山东省烟台市芝罘区高三数学专题复习函数(1)函数的单调性及题型

合集下载

芝罘区高一数学函数及其表示(含答案)

芝罘区高一数学函数及其表示(含答案)

函数及其表示一、选择题1、下列集合A 到集合B 的对应f 是映射的是 ( ) A 、{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; B 、{}{}f B A ,1,0,1,1,0-==:A 中的数开方; C 、,,A Z B Q f ==:A 中的数取倒数; D 、,,A R B R f +==:A 中的数取绝对值;2、设集合A=R ,集合B=R +,则从集合A 到集合B 的映射只可能是( ) A 、x y x f =→: B 、 x y x f =→:C 、 x y x f -=→3:D 、)1(log :2x y x f +=→3、已知集合A={1,2,3},集合B={4,5,6},映射B A f →:,且满足1的象是4,则这样的映射有( )A 2个B 4个C 8个D 9个4、设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( )A 、2:x y x f =→B 、23:-=→x y x fC 、4:+-=→x y x fD 、24:x y x f -=→5、函数y =ax 2+a 与y =xa(a ≠0)在同一坐标系中的图象可能是( )6、直角梯形OABC 中AB ∥OC 、AB=1、OC=BC=2, 直线t x l =:截该梯形所得位于l 左边图形面积为S , 则函数S=)(t f 的图像大致为( ) A BCD A B C D7、若)(x f 的定义域为[0,1],则)2(+x f 的定义域为( ) A 、[0,1]B 、[2,3]C 、[-2,-1]D 、无法确定二、填空题8、给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是__________________。

9、设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,则(5)f =_______________________。

芝罘区数学必修一函数的基本性质运用

芝罘区数学必修一函数的基本性质运用

高中数学课题——函数的基本性质运用1.函数性质综合题型:①作出函数y =x 2-2|x|-3的图像,指出单调区间和单调性。

分析作法:利用偶函数性质,先作y 轴右边的,再对称作。

②如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?③已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 ④讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2. 教学函数性质的应用:①求函数f(x)=x +x1 (x>0)的值域。

分析:单调性怎样?值域呢?②某产品单价是120元,可销售80万件。

市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y(万元)与x 的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?2.基本练习题:1、判别下列函数的奇偶性:y =1+x +1-x 、 y =⎪⎩⎪⎨⎧≤+>+-)0()0(22x x x x x x 2、求函数y =x +21x -的值域。

