八年级数学上册 12.4.1 单项式除以单项式教案 (新版)华东师大版
八年级数学上册 12.4.1 单项式除以单项式教案 (新版)华东师大版
单项式除以单项式教学内容教科书P.39——P.40的内容教学目标知识与技能:理解单项式除以单项式算理,能进行单项式除以单项式运算;过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力;情感态度与价值观:培养良好的合作意识,发展数学思维,体会数学的实际价值。
教学分析重点:掌握整式除法运算法则,并学会简单的整式除法运算。
难点:理解和体会单项式除以单项式的法则。
关键:通过整式乘法,类比数的运算,迁移到整式除法运算。
教学过程一.创设情境,复习导入前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.(l)叙述同底数幂的除法性质.(2)计算:(1)(2)(3)(4)学生活动:学生回答上述问题.(,m,n都是正整数,且m>n)通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.二.指出问题,引出新知问题地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)分析本题只需做一个除法运算:(1.9×1027)÷(5.98×1024),我们可以先将 1.9除以5.98,再将1027除以1024,最后将商相乘.答:木星的重量约是地球的318倍.学生讨论:(1)计算(1.9×1027)÷(5.98×1024)的依据是什么?(2)你能利用(1)中方法计算下列各式吗?①②③ 12(2)你能根据(2)说一说单项式除以单项式的运算法则吗?学生总结,教师归纳:单项式除以单项式法则:单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式式里含有的字母,则连同它的指数作为商的一个因式。
三.范例学习例1 计算(1)(2)-21 (3)教师活动:先讲解例1中的(1)教会书写格式,然后再由学生自己完成(2),(3),请学生上台演示.学生活动:独立完成例题,然后再与课本相对.评析:注意==1,字母c只在被除式中出现,结果它仍保留在商中.课堂演练:计算:(1)28 (2)15教师活动:板书,引导学生练习,巩固概念,要求学生讲出每一步的依据.学生活动:完成(1)、(2)再上台演示,交流.思考:你能用a-b的幂表示下列结果吗?12学生活动:将a-b看成底数.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
八年级数学上册12.4.1单项式除以单项式教案(新版)华东师大版
单项式除以单项式)()()===a ab b a b a b,4,263c abc÷=____;1a a a=;÷=a a;b bc÷(2),某种汽车的限载量为5⨯第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
难点:注意字的结构和笔画的书写。
华东师大版八年级上册数学教学设计《12.4.1单项式除以单项式》
华东师大版八年级上册数学教学设计《12.4.1单项式除以单项式》一. 教材分析华东师大版八年级上册数学《12.4.1单项式除以单项式》是学生在学习了单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的基础上,进一步学习单项式除以单项式的知识。
这一节内容是代数式的基本运算之一,对于学生掌握代数式的运算法则、提高解决实际问题的能力具有重要意义。
二. 学情分析八年级的学生已经掌握了单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算方法,对于单项式除以单项式的运算,学生可能存在以下难点:1.理解单项式除以单项式的运算规则。
2.熟练运用乘法分配律进行计算。
三. 教学目标1.知识与技能目标:理解单项式除以单项式的运算规则,能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,树立自信心。
四. 教学重难点1.教学重点:单项式除以单项式的运算规则。
2.教学难点:理解并熟练运用乘法分配律进行计算。
五. 教学方法采用“问题驱动法”和“小组合作学习法”,引导学生主动探究单项式除以单项式的运算规则,通过小组合作、讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:某商店进行打折活动,原价为1000元的商品打8折,问打折后的价格是多少?引导学生思考如何用数学知识解决这个问题。
2.呈现(10分钟)通过PPT呈现单项式除以单项式的运算规则,引导学生回顾已学的单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算规则,为新知识的学习做好铺垫。
3.操练(10分钟)让学生进行单项式除以单项式的计算练习,教师巡回指导,及时发现并纠正学生的错误。
4.巩固(10分钟)通过PPT展示一些巩固题,让学生独立完成,然后集体讲解答案,加深学生对单项式除以单项式运算规则的理解。
八年级数学上册124整式的除法1单项式除以单项式教案华东师大版
12.4.1 单项式除以单项式教学目标:1、使学生掌握单项式除以单项式的方法,并且能运用方法熟练地进行计算.2、培养学生应用数学的意识.重点难点:重点:单项式除以单项式方法的总结以及运用方法进行计算.难点:运用方法进行计算.教学过程:一、复习提问:①、叙述并写出幂的运算性质及怎样用公式表示?②、叙述单项式乘以单项式的法则③、叙述单项式乘以多项式的法则.④、练习x6÷x2= ,(—b)3÷b = 4y2÷y2 = (-a)5÷(-a) 3=y n+3÷y n = , (-xy) 5÷(-xy)2 = ,(a+b)4÷(a+b)2= ,y9 ÷(y4 ÷y) = ;二、创设问题情境问题:地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)解(1.9×1027)÷(5.98×1024)=(1.9÷5.98)×1027-24≈0.318×103=318.答:木星的重量约是地球的318倍.教师提问:对于一般的两个单项式相除,这种方法可运用吗?概括:两个单项式相除,只要将系数及同底数幂分别相除就可以了三、例题与练习例1计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)-21a2b3c÷3ab.分析:对于(1)、(2),可以按两个单项式相除的方法进行;对于(3),字母c只在被除数中出现,结果仍保留在商中.说明:解题的依据是单项式除法法则,计算时,要弄清两个单项式的系数各是什么,哪些是同底数幂,哪些是只在被除式里出现的字母,此外,还要特别注意系数的符号.由学生归纳小结如:一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的一个因式.练习1:计算:(1)(2)练习2:计算:课本第40页练习例2:计算:练习:计算(1)(2)教学小结:单项式除以单项式,有什么方法?布置作业:习题12.4 第1题的(1)、(2)、(3)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在Rt △ABC 中,∠ACB=90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,若∠A=26°,则∠CDE 度数为( ).A .45°;B .64° ;C .71°;D .80°.【答案】C 【分析】由折叠的性质可求得∠ACD=∠BCD ,∠BDC=∠CDE ,在△ACD 中,利用外角可求得∠BDC ,则可求得答案.