(3)
由(1)~(3)式解得
(4)
(5)
取小珠、环及地球为系统,在小珠下落过程中,外力做功为零,系统中又无非保守内力做功,所以系统的机械能守恒。设小珠落至 、 处时,相对于环的速度分别为 、 ,则有
解无滑动时,杆绕过 点的固定轴做定轴转动,由转动定律有
(1)
由平行轴定理求细杆绕 点转动时的转动惯量
(2)
无滑动时,杆绕 点转动,杆上各点做圆周运动,对质心 ,由牛顿运动定律得
(3)
(4)
杆绕 点转动,只有重力作功,机械能守恒,有
得
(5)
将式(5)代入式(3),并利用式(2),得
(6)
将式(1)代入式(4),并利用式(2),得
分析滑块与细杆碰撞角动量守恒,由此求细杆转动的 ,此后,细杆受摩擦力矩作用转速逐渐减为零,由摩擦力矩,根据角动量定理即可求出时间 。
解(1)以杆和滑块为研究系统。由于碰撞时间极短,杆所受到的摩擦力矩远小于滑块的冲力矩,故可认为合外力矩为零,因此系统的角动量守恒,即
(1)
解得
(2)碰后杆在转动过程中所受的摩擦力矩为
第3章 刚体力学基础
一、目的与要求
1.确切理解描述刚体平动和定轴转动的基本物理定义及性质,并掌握角量与线量的关系。
分析细杆滑动前以 点为轴在重力矩作用下转动,细杆质心做以 点为圆心的圆周运动,根据转动定律及质心运动定律即可求出 点摩擦力 与 角关系,细杆开始滑动的临界条件为 。
(1)
(2)
式中 为圆环对 轴的转动惯量,圆环绕过中心且垂直环面的轴的转动量为 ,根据垂直轴定理
(3)
由(1)~(3)式解得
(4)
(5)
取小珠、环及地球为系统,在小珠下落过程中,外力做功为零,系统中又无非保守内力做功,所以系统的机械能守恒。设小珠落至 、 处时,相对于环的速度分别为 、 ,则有
解无滑动时,杆绕过 点的固定轴做定轴转动,由转动定律有
(1)
由平行轴定理求细杆绕 点转动时的转动惯量
(2)
无滑动时,杆绕 点转动,杆上各点做圆周运动,对质心 ,由牛顿运动定律得
(3)
(4)
杆绕 点转动,只有重力作功,机械能守恒,有
得
(5)
将式(5)代入式(3),并利用式(2),得
(6)
将式(1)代入式(4),并利用式(2),得
分析滑块与细杆碰撞角动量守恒,由此求细杆转动的 ,此后,细杆受摩擦力矩作用转速逐渐减为零,由摩擦力矩,根据角动量定理即可求出时间 。
解(1)以杆和滑块为研究系统。由于碰撞时间极短,杆所受到的摩擦力矩远小于滑块的冲力矩,故可认为合外力矩为零,因此系统的角动量守恒,即
(1)
解得
(2)碰后杆在转动过程中所受的摩擦力矩为
第3章 刚体力学基础
一、目的与要求
1.确切理解描述刚体平动和定轴转动的基本物理定义及性质,并掌握角量与线量的关系。
理论力学第三章 刚体力学-3
3、求 a1 (转动加速度 ) d总 a1 r dt d总 d di 其中, (ctgi ) ctg
dt
h h 2 ctg cos 2k ctg sin 2i cos cos 2h (cos2k sin 2i ) sin
1
1 I mR 2 2
平行轴定理
I I c md
2
叙述:刚体对某一轴线的转动惯量,等于对通过质 心的平行轴的转动惯量加上刚体的质量与两 轴间垂直距离平方的乘积。
2、对定点转动惯性的大小,由于转轴的方向不断变 化,要用一个张量才能描述。 z
I xx 1 惯量张量: I yx I zx I xy I yy I zy I xz I yz I zz
N
O
y
x
§3.7 转动惯量
一、定点转动刚体的动量矩 动坐标系oxyz
z
i
设 Pi 为刚体上任一质点,该质点对定点 o的动量矩为
i
ri mii
整个刚体对同一点o的动量矩为
n J ri mii
i 1 n
o
x
ri
y
mi ri ri
2
h 2 h 2 2 大小: a1 ( ) [cos 2 sin 2 ] sin sin
2 2
2h 所以: a1 sin
3、求 a2(向轴加速度 )
a2 总 (总 r )
h h 其中,总 r ctgi ( cos 2i sin 2k ) cos cos h ctg sin 2j cos cos h 2 sin cosj sin cos 2h cosj a2 总 (总 r ) (ctgi ) (2h cosj ) 2 2 cos 2 h k sin 2 cos 2 所以: a2 a2 2 h sin
理论力学03刚体力学
的作用效果将改变!