3、判断函数y=12++x x 单调区间并证明。

(定义法、图象法; 推广: bax d cx ++的单调性) 4、讨论y=21x -在[-1,1]上的单调性。

(思路:先计算差,再讨论符号情况。

)三、巩固练习:1.求函数y=cx b ax ++2为奇函数的时,a 、b 、c 所满足的条件。

(c=0) 2.已知函数f(x)=ax 2+bx+3a+b 为偶函数,其定义域为[a-1,2a],求函数值域。

3. f(x)是定义在(-1,1)上的减函数,如何f(2-a)-f(a -3)<0。

求a 的范围。

4. 求二次函数f(x)=x 2-2ax +2在[2,4]上的最大值与最小值。

2024年高考数学一轮复习专题05函数的单调性与最值含解析

2024年高考数学一轮复习专题05函数的单调性与最值含解析

专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础学问融会贯穿1.函数的单调性(1)单调函数的定义(2)单调区间的定义假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件(1)对于随意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于随意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【学问拓展】函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ]. (3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间) 命题点1 给出详细解析式的函数的单调性 【典型例题】下列函数中,值域为R 且在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =2x +1C .y =x 3+1D .y =(x ﹣1)|x |【解答】解:依据题意,依次分析选项:对于A ,y =x 2+2x =(x +1)2﹣1,其值域为[﹣1,+∞),不符合题意; 对于B ,y =2x +1,其值域为(0,+∞),不符合题意;对于C ,y =x 3+1,值域为R 且在区间(0,+∞)上单调递增,符合题意; 对于D ,y =(x ﹣1)|x |,在区间(0,1)上为减函数,不符合题意;故选:C .【再练一题】已知函数f (x )=ln ,则( )A .f (x )是奇函数,且在(﹣∞,+∞)上单调递增B .f (x )是奇函数,且在(﹣∞,+∞)上单调递减C .f (x )是偶函数,且在(0,+∞)上单调递增D .f (x )是偶函数,且在(0,+∞)上单调递减【解答】解:依据题意,函数f (x )=ln,其定义域为R ,有f(﹣x)=ln ln f(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2 解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k 的取值范围是()A.(﹣∞,﹣2] B.[2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:依据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,] C.[,] D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满意0<a<1,依据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1] B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得微小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再视察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.(5)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.【题型三】函数单调性的应用命题点1 比较大小【典型例题】已知函数,若,则a、b、c之间的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.b<a<c【解答】解:依据题意,函数,其定义域为R,则f(﹣x)=|ln(x)|=|ln|=|﹣ln(x)|=|ln(x)|=f (x),即函数f(x)为偶函数,设g(x)=ln(x)=ln,有g(0)=ln1=0,设t,则y=lnt,当x≥0时,t为减函数且t>0,而y=lnt在(0,+∞)为增函数,则g(x)=ln(x)=ln在[0,+∞)上为减函数,又由g(0)=0,则在区间[0,+∞)上,g(x)≤0,又由f(x)=|g(x)|,则f(x)在区间[0,+∞)上为增函数,a=f()=f(log94),b=f(log52)=f(log254),又由log254<log94<1<1.80.2,则有b<a<c;故选:D.【再练一题】已知函数f(x)=x•ln,a=f(),b=f(),c=f(),则以下关系成立的是()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【解答】解:,,;∵;∴;∴c<a<b.故选:A.