【详解】由折叠可得∠ACD=∠BCD ,∠BDC=∠CDE ,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:C.【点睛】考查三角形内角和定理以及折叠的性质,掌握三角形的内角和定理是解题的关键.2.点()23P -,关于y 轴的对称点的坐标是( ) A .(2,-3)B .(-2,-3)C .(-2,3)D .(-3,2)【答案】B【分析】根据关于y 轴的对称点的点的特点是保持y 不变,x 取相反数即可得出. 【详解】根据关于y 轴的对称点的点的特点得出,点()23P -,关于y 轴的对称点的坐标是(-2,-3) 故答案选B .【点睛】本题考查了坐标点关于y 轴对称点的坐标,属于坐标轴中找对称点的基础试题.3.下列命题中为假命题的是( )A .两直线平行,内错角相等B .对顶角相等C .两个锐角的和是钝角D .如果a 是整数,那么a 是有理数【答案】C 【分析】根据平行线的性质可判断A 项,根据对顶角的性质可判断B 项,举出反例可判断C 项,根据有理数的定义可判断D 项,进而可得答案.【详解】解:A 、两直线平行,内错角相等,是真命题,故本选项不符合题意;B 、对顶角相等,是真命题,故本选项不符合题意;C 、两个锐角的和不一定是钝角,如20°和30°这两个锐角的和是50°,仍然是锐角,所以原命题是假命题,故本选项符合题意;D 、如果a 是整数,那么a 是有理数,是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、平行线的性质、对顶角的性质和有理数的定义等知识,属于基础题型,熟练掌握上述基本知识是解题的关键.4.下列长度的三条线段能组成三角形的是( )A .3,4,8B .2,5,3C .52,72,5D .5,5,10 【答案】C【解析】选项A ,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B ,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C ,52+72>5,根据三角形的三边关系可知,能够组成三角形;选项D ,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.5.如图,在等边ABC ∆中,BD CE =,将线段AE 沿AC 翻折,得到线段AM ,连结EM 交AC 于点N ,连结DM 、CM 以下说法:①AD AM =,②60MCA ∠=︒,③2CM CN =,④MA DM =中,正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】由△ABD ≌△ACE ,△ACE ≌△ACM ,△ABC 是等边三角形可以对①②进行判断,由AC 垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段AE沿AC翻折,∴AE=AM,∠CAE=∠CAM,∴AD AM=,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM =60°,∴∠CMN=30°,∴在Rt△CMN中,12=CN CM,即2CM CN=,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM +∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴MA DM=故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.6.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.7.如图,∠MON=600,且OA平分∠MON,P是射线OA上的一个点,且OP=4,若Q是射线OM上的一个动点,则PQ的最小值为().A.1 B.2 C.3 D.4【答案】B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,然后利用30°角对应的直角边等于斜边的一半进一步求解即可.【详解】当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,∠MON=60°∴∠AOQ=30°∵ PQ⊥OM,OP =4,∴OP=2PQ,∴PQ=2,所以答案为B选项.【点睛】本题主要考查了垂线段以及30°角对应的直角边的相关性质,熟练掌握相关概念是解题关键.8.视力表中的字母“E”有各种不同的摆放方向,下列图中两个“E”不成..轴对称的是()A.B.C.D.【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A 选项中两个“E ” 成轴对称,故本选项不符合题意;B 选项中两个“E ” 成轴对称,故本选项不符合题意;C 选项中两个“E ” 成轴对称,故本选项不符合题意;D 选项中两个“E ” 不成轴对称,故本选项符合题意;故选D .【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.9.如图,AC 和BD 相交于O 点,若OA=OD ,用“SAS”证明△AOB ≌△DOC 还需()A .AB=DCB .OB=OC C .∠C=∠D D .∠AOB=∠DOC【答案】B【解析】试题分析:在△AOB 和△DOC 中,{OA ODAOB DOC OB OC=∠=∠=,∴△AOB ≌△DOC (SAS ),则还需添加的添加是OB=OC ,故选B.考点:全等三角形的判定.10.已知直线y =-x +4与y =x +2如图所示,则方程组42y x y x =-+⎧⎨=+⎩的解为()A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .40x y =⎧⎨=⎩【答案】B 【解析】二元一次方程组42y x y x =-+⎧⎨=+⎩的解就是组成二元一次方程组的两个方程的公共解,即两条直线y =-x +4与y =x +2的交点坐标13x y =⎧⎨=⎩. 故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.二、填空题11.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.【答案】 (-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).12.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.【答案】t=﹣0.006h+1【解析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+1,故答案为:t=﹣0.006h+1.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.13.若3m a =,7n a =,则m n a +=_________.【答案】21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【详解】解:3721n n m m a a a +=•=⨯=,故答案为:21.【点睛】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.14.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.【答案】y=-x-1 ,满足()y=ax+a a 0<即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足a 0< ,再代入(-1,0)求出a 和b 的等量关系即可.