力系的简化1
对于共点力:利用平行四边形法则进行矢量合成;
对于不共点但作用线相交的力,可以都滑移到交点处,
理 再利用共点力合成。
论 力
学 F2
F2
F12
F12
F12
F合
刚 体
F3
F3
力 学
F1
F1
F3
F3
A
FA
B FB
?
力偶(couple)
力偶:作用在同一物体上,大小相等、方向相反、又不
理
论 力
判断对错
学 一个转动的定长矢量对于时间的变化率,等于该矢量转
动的角速度矢乘该矢量本身。
刚 体 力 学
vdrrr
欧勒公式 泊松公式
dt
diˆ iˆ dˆj ˆj dkˆ kˆ
dt
dt
dt
角加速度
角加速度(Angular acceleraton):
d
理 单位: rad / s2
M AB F
两力间的垂直距离:力偶臂
力偶矩
力偶矩:是力与力偶臂的乘积。力偶矩是力偶唯一的力
学效果。
理 论
M BA FA AB FB
力
垂直于力偶面,遵从右手螺旋法则。
学
为自由矢量,可以作用在力偶面内的任意一点。
刚 体 力 学
F
M
F
F
A FA
M
F
多个共面力偶 可以进行力偶 矩合成,不受 作用点限制! (与力有别)
dt
论
力
方向: 转动瞬轴的改变方向
学
线加速度:
a
dv
又:
v
r
刚 体 力 学
理论力学第三章刚体力学
理论力学
电子科技大学物理电子学院 付传技
Em以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
确定刚体在空间的位置,需要几个变量?
B A
C 6个变量可以确定刚体位置
2. 刚体运动的分类 1)平动
平动的独立变量为三个
2)定轴转动
定轴转动的独立变量只有一个
世界最大的摩天轮——“伦敦眼”
3)平面平行运动
平面平行运动的独立变量有三个
4)定点转动
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
转动不改变位矢的长度,所以
rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ
由rˆ的任意性可得 AˆT Aˆ=1ˆ
这表明Aˆ的逆矩阵就是其转置。
这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
或a a
电子科技大学物理电子学院 付传技
Em以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
确定刚体在空间的位置,需要几个变量?