命题点2 解函数不等式【典型例题】已知函数f(x)=e x﹣e﹣x,则关于x的不等式f(x)+f(x2﹣2)<0的解集为()A.(﹣2,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【解答】解:依据题意,函数f(x)=e x﹣e﹣x,有f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,又由f′(x)=e x+e﹣x>0,则函数f(x)在R上为增函数,f(x)+f(x2﹣2)<0⇒f(x)<﹣f(x2﹣2)⇒f(x)<f(2﹣x2)⇒x<2﹣x2,即x2+x﹣2<0,解可得﹣2<x<1,即其解集为(﹣2,1);故选:A.【再练一题】设定义在R上的奇函数f(x)满意f(x)=x3﹣8(x>0),则{x|f(x﹣2)≥0}=()A.[﹣2,0)∪[2,+∞)B.(﹣∞﹣2]∪[2,+∞)C.[0,2)∪[4,+∞)D.[0,2]∪[4,+∞)【解答】解:∵f(x)是R上的奇函数,且x>0时,f(x)=x3﹣8;∴f(0)=f(2)=f(﹣2)=0,且f(x)在(0,+∞),(﹣∞,0)上都单调递增;∴①x=2时,满意f(x﹣2)≥0;②x>2时,由f(x﹣2)≥0得,f(x﹣2)≥f(2);∴x﹣2≥2;∴x≥4;③x<2时,由f(x﹣2)≥0得,f(x﹣2)≥f(﹣2);∴x﹣2≥﹣2;∴x≥0;∴0≤x<2;综上得,f(x﹣2)≥0的解集为[0,2]∪[4,+∞).故选:D.命题点3 求参数范围【典型例题】若函数f(x)在R上是增函数,则a的取值范围为()A.(﹣∞,1] B.(0,2)C.(0,1] D.[1,2)【解答】解:∵f(x)在R上是增函数;∴;解得0<a≤1;∴a的取值范围为:(0,1].故选:C.【再练一题】若(a≠1),在定义域(﹣∞,+∞)上是单调函数,则a的取值范围是()A.B.C.D.【解答】解:f(x)在定义域(﹣∞,+∞)上是单调函数时,①函数的单调性是增函数时,可得当x=0时,(a2﹣1)e ax≤ax2+1=1,即a2﹣1≤1,解之得a∵x≥0时,y=ax2+1是增函数,∴a>0又∵x<0时,(a2﹣1)e ax是增函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:1<a②函数的单调性是减函数时,可得当x=0时,(a2﹣1)e ax≥ax2+1=1,即a2﹣1≥1,解之得a或a.∵x≥0时,y=ax2+1是减函数,∴a<0又∵x<0时,(a2﹣1)e ax是减函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:a综上所述,得a∈故选:C.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f”符号脱掉,转化为详细的不等式求解,应留意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需留意若函数在区间[a,b]上是单调的,则该函数在此区间的随意子集上也是单调的;③分段函数的单调性,除留意各段的单调性外,还要留意连接点的取值.基础学问训练1.若,则下列不等式正确的是()A.B.C.D.【答案】D【解析】∵,对A选项,变形为log a x3<log a y2,而函数y=是单调递减函数,x3<y2,∴log a x3>log a y2,故A不正确;对B选项,,函数y=cosx是单调递减函数,∴,故B不正确;对C选项,y=是单调递减函数,∴, 故C不正确;而D选项,幂函数y=是单调递增函数,∴,故应选D.2.已知函数且满意,则的取值范围为()A.B.C.D.【答案】C【解析】因为,所以,所以函数为定义在R上的偶函数;又时,单调递减,所以由偶函数的对称可得:时,单调递增,所以由可得,解得.故选C3.已知函数,则函数有()A.最小值,无最大值 B.最大值,无最小值C.最小值1,无最大值 D.最大值1,无最小值【答案】D【解析】∵函数f(x)的定义域为(﹣∞,]设t,则t,且x,∴f(x)=g(t)t2+t(t﹣1)2+1,t,∴g(t)≤g(1)即g(t)≤1∴函数f(x)的最大值1,无最小值.故选D.4.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A.16 B.17 C.32 D.33【答案】B【解析】函数f(x)=log2(x2-2x+a)的最小值为4,可得y= x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.5.高斯是德国闻名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】A【解析】.∴当时,;当时,;∴函数的值域是.故选A.6.已知函数的最小值为8,则A.B.C.D.【答案】B【解析】函数的最小值为8,可得,明显的最小值不为8;时,由对数函数的性质可得当时,的最小值为,由题意可得,设递增,,可得,故选:B.7.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. B. C. D.【答案】A【解析】由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x),①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满意条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,故f(a)+f(b)>2.