【详解】设一次函数解析式()y=ax+b a <0代入点(-1,0)得0=-a+b ,解得()a=b a 0<所以()y=ax+a a 0<我们令a=-1y=-x-1故其中一个符合条件的一次函数解析式是y=-x-1.故答案为:y=-x-1.【点睛】本题考察了一次函数的解析式,根据题意得出a 和b 的等量关系,列出其中一个符合题意的一次函数解析式即可.15.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC =_____.【答案】75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.16.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:2S甲_____2S乙(填“>“或“<”).【答案】<【分析】方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断即可.【详解】解:由图可得,甲10次跳远成绩离散程度小,而乙10次跳远成绩离散程度大,∴2S甲<2S乙,故答案为:<.【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】1【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画1个三角形,故答案为:1.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.三、解答题18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?【答案】(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:2050×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:150×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.19.在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10斤A级别和20斤B级别茶叶的利润为4000元,销售20斤A级别和10斤B级别茶叶的利润为3500元(1)分别求出每斤A级别茶叶和每斤B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200斤用于出口.设购买A级别茶叶a斤(70≤a≤120),销售完A、B两种级别茶叶后获利w元.①求出w与a之间的函数关系式;②该经销商购进A、B两种级别茶叶各多少斤时,才能获取最大的利润,最大利润是多少?【答案】(1)一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元;(2)①w =-50a+1;②购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【分析】(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.【详解】解:(1)设一斤A级别的茶叶的销售利润为x元,一斤B级别茶叶的销售利润为y元由题意得:10+204000 20+103500x yx y=⎧⎨=⎩解得:10150 xy=⎧⎨=⎩答:一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元.(2)①由题意得,w=100a+150(200-a)=-50a+1.②∵-50<0∴w的值随a值的增大而减小∵70≤a≤120,∴当a=70时,w取得最大值,此时w=26500,200-70=2.所以,购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【点睛】本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.20.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.【答案】70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.21.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:(2)如图所示:点P即为所求.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.22.计算(1)18631272(2)5-2)2﹣13132)【答案】(1)323;(2)45-【分析】(1)先把各项化为最简二次根式,然后合并同类二次根式即可;(2) 利用完全平方公式及二次根式的混合运算法则进行计算即可.【详解】解:(1)原式=2×2622⨯+3 22+3 =323;(2)原式=(5﹣54)﹣(13﹣4)=5﹣54﹣13+4=﹣5【点睛】本题主要考查了二次根式的混合运算,二次根式的性质与化简..理解二次根式的性质、以及二次根式的加减乘除运算法则是解答本题的关键.23.如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D(1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.【答案】(1)证明见解析;(2)4.【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.24.(1)计算: ((323-6236-21224⨯; (2)解方程:23211x x x x ++=-- . 【答案】(1)632-;(2)无解.【分析】(1)利用平方差公式,二次根式的乘法和除法进行计算,然后合并同类项,即可得到答案;(2)先去分母,然后去括号,移项合并,系数化为1,求出方程的解,再通过检验,即可得到答案.【详解】解:(1)原式=2232(23)(6)43--⨯⨯ =12632--=632-;(2)23211x x x x ++=-- ∴2232x x x x +-=+,∴33x =,∴1x =;检验:当1x =时,20x x -=,∴1x =是增根,∴原分式方程无解.【点睛】本题考查了二次根式的混合运算,二次根式的性质,平方差公式,以及解分式方程,解题的关键是掌握运算法则进行解题.25.如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF ⊥DE 于点F .(1)求证:△ACD ≌△BEC ;(2)求证:CF 平分∠DCE .【答案】(1)详见解析;(2)详见解析.【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出△ACD ≌△BEC ;(2)根据全等三角形性质推出CD =CE ,根据等腰三角形性质即可证明CF 平分∠DCE .【详解】(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,∵=AD BC A B AC BE =⎧⎪∠∠⎨⎪=⎩,∴△ACD ≌△BEC (SAS ),(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF ⊥DE ,∴CF 平分∠DCE .【点睛】本题主要考查三角形的判定定理和性质定理以及等腰三角形的性质定理,掌握SAS 判定三角形全等,是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知是正比例函数,则m的值是()A.8 B.4 C.±3 D.3【答案】D【解析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)x m2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为2.2.