B A
C 6个变量可以确定刚体位置
2. 刚体运动的分类 1)平动
平动的独立变量为三个
2)定轴转动
定轴转动的独立变量只有一个
世界最大的摩天轮——“伦敦眼”
3)平面平行运动
平面平行运动的独立变量有三个
4)定点转动
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
转动不改变位矢的长度,所以
rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ
由rˆ的任意性可得 AˆT Aˆ=1ˆ
这表明Aˆ的逆矩阵就是其转置。
这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
或a a
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.冲量矩,角动量 2.角动量定、 角动量守恒 (相当动量定理)
§3.1 刚体运动的描述
§3.2 力矩的瞬时效应——刚体的转动定理 §3.3 力矩的时间累积效应——刚体的角动量定理
§3.3.1 质点的角动量及守恒定律 §3.3.2 质点系的角动量及守恒定律
§3.3.3 刚体的角动量及守恒定律
§3.4 力矩的空间累积效应——刚体的机械能守恒定律
j
i
ri O f ij rj
Fi
i
i
将上式两边同时乘以ri
i
y
j
Fi ri sin i f ij ri sin i mi ri 2
j
x
利用矢量矢积的定义有
2 ri Fi ri f ij mi ri
j
2 ri Fi ri f ij mi ri
M o
Mo r F
r
F
力矩的大小:
M Fr sin Fd
d
方向:
r F
力 F对 过O 点的Z轴的力矩 M z
MO M z M r F ( ri rz ) ( F Fz ) ( ri F ) ( rz F ri Fz )
任意形状刚体绕固定轴转动,将刚体看作质点系。设位矢为 ri
的质点mi受到质点j的内力为 f ij ,受到合外力为 Fi
mi : 切向方向
由牛顿第二定律
2、绕固定轴转动的刚体转动定理
(转动平面内)
z
Fi sin i f ij sin i mi ai mi ri
§3.2.2 刚体转动惯量的求解
1. 质量离散分布刚体
I=Δmi ri2 即:刚体的转动惯量等于刚体上各质点的质量乘以它 到转轴距离的平方的总和。
2. 质量连续分布刚体
I r 2dm
式中: r为刚体上的质元dm到转轴的距离。
3. 转动惯量的平行轴定理:
Ic
c
I l rc l
o
I I c ml 2
Ic 通过刚体质心的轴的转动惯量
m 刚体系统的总质量 l 两平行轴(o,c)间的距离
r
证明:首先,绕固定轴转动的刚体模型都可以转化为图示模型, 因为只有垂直于转轴的作用力才对刚体转动状态的变化有影响。 2 因 I r dm ( r r )dm V V 2 ( rc l )(rc l )dm ( rc 2l rc l 2 )dm V V 2 I c ml 2l rc dm =0 V rc rc dm / m 考虑到质心坐标的求解方法
B. 已知刚体转动状态求刚体所受力矩 C. 已知刚体部分转动状态和部分力矩求解未知 力矩和未知转动状态。
例3:质量m1=24kg的匀质圆盘可绕水平光滑轴转动,一轻绳缠 绕于盘上,另一端通过质量为m2=5kg的具有水平光滑轴的圆 盘形定滑轮后挂有m=10kg的物体。
求:物体m由静止开始下落h=0.5m时,物体的速度及绳的张力
I r dm
2 V
离散体
I mi ri
i
2
(r或ri是质点到转轴的垂直距离) B.关于绕定轴转动的转动定律 刚体绕定轴转动定律的地位等同于平动问题中的牛顿第二定律,
适于研究刚体转动的瞬时效应;对于有固定转轴的刚体转动,
转动定理可以写为标量式,此时,外力、位矢应当分解到与转 轴垂直的平面内。适用条件:惯性系
平动的特点
刚体中各质点的运 动情况相同
rA rB AB
d AB 0 dt
A
A
A
B
AB 常矢量
B
B
v A vB
a A aB
结论: 刚体的平动可归结为质点运动
(2) 刚体的转动
如果刚体内的每个质点都绕同一直线(转轴)作圆周运动, 这种运动便称为转动。 转轴固定不动定轴转动。