再由f(a)+f(b)>f(c)恒成立,可得2≥t,结合大前提t﹣1>0,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得 2t≥1,解得1>t.综上可得,t≤2,故选:A.8.奇函数单调递减,若,则满意的取值范围是()A.B.C.D.[1,3]【答案】D【解析】因为奇函数单调递减,所以函数单调递减,且为奇函数,所以,因为,所以,所以,解得,即满意的取值范围是,故选D.9.假如对定义在R上的奇函数,对随意两个不相邻的实数,全部,则称函数为“H函数”,下列函数为H函数的是A.B.C.D.【答案】D【解析】依据题意,对于全部的不相等实数,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.10.已知定义在上的函数,对随意,有,且时,有,设,则()A.B.C.D.【答案】A【解析】因为对随意,所以,因为时,有,所以函数在区间上是增函数,因为,所以,即,所以,故选A.11.已知定义在R上的函数f(x)=-1(m为实数)为偶函数,记a=f(log0.53),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【答案】B【解析】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选:B.12.已知t为常数,函数在区间上的最大值为2,则t的值为A.B.C.D.【答案】A【解析】令上的增函数.当,即时,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意.当,解得.当时,,不符合题意.当时,符合题意.故.所以选A.13.假如奇函数在区间上是减函数,值域为,那么______.【答案】12【解析】由f(x)在区间上是递减函数,且最大值为5,最小值为-2,得f(3)=5,f(7)=-2,∵f(x)是奇函数,∴.故答案为:12.14.已知函数,若上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=上单调递减,故只需满意,解得:k∈[,0)故答案为:[,0)15.设函数f(x)=|x-1|在x∈[t,t+4](t∈R)上的最大值为M(t),则M(t)的最小值为______.【答案】2【解析】作出函数f(x)=|x-1|的图象,如图所示,当t+4≤1即t≤-3时,f(x)在[t,t+4]递减,可得最大值M(t)=f(t)=|t-1|=1-t,由M(t)在t≤-3递减,可得M(t)≥4,即最小值为4;当t≥1时,f(x)在[t,t+4]递增,可得最大值M(t)=f(t+4)=|t+3|=t+3,由M(t)在t≥1递增,可得M(t)≥4,即最小值为4;当t<1<t+4,即-3<t<1时,f(x)在(t,1)递减,在(1,t+4)递增,可得f(x)的最小值为0;当t=-1时,f(t)=f(t+4)=2;当-1<t<1时,f(t)<f(t+4),f(x)的最大值M(t)=f(t+4)=t+3,且M(t)∈(2,4);当-3<t<-1时,f(t)>f(t+4),f(x)的最大值M(t)=f(t)=1-t,且M(t)∈(2,4);综上可得M(t)的最小值为2.故答案为:2.16.已知函数,若当时,都有,则a的取值范围为______.【答案】【解析】①当时,即②当时,若,即时,若,即时,③当时,综上所述,17.对于区间,若函数同时满意:上是单调函数;函数的值域是,则称区间为函数的“保值”区间.求函数的全部“保值”区间.函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.【答案】(1);(2)函数存在“保值”区间,此时m的取值范围是.【解析】因为函数的值域是,且的值域是,所以,所以,从而函数在区间上单调递增,故有,解得,又,所以,所以函数的“保值”区间为;若函数存在“保值”区间,若,由可得函数的“保值”区间为;若,此时函数在区间上单调递减,可得,消去m得,整理得,因为,所以,即,即有,因为,可得;若,此时函数在区间上单调递增,可得,消去m得,整理得.因为,所以,可得,可得.由,即有.综合得,函数存在“保值”区间,此时m的取值范围是.18.已知函数常数.证明上是减函数,在上是增函数;时,求的单调区间;对于中的函数和函数,若对随意,总存在,使得成立,求实数a的值.【答案】(1)见解析;(2)见解析;(3)【解析】证明::设,且,,,,当时,即,当时,即,时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故上是减函数,在上是增函数;时,,,设,则,,由可知上是减函数,在上是增函数;,即,即上是减函数,在上是增函数;由于为减函数,故又由(2)得由题意,的值域为的值域的子集,从而有,解得.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.【答案】(1)见解析;(2).【解析】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为;,由在区间上是单调减函数,可得,解得.即a的范围是.20.已知函数.判定并证明函数的单调性;是否存在实数m,使得不等式对一切都成立?若存在求出m;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】函数上R上的单调递增函数.