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a1-1b(a-b)-b1=a1-1ab+b1=(a-b)1,∴(a-b)1=a1-1ab+b1.故选B3.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是()A.5m B.10m C.15m D.20m【答案】C【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.【详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).故选C.【点睛】本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.4.若分式211aa--有意义,则a满足的条件是()A.a≠1的实数B.a为任意实数C.a≠1或﹣1的实数D.a=﹣1 【答案】A【解析】根据分式有意义的条件进行求解即可得.【详解】解:∵分式2a1a1--有意义,∴a﹣1≠0,解得:a≠1,故选A.【点睛】本题考查了分式的意义的条件,熟知分母不为0时分式有意义是解题的关键.5.下列计算正确的是()A.(a2)3=a5B.10ab3÷(﹣5ab)=﹣2ab2C.(15x2y﹣10xy2)÷5xy=3x﹣2yD.a–2b3•(a2b–1)–2=6 6 b a【答案】C【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】解:A 、(a 2)3=a 6,故错误;B 、10ab 3÷(-5ab )=-2b 2,故错误;C 、(15x 2y-10xy 2)÷5xy=3x-2y ,故正确;D 、a -2b 3•(a 2b -1)-2=65ba ,故错误;故选C. 【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键. 6.下列美丽的图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 7.要使分式242x x -+有意义,则x 的取值范围是( )A .2x ≠-B .2x =C .2x =-D .2x ≠±【答案】A【分析】分式有意义的条件是分母不能为0即可.【详解】要使分式22-4x x +有意义,分母不为0,即x+1≠0,∴x≠-1,则x 的取值范围是x≠-1.故选择:A .【点睛】本题考查分式有意义的条件问题,掌握分式有意义就是满足分母不为0,会解不等式是关键. 8.无论x 取什么数,总有意义的分式是( )A .341x x + B .2(1)x x + C .231x x + D .22x x - 【答案】C 【分析】按照分式有意义,分母不为零即可求解.【详解】A .341x x +,x 3+1≠1,x ≠﹣1; B .21x x ()+,(x+1)2≠1,x ≠﹣1; C .231x x +,x 2+1≠1,x 为任意实数; D .22x x-,x 2≠1,x ≠1. 故选C .【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.9.某校八(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是( )A .38B .39C .40D .42 【答案】B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为38402+=39, 故选:B .【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.10.如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则:ED BC 等于( )A .3:2B .3:1C .1:2D .1:1【答案】C 【分析】由题意根据题意得出△DEF ∽△BCF ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,∴AD ∥BC ,∴△DEF ∽△BCF ,∵点E 是边AD 的中点,∴AE=ED=12AD=12BC , ∴:ED BC =1:2. 故选:C .【点睛】本题主要考查平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF 是解题关键.二、填空题11.如图,在Rt ABC ∆中,90,1BAC AB AC ∠=︒==,点P 是边AB 上一动点(不与点A B 、重合),过点P 作BC 的垂线交BC 于点D ,点F 与点B 关于直线PD 对称,连接AF ,当AFC ∆是等腰三角形时,BD 的长为__________.【答案】242-1 【分析】由勾股定理求出BC ,分两种情况讨论:(1)当AF CF = ,根据等腰直角三角形的性质得出BF 的长度,即可求出BD 的长;(2)当CF CA = ,根据BF BC CF =- 求出BF 的长度,即可求出BD 的长.【详解】∵等腰t R ABC 中,1AB AC ==∴23BC = 分两种情况 (1)当AF CF =,45FAC C ==︒∠∠∴90AFC ∠=︒∴AF BC ⊥∴122BF CF BC === ∵直线l 垂直平分BF∴1224BD BF == (2)当12CF CA ==,21BF BC BF =-=- ∵直线l 垂直平分BF∴12122BD BF -== 故答案为:24或2-1. 【点睛】 本题考查了三角形线段长的问题,掌握勾股定理以及等腰直角三角形的性质是解题的关键.12.已知平行四边形ABCD 中,10AB cm =,8BC cm =,30ABC ∠︒=,则这个平行四边形ABCD 的面积为_____2cm .【答案】40【分析】作高线CE ,利用30︒角所对直角边等于斜边的一半求得高CE ,再运用平行四边形的面积公式计算即可.【详解】过C 作CE ⊥AB 于E ,在Rt △CBE 中,∠B=30︒,8BC =, ∴142CE BC =⨯=, 10440ABCD S AB CE ==⨯=.故答案为:40.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用 “30︒角所对直角边等于斜边的一半”求解.13.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.14.分解因式:3m 2﹣6mn+3n 2=_____.【答案】3(m-n )2【解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n - 15.计算:2323a b c ⎛⎫-= ⎪⎝⎭____________. 【答案】62249a b c【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果. 【详解】332232262222222(2)(2)()4()3(3)(3)9a b a b a b a b c c c c ---===, 故答案为:62249a b c 【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.16.在实数范围内分解因式:2225x x --=____.【答案】1111112()()22x x ---+ 【分析】将原式变形为21112()22x --,再利用平方差公式分解即可得. 【详解】2225x x -- =21112()42x x -+- =21112()22x -- =21112()24x ⎡⎤--⎢⎥⎣⎦111111=2()()2222x x ---+, 故答案为:1111112()()2222x x ---+. 【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.17.如图,在四边形ABCD 中,AD ∥BC ,AD =5,BC =18,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间t 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形,则t 的值为_____.【答案】2秒或3.5秒【分析】由AD ∥BC ,则PD=QE 时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形,①当Q 运动到E 和C 之间时,设运动时间为t ,则得:9-3t=5-t ,解方程即可;②当Q 运动到E 和B 之间时,设运动时间为t ,则得:3t-9=5-t ,解方程即可.。