解:各物体受力情况如图所示 1 m1: T1 R m1 R 2 1 2 1 m2: T2 r T1r m2 r 2 2 2 m: mg T2 ma
1 m1
T1
T1 r m2
2 T2 m
R
a R1 r 2, 2ah
2
解联立方程,代入数据,可得
2m / s,T1 48 N,T2 58 N
(2). 定轴转动的描述
r r 2 an r an a r a r
任一质点圆周运动的线量和角量的关系
加速
z
r
减速
转动平面
dv d (ω r ) dω dr a r ω β r ω v dt dt dt dt
第3章 刚体力学
刚体运动学
瞬时效应
1. 建立物理模型 ——刚体模型 1.保持转动状态 2. 引入角参量对 的原因 刚体运动进行描述 2. 改变转动状态 的原因 3. 刚体转动定律 (相当牛二律)
内容结构
刚体动力学
时间累积
空间累积
1.力矩作功、转 动动能、势能 转动动能定理 转动势能定理 (与平动对应) 2.机械能守恒
则质点对o点的角动量(也称动量矩)为
L r p r ( m )
L
o
角动量 L 的大小
(1). 刚体的平动
质点模型 运用质心运动定理 (2). 刚体的定轴转动
利用刚体的模型(无形变)
化简角动量定理 功能原理 方便的形式
动量守恒 能量守恒 角动量守恒
§3.2 力矩的瞬时效应——刚体的转动定理
§3.2.1 绕固定转轴的刚体转动定理
1. 改变物体转动状态的原因——力矩 力 F 对 O 点的力矩
若角加速度 =c(恒量),则有
o t
o 2
2 2
1 2 o t t 2
4. 解决刚体动力学问题的一般方法
A. 将刚体看作刚性连接的特殊质点、质点系,以质点、质点 系的运动规律来研究刚体的转动规律。 B. 将一般刚体运动看作平动和转动的组合,而转动又看作绕 固定转轴转动的组合。
i i
上式成为
2 M i mi ri
当微元趋于无限小时
V
2 M r dm
V
绕定轴转动的转动定理 M I
定义转动惯量 I r 2dm
F ma
讨论:A.关于转动惯量
M I
M I
转动惯量的物理意义:保持刚体原有转动状态的原因, 是转动惯性的量度。 转动惯量的求法: 连续体
j
z
考虑整个刚体 2 ri Fi ri f ij mi ri
i i j i
i
ri O f ij rj
Fi
i
i
i
y
j
0 考虑刚体中所有质点、力矩的定义以及内力
x
ri f ij rj f ji
z Fz
Oi h
F
对于转轴z, M z ri F
M z ri F sin Fh
讨论:A. 力矩是使物体转动状态发生改变的 原因(相当于平动问题中的合外力)
ri
r
y
F
rz
O
x
B.对定轴转动, (1)只有在转动平面内的力才会产生力 矩,平行于转轴的力是不会产生力矩的; (2)力矩的方 向沿转轴。
3. 刚体的定轴转动
(1). 定轴转动特征 A. 刚体上各点都在垂直于固定轴的平 面内(转动平面)做圆周运动,其圆心都 在一条固定不动的直线(转轴)上.
z
1
O1
m1
m2
x
2
O2
x
B. 定轴转动刚体上各质点的线量(速度、加 速度)不同; 但各质点的角量(如角位移、角速度和角 加速度)相同。
§3.1 刚体运动的描述
1. 刚体 运动中形状和大小都保持不变的物体。 —— 理想化模型 (a)刚体上各质点之间的距离保持不变。 (b)刚体有确定的形状和大小。 (c)刚体是由许多质点(质元)组成的质点系。
2. 刚体的一般运动 = (平动)+(转动) (1) 刚体的平动 刚体运动时,若在刚体内所作的任 一条直线都始终保持方向不变,则 刚体做平动。
M
R
0
m 2 r g 2 2rdr mgR R 3
转动惯量 于是得
1 I mR 2 2
M 4 g I 3R
o
r
水平桌面
dr
0 t 0,得
0 t 0
o 3 R O t 4 g
4g 3R
2m
C o
若棒绕一端o转动,由平行轴定理, 则转动惯量为
dm x dx
x
o
l 2 1 2 1 2 I o ml m ( ) ml 3 2 12
一些常见物体的转动惯量
§3.2.3
绕定轴转动的转动定理的应用
刚体转动定律的应用与平动问题中牛顿定律的应用完全相似 主要类型:
A. 已知刚体所受力矩求刚体转动状态
V
例题1 (1)轻杆连成的正三角形顶点各有一质点m,此系 统对通过质心C且垂直于三角形平面的轴的转动惯量为
3 l) 3
I c 3 mr ml , ( r