《单项式除以单项式》教学设计
《单项式除以单项式》教学设计《单项式除以单项式》教学设计陵水县文罗初级中学吴女元教材分析:本堂课是初中数学八年级(上)(华东师大版)第十二章《整式的除法》的第一课,学生刚接触过《幂的运算》与《整式的乘法》,在这个基础上学生学起来就没那么困难。
学情分析:由于所教的班级基础一般,所以我根据学生的实际情况设计导学案,使学生使学生更易懂,易学。
学习目标:1.理解单项式除以单项式的意义和运算法则.2.能熟练进行单项式除以单项式的除法运算.3.发展数学思维,体会数学的实际价值.学习重点:单项式相除的运算法则.学习难点:熟练运用单项式相除的除法法则.教学准备:导学案自主合作与探究学习:复习回顾,巩固旧知1.单项式乘以单项式的法则2.同底数幂的除法法则3、根据单项式乘以单项式法则填空:(1)·=;(2)·=根据乘除法的互逆关系填空:(1)÷=(2)÷=4、仔细观察以上单项式除以单项式的结果,比对原式中各项的变化,你能体会怎样进行单项式除以单项式运算吗?归纳:单项式除以单项式,把与分别相除作为商的因式,对于只在被除数式里出现的字母,则连同它的指数一起作为商的一个因式。
简单理解:单项式与单项式相除,系数相除,相同字母的幂相除,剩下的保留下来。
交流展示:1、你能利用上面的方法计算下列各式吗?①②③2、计算(计算过程中应注意什么)①②③3、思考:你能用的幂表示的结果吗?课堂巩固:1、填表:被除式除式商2.下列计算中,正确的是().A.B.C.D.3、已知那么m=;.总结:反馈本节课,你学到了什么,收获了什么?。
12.4.1 单项式除以单项式 说课稿-华东师大版八年级数学上册
1、尝试计算:
(1) (2)
(3) (4)
2、典例分析
你会计算 吗?和你的同伴交流一下。
复习导入→引导探究→法则归纳→法则应用→课堂小结→达标检测
评价设计
1、重过程评价:学习态度、积极性、学习习惯、纪律等过程性指标评价;
2、重结果评价:知识技能、方法与情感态度的发展。
3、评价项目:整体学习行为评价(小组),个性学习行为评价(个人)。
4、评价方式:语言激励(真情与导向)有的活动经验:学生在学习有理数除法的运算法则中,已经积累了探究除法法则的经验。
课程标准与学习目标设置
【课标要求】
无
【教学目标】
1、通过乘除法的互逆运算,探究单项式除以单项式的法则,体会整式运算之间的关系,培养学生的探究能力。积累除法运算法则探究的经验。
2、通过不同类型的练习,让学生掌握单项式除以单项式的法则并能用法则进行计算。培养学生的运算能力。
【学习目标】
1.能说出单项式除以单项式法则;会举例说明;
2.能运用单项式除以单项式法则进行计算。
四基三点
基础知识:单项式除以单项式法则
基本技能:能运用单项式除以单项式法则进行计算
基本思想:类比思想、转化思想
基本活动经验:经历单项式除以单项式的法则的探究,积累除法运算法则探究的经验。
重点:理解单项式除以单项式的除法法则,并正确应用
难点:正确、熟练地运用单项式除法法则进行运算
易错点:单项式与单项式相除结果中各项系数,字母指数的确定
重难点处理方法
由整式的乘法与除法互为逆运算,运用同底数幂的除法法则,将单项式乘以单项式转化成为单项式除以单项式,探索出单项式除以单项式的法则,并结合例题尝试总结应用。
《12.41单项式除以单项式》作业设计方案-初中数学华东师大版12八年级上册
《单项式除以单项式》作业设计方案(第一课时)一、作业目标本课时作业设计的目标是帮助学生巩固单项式除以单项式的概念,理解并掌握基本的运算法则,通过实际操作提高计算能力和逻辑思维能力,为后续的数学学习打下坚实的基础。
二、作业内容本课时的作业内容主要包括以下几个部分:1. 复习巩固:回顾单项式及单项式的基本概念,理解单项式的性质和特征。
2. 运算法则学习:学生需要学习和理解单项式除以单项式的运算法则,明确当进行单项式相除时应注意的事项,包括如何确定结果符号以及计算结果的系数和变量部分。
3. 基础练习:通过一系列的练习题,包括填空题和选择题,来巩固学生对运算法则的理解和掌握。
练习题难度由浅入深,从简单的同底数幂的除法开始,逐步增加到更复杂的运算。
4. 实际问题应用:设置一些与日常生活相关的实际问题,如通过单项式表示购物时商品的价格问题等,要求学生运用所学知识进行解答。
三、作业要求1. 学生需在理解运算法则的基础上,独立完成所有习题,不能抄袭或依赖他人。
2. 学生在完成习题后需自行检查答案,确保答案的准确性。
对于有疑问的题目,可记录下来,待课堂讲解时提问。
3. 实际问题的解答需结合生活实际,用所学知识进行合理的解释和计算。
4. 作业需按时提交,未按时提交者需说明原因并补交作业。
四、作业评价1. 教师将对每位学生的作业进行批改,对正确答案进行肯定和鼓励,对错误答案进行指导和纠正。
2. 评价标准包括对运算法则的理解程度、习题的完成度、答案的准确性和实际问题的解决能力等。
3. 对优秀作业进行展示和表扬,以激励学生继续努力学习。
五、作业反馈1. 教师将根据学生的作业情况,总结学生在学习过程中存在的共性问题,并在课堂上进行讲解和指导。
2. 对于个别学生的问题,教师将进行个别辅导和指导,帮助学生解决学习中的困惑。
3. 定期收集学生的作业反馈和建议,以便更好地调整教学策略和优化作业设计。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固和加深学生对单项式除以单项式法则的理解,提高学生运用该法则解决实际问题的能力,为后续的代数运算打下坚实的基础。
华师大版数学八年级上册《单项式除以单项式》教学设计
华师大版数学八年级上册《单项式除以单项式》教学设计一. 教材分析华师大版数学八年级上册《单项式除以单项式》是学生在掌握了单项式和多项式的知识基础上进行学习的内容。
本节课的主要任务是让学生掌握单项式除以单项式的运算法则,并能灵活运用到实际问题中。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经掌握了单项式和多项式的相关知识,具备了一定的数学基础。
但部分学生在运算方面可能还存在一定的困难,需要老师在教学中进行针对性的辅导。
此外,学生对于实际问题的解决能力也有待提高,需要老师通过实例进行引导和训练。
三. 教学目标1.知识与技能:掌握单项式除以单项式的运算法则,能正确进行计算。
2.过程与方法:通过实例分析,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:单项式除以单项式的运算法则。
2.难点:如何将实际问题转化为单项式除以单项式的形式,以及在不同情境下灵活运用运算法则。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过实例分析,让学生理解并掌握运算法则;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.教案:教师提前准备详细的教学计划和教案。
2.课件:制作课件,辅助教学。
3.练习题:准备适量的练习题,巩固所学知识。
4.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用实例引入单项式除以单项式的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示单项式除以单项式的运算法则,引导学生观察和思考。
3.操练(10分钟)让学生进行单项式除以单项式的计算练习,老师巡回指导,解答疑问。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和巩固,确保学生掌握运算法则。
5.拓展(10分钟)通过实际问题,引导学生将所学知识运用到解决问题中,提高学生的应用能力。
2020--2021学年华东师大版数学八年级上册 12.4.1 单项式除以单项式 教学设计
12.4 整式的除法第1课时单项式除以单项式●教学目标知识与技能单项式除以单项式的运算法则及应用.过程与方法经历探索单项式除以单项式的运算法则的过程,会进行单项式与单项式的除法运算.情感、态度与价值观从探索单项式除以单项式的运算法则的过程中,体会到成功的喜悦,积累研究数学问题的经验.●教学重点重点单项式除以单项式的运算法则及其应用.难点探索单项式除以单项式法则的过程.●教学过程一、创设情景,明确目标大家已经学过同底数幂的除法,下面再来计算几个题目:(1)1010÷102;(2)x6÷x3;(3)(-a)6÷(-a)2; (4)(x2)3÷x4.二、自主学习,指向目标1.自学教材.2.请完成《名师学案》“知识储备”部分内容.三、合作探究,达成目标探究点一单项式除以单项式的运算法则活动一:温故知新问题的提出.∵3x2y·2xy3=6x3y4.∴6x3y4÷3x2y=,①6x3y4÷2xy3=.②【展示点评】分析观察得出:两个单项式相除,只需将系数及同底数幂分别相除.再思考:-21a2b3c÷3ab.师:大家分析一下此题中对c该怎么办?生:留在商中.【小结归纳】一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.探究点二单项式除以单项式的运算法则运用活动二:应用新知解决例题例1计算(1)24a3b2÷3ab2;(2)-21a2b3c÷3ab;(3)(6xy2)3÷3xy.【针对训练】计算(1)-21a2b3÷7a2b;(2)-12a4x4÷(-16a3x2).活动三:继续探知计算:(am+bm)÷m【展示点评】就是要求一个式子,使它与m的积是am+bm.而我们知道它就是a+b,因此(am+bm)÷m=a+b;又am÷m+bm÷m=a+b,所以把多项式除以单项式转化我为单项式除以单项式来解决.例2计算(1)(9x4-15x2+6x)÷3x;(2)(28a3b2c+a2b3-14a2b2)÷(-7a2b).老师示范完成(法则的运用方法及作题格式)【针对训练】填表四、总结梳理,内化目标1.单项式与单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.五、达标检测,反思目标(1)计算A组:(1)-21a2b3÷7a2b.(2)-12a4x4÷(-16a3x2).B组:(1)a·a4÷a3.(2)(-6a2b5c)÷(-2ab2)2.(3)(-x)6÷(-x)2·(-x)3.学生独立完成,老师巡视指导和批改.发现问题及时讲评.●课后自测1.课后作业:《名师学案》“综合练·能力提升”部分.2.探索思考题:地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克,问木星的质量约是地球的多少倍?(结果保留三个有效数字)●教学反思本节课通过类比同底数幂的除法运算得到单项式除以单项式的除法法则.注意强调一点:即被除式中单独含有的字母应如何处理.。
华东师大初中八年级数学上册《单项式除以单项式》教案
单项式除以单项式教学目标1.单项式除以单项式的运算法则及其应用.2.经历探索单项式除以单项式的运算法则的过程,会进行单项式与单项式的除法运算.3.从探索单项式除以单项式的运算法则的过程中,体会到成功的喜悦,积累研究数学问题的经验.重点单项式除以单项式的运算法则及其应用.难点探索单项式除以单项式法则的过程.教学过程一、创设情景,导入新课我们知道“先看见闪电,后听到雷声”,那是因为在空气中光的传播速度是3×108 m/s,而声音在空气中的传播速度是3.4×102 m/s.在空气中光速是声速的多少倍?教师活动如何列式?学生活动(3×108)÷(3.4×102)?教师活动引导:∵(3.4×102)×=3×108,∴(3×108)÷(3.4×102)= .下面讲学习单项式除以单项式.二、师生互动,探究新知教师活动观察并填空:1.问题的提出.∵3x2y·2xy3=3x3y4∴6x3y4÷3x2y= ①6x3y4÷2xy3= ②分析观察得出:两个单项式相除,只需得及分别相除.2.再思考:-21a2b2c÷3ab.大家分析一下此题中对c该怎么办?学生活动完成填空并及时思考单项式除以单项式的法则,讨论交流并选代表发言.教师活动在同学们发言基础上归纳:单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,连同它的指数一起作为商的一个因式.三、随堂练习,巩固新知(1)(6ab2)3÷3ab÷4a;(2)ab(x+y)8÷[a(x+y)6].四、典例精析,拓展新知例1 计算下列各题(1)(x2y)·(x3y4)÷(x4y3);(2)(4x n+2y n)2÷[(-xy)2]n(n为正整数).分析单项式的乘除混合运算从左到右,按法则计算,有乘方先算乘方.教学说明通过单项式的乘除混合运算进一步巩固单项式乘除的法则,提高基本运算能力.例2若等式( )÷4n=62n成立,则括号内的代数式是.分析根据除法是乘法的逆运算,得( )=62n·4n=62n·22n=122n.教学说明提高逆向思维能力.五、运用新知,深化理解1.若a2m+n b n÷a2b2·a n b=a4b,求m、n的值;2.计算(2x2y)3·(-7xy2)÷(14x4y3).六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言基础上教师归纳总结.单项式相除系数相除同底数幂相除只在被除式里出现的字母的幂不变。
八年级数学上册 第12章 整式的乘除 12.4 整式的除法 1 单项式除以单项式教案 (新版)华东师
单项式除以单项式
填表
计算
(1)28x4y2÷7x3y
-5a5b3c÷15a4b
【拓展提升】
写出下列幂的运算公式的逆向形式,完成后面的题目
m-n
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
12.4.1 单项式除以单项式课件(20张PPT) 华东师大版八年级数学上册
12.4 整式的除法
1.单项式除以单项式
素养目标
1.知道单项式除以单项式的运算法则,会进行单项式除以单
项式的运算.
2.知道用类比数字的除法及同底数幂的乘法理解整式的除法.
◎重点:整式的除法运算乘单项式法则:单项式与单项式相乘,把它们的系
解:因为|m-3|+(n-2)2=0,所以m-3=0,n-2=0,即
m=3,n=2,6am+5bm÷(-2abn)=6a8b3÷(-2ab2)=-3a7b.
合作探究
先化简,再求值:[5a4·a2-(3a6)2÷(a2)3]÷(-2a2)2,
其中a=-5.
解:[5a4·a2-(3a6)2÷(a2)3]÷(-2a2)2=[5a6-
的距离是3.6×1013 km,光速是3×105 km/s,如果一年按
3×107 s计算,从比邻星发出的光经过多长时间才能到达地球?
解:(3.6×1013)÷(3×105)=(3.6÷3)×(1013÷105)=
1.2×108.
(1.2×108)÷(3×107)=4.
答:从比邻星发出的光经过4年时间才能到达地球.
(9a12)÷(a6)]÷(4a4)=(5a6-9a6)÷(4a4)=-4a6÷(4a4)=
-a2,当a=-5时,原式=-(-5)2=-25.
合作探究
[变式训练]李老师给同学们出了一道题:当a=-5时,求代
数式[5a4·a2-(3a6)2÷(a2)3]÷(-2a2)3的值.题目出完后,小军
说:“老师给的条件a=-5是多余的.”小敏说:“不给这个条件
(12÷4)a3-2b4-2=3ab2.
a2-1b3x2-2
预习导学
3.月球距离地球大约3.84×105千米,一架飞机的速度约为
单项式除以单项式-华东师大版八年级数学上册教案
单项式除以单项式-华东师大版八年级数学上册教案1. 教学背景本节课是华东师大版八年级数学上册中的一节,主要内容为单项式除以单项式。
在此之前,学生已经学习了单项式的定义和单项式的加减,此次课程是单项式的除法。
2. 教学目标1.了解并理解单项式的除法;2.掌握单项式除以单项式的计算方法;3.能够解决在单项式除法中出现的难点问题。
3. 教学重点1.理解单项式的除法;2.掌握单项式除以单项式的计算方法。
4. 教学难点1.解决在单项式除法中出现的难点问题;2.能够实际应用单项式除法解决实际问题。
5. 教学内容及方法5.1 教学内容1.什么是单项式的除法?2.如何进行单项式的除法?3.如何应用单项式除法解决实际问题?5.2 教学方法1.示范法;2.计算实例法;3.思维导图法。
6. 教学步骤6.1 导入教师通过简单的例子,让学生了解什么是单项式的除法。
6.2 讲解1.给出单项式的除法公式;2.给出实际计算例子,并讲解计算步骤;3.总结单项式除法方法和技巧。
6.3 拓展应用1.提供实际问题;2.让学生根据所学到的单项式除法方法,解决实际问题。
7. 教学评价通过对学生的听力、问题解决能力、运算准确度以及出题思路的评估,综合评价学生本次单项式除法的学习情况。
8. 教学反思本次课程中,教师在教学方法上采用了计算实例法和思维导图法,能够帮助学生理解和掌握单项式除法的基本计算方法,同时也拓展了学生对于单项式除法的应用能力。
同时,需要加强对于难点问题的讲解和应用情况的教学。
9. 总结单项式除法是数学学习的重要环节,需要通过实际计算例子和思维导图等方法,帮助学生掌握基本的计算技巧和应用能力。
12.4.1单项式除以单项式课件华东师大版八年级数学上册
2.计算:
(1) 3 x2 y3 3x2 y; 5
(3)(2x2y)3·(–7xy2) ÷14x4y3;
(2)10a4b3c2÷5a3bc ; (4)(2a + b)4÷ (2a + b)2.
(3)(2x2y)3·(–7xy2) ÷14x4y3 = 8x6y3·(–7xy2) ÷14x4y3 = –56x7y5 ÷14x4y3 = –4x3y2 ;
大家一起来回顾一下单项式乘以单项式的运算法则:
单项式乘单项式的法则
单项式与单项式相乘,把它们的系数、相同字母的幂分 别相乘,其余字母连同它的指数不变,作为积的因式.
试一试
把12a5c2和3a2分别看成是一个 整体,相当于(12a5c2)÷(3a2)
计算:12a5c2÷3a2
(4a3c2)×3a2=12a5c2
= 4a6b4z
= 9x4y2z
有乘方的要先算乘方.
法则
1.系数相除.
单 项
2.同底数幂相除.
式
除
3.只在被除式中含有的因式,连同它们
以
的指数,照搬到商中.
单
项
式
1.不要遗漏只在被除式中有而除式中没
注意
有的字母及字母的指数;
事项
2.系数相除时,应连同它前面的符号一 起进行运算.
1.从课后习题中选取; 2.完成练习册本课时的习题。
圆柱的体积为 πr2·6r=6πr3
所以三个球的体积之和占整个盒子容积的4πr3÷6πr3= 2 . 3
1. 计算(–2a3)2÷a2的结果是
A.–2a3
B.–2a4
C.4a3
(D )
D.4a4
2. 计算: –4x5÷2x3=[(–4)÷ 2 ]·( x5 ÷ x3 )= –2x2 .
八年级数学上册 12.4《整式的除法》1《单项式除以单项式》教学设计 (新版)华东师大版
§12.4.1单项式除以单项式教学目标1.经历探索单项式相除的过程,理解单项式相除的算理,并能进行简单运算;2.培养良好的合作意识,发展数学思维,体会数学的实际价值;3.体会学习的过程就是把不会的知识转化为会的知识。
重点难点重点:单项式相除的运算法则的理解及其应用。
;难点:探索单项式与单项式相除的运算法则的过程。
教学准备:提前发放学案《§12.4.1单项式除以单项式学案》教学设计一、自主学习:独立完成学案“一、知识准备——三、合作探索”二、合作探究:小组合作完成学案“三、合作探索” (10分钟)老师适当提醒可以利用乘法的逆向思考,即通过积的结果的由来逆向寻找商的办法;或利用除法的意义思考,即把除法写成分数形式,通过约分求解。
三、成果展示:小组合作完成学案“四、归纳总结” (5分钟)四、个人自测:独立完成学案“五、牛刀小试”(4分钟)五、展示纠错:小组内对“五、牛刀小试”互相纠错,并把相对典型的错误现象展示出来。
探讨展示避免错误的方法。
(8分钟)六、随堂检测:检测是否掌握本节知识,检查是否规避各种错误现象。
(4分钟)七、解决引题:体会数学的应用价值。
(3分钟)八、收获盘点:提高认识,学会对比学习。
(5分钟)九、课后巩固:1.基础作业:(1)–12a5b3c÷(–4a2b) (2)(–5a2b)2÷5a3b2 (3)(–3a b2c)3÷(–3ab2c)2(4)-a5x3y÷(-4ax2y) (5)4(a+b)7 ÷(a+b)5 (6)2a2b(-3b2c3)÷4a3b2(7) 7a8b3c6÷(2a3b2)2.(-4a2bc)32.拓展作业:在一次水灾中,大约有2.5×105个人无家可归。
假若一顶帐篷占地100 m2 ,可以安置40个床位,为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约占多大地方?估计你学校的操场中可以安置多少人?要安置这些人,大约要多少个这样的操场?。
八年级数学上册 12.4《整式的除法》1《单项式除以单项式》教案2 (新版)华东师大版-(新版)华东
§单项式除以单项式一.教材分析本节是整式加减的后续学习,在同底幂乘法和除法法则的基础上,学习单项式除以单项式运算,是多项式除以单项式的基础。
是生活实例的体现,数学与生活密切相关,让学生了解数学的应用价值,提高数学学习兴趣。
二.教学目标了解单项式除以单项式的法则,同时会进行简单的整式除法运算。
通过从单项式乘以单项式到单项式除以单项式的知识演变,让学生体会转化的思想在数学知识研究上的灵活运用。
通过对学生进行单项式除以单项式的化简训练,提高学生的综合解题能力和计算能力。
2.过程与方法经历由具体问题到单项式除以单项式的存在,学生通过观察、讨论、发现单项式除以单项式规律3.情感、态度与价值观通过探索,激发学生的数学学习兴趣,通过讨论培养学生合作精神.三.教学重、难点重点:对单项式除以单项式的运算法则的理解和应用难点:正确而熟练地运用法则进行化简或计算四.教学方法启发式五.教学准备投影片一,二,三,四六.教学过程1.情景导入[师]单项式乘以单项式的运算法则是?[生]系数×系数,相同字母相乘,单独的字母连同指数照抄,结果还是单项式。
[师]很好,你们知道乘法运算和除法运算有什么关系?[生]互为逆运算[师]对,下面看我们的黑板,如果它的面积为12ab,长为4a,那么黑板的宽为多少?应该用什么法?[生]除法。
[师]用式子怎么表示?[生]12ab÷4a[师]太好了,引出课题----单项式除以单项式2.探究新知[师][ 出示投影片一]下雨时,常常是“先见闪电,后闻雷鸣”这是由于光速比声速快的缘故,已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×103米/秒,请计算一下,光速是声速多少倍?(结果保留两个有效数字)[生](3×108)÷(3.4×103)=[师]很好,怎么算?[生]……[师]可能好多同学直接算的,也可看成乘号前的数除以数,乘号后幂除以幂[师]下面看式子中有字母的怎么算试一试(1)12ab÷4a[师] 按除法的意义,这式已知什么,求什么?[生]已知被除式和除式,求商式[师] 被除式、除式、商式有什么关系?[生] 除式×商式=被除式[师]很好,那么上式就是求?[生]按除法的意义,上式是要一个单项式,使它与4a相乘的积等于12ab[师]很好,按除法的意义怎么算?[生] (3b)×4a=12ab12ab÷4a=3b[师]好,又看(2)12a5c2÷3a2[生] ∵(4a3c2)×3a2=12a5c2∴12a5c2÷3a2=4a3c2[师] 太好了,观察(1)与(2)的结果你能发现运算规律吗?学生交流讨论,师总结商式的系数4与被除式、除式的系数有什么关系?商式的字母因式a3c2是怎样计算出的?a 的指数3与被除式、除式的字母a 指数有什么关系?单项式÷单项式的结果还是什么?[生]4=12÷3 a 5c 2÷a 2=a 3c 2 a 5÷a 2=a25 [师] 太好了[出示投影片二] 单项式除以单项式1. 把系数、同底数幂分别相除作为商的因式。
八年级数学上册12.4《整式的除法》1《单项式除以单项式》教案1华东师大版(new)
单项式除以单项式
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式除以单项式
教学内容
教科书P.39——P.40的内容
教学目标
知识与技能:理解单项式除以单项式算理,能进行单项式除以单项式运算;
过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力;
情感态度与价值观:培养良好的合作意识,发展数学思维,体会数学的实际价值。
教学分析
重点:掌握整式除法运算法则,并学会简单的整式除法运算。
难点:理解和体会单项式除以单项式的法则。
关键:通过整式乘法,类比数的运算,迁移到整式除法运算。
教学过程
一.创设情境,复习导入
前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.
(l)叙述同底数幂的除法性质.
(2)计算:(1)(2)(3)(4)
学生活动:学生回答上述问题.(,m,n都是正整数,且m>n)
通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.
二.指出问题,引出新知
问题地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)
分析本题只需做一个除法运算:(1.9×1027)÷(5.98×1024),我们可以先将 1.9除以5.98,再将1027除以1024,最后将商相乘.
答:木星的重量约是地球的318倍.
学生讨论:
(1)计算(1.9×1027)÷(5.98×1024)的依据是什么?
(2)你能利用(1)中方法计算下列各式吗?
①②③ 12
(2)你能根据(2)说一说单项式除以单项式的运算法则吗?
学生总结,教师归纳:单项式除以单项式法则:单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式式里含有的字母,则连同它的指数作为商的一个因式。
三.范例学习
例1 计算(1)(2)-21 (3)
教师活动:先讲解例1中的(1)教会书写格式,然后再由学生自己完成(2),(3),请学生上台演示.
学生活动:独立完成例题,然后再与课本相对.
评析:注意==1,字母c只在被除式中出现,结果它仍保留在商中.
课堂演练:
计算:(1)28 (2)15
教师活动:板书,引导学生练习,巩固概念,要求学生讲出每一步的依据. 学生活动:完成(1)、(2)再上台演示,交流.
思考:你能用a-b的幂表示下列结果吗?12
学生活动:将a-b看成底数.。