证明如下:设,,,且,,函数上R上的单调递增函数.函数,,是R上的奇函数,不等式对一切都成立,,对一切都成立,是R上的增函数,,对一切都成立,.存在实数,使得不等式对一切都成立.实力提升训练1.已知是自然对数的底数),,则的大小关系是( ) A.B.C.D.【答案】A【解析】记,可得x=e可知:上单调递增,又∴,即故选:A2.若函数,设,则的大小关系A.B.C.D.【答案】D【解析】依据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,则有,则;故选:D.3.已知函数,若的最小值为,则实数m的值为A. B. C.3 D.或3【答案】C【解析】函数,即,当时,不成立;当,即时,递减,可得取得最小值,且,解得成立;当,即时,递增,可得取得最小值,且,不成立;综上可得.故选:.4.若函数上的最大值与最小值的差为2,则实数的值为( ).A.2 B.-2 C.2或-2 D.0【答案】C【解析】解:①当a=0时,y=ax+1=1,不符合题意;②当a>0时,y=ax+1在[1,2]上递增,则(2a+1)﹣(a+1)=2,解得a=2;③当a<0时,y=ax+1在[1,2]上递减,则(a+1)﹣(2a+1)=2,解得a=﹣2.综上,得a=±2,故选C.5.已知直线分别与函数的图象交于两点,则两点间的最小距离为()A. B. C. D.【答案】D【解析】依据题意得到PQ两点间的距离即两点的纵坐标的差值,设t+1=u,t=u-1>0,原式等于依据均值不等式得到当且仅当u=1,t=0是取得最值.故答案为:D.6.已知函数的值域为()A. B. C. D.【答案】C【解析】由题意,设,则,又由指数函数的性质,可知函数为单调递减函数,所以函数的值域为,故选C.7.已知函数的定义域为(1)试推断的单调性;(2)若,求的值域;(3)是否存在实数,使得有解,若存在,求出的取值范围;若不存在,说明理由. 【答案】(1)单调递增(2)(3)存在,且取值范围为【解析】解:(1)设单调递增.(2)令的值域为(3)由而当时,令,所以的取值范围为8.已知函数(1)设的两根,且,试求的取值范围(2)当时,的最大值为2,试求【答案】(1)(2)【解析】(1)由题意可得的两根,且,解得故(2)当时,的最大值为2,由,可知抛物线开口向上,对称轴为①若,则当时取得最大值,即,解得②若,则当时取得最大值,即,解得故9.已知函数.(1)若,求a的值.(2)推断函数的奇偶性,并证明你的结论.(3)求不等式的解集.【答案】(1);(2)奇函数;(3).【解析】,则,得,即,则.函数的定义域为R,,即函数是奇函数.由不等式,,在R上是增函数,不等式等价为,即,即,得.即不等式的解集为.10.已知函数.(Ⅰ)推断并证明的单调性;(Ⅱ)设,解关于的不等式.【答案】(Ⅰ)上单调递增;(Ⅱ).【解析】解:(Ⅰ)的定义域为,由是奇函数;任取,则,上单调递增;又由(Ⅰ)知,上的奇函数,上单调递增;上单调递增.(Ⅱ),由是奇函数;又由(Ⅰ)知上单调递增,上单调递增,等价于,可得:,解得:不等式的解集是.。

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法2.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.【答案】(-2,)【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,∴,解得-2<x<.3. [2014·大庆质检]下列函数中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是()A.f(x)=B.f(x)=(x-1)2C.f(x)=e x D.f(x)=ln(x+1)【答案】A【解析】由题意知,f(x)在(0,+∞)上是减函数,故选A.4. [2013·吉林调研]已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于0 C.恒小于0D.可正可负【答案】C【解析】由x1x2<0不妨设x1<0,x2>0.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)<f(-x2)=-f(x2),所以f(x 1)+f(x 2)<0.故选C.5. (3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【答案】D【解析】根据零点分段法,我们易将函数f (x )=|lg (2﹣x )|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论. 解:∵f (x )=|lg (2﹣x )|, ∴f (x )=根据复合函数的单调性我们易得 在区间(﹣∞,1]上单调递减 在区间(1,2)上单调递增 故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6. 定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y =x 2+1 B .y =|x|+1C .y =D .y =【答案】C【解析】利用偶函数的对称性知f(x)在(-2,0)上为减函数,又y =,在(-2,0)上为增函数,故选C. 7. 设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1【答案】A【解析】因为y=3x 在R 上单调递增,又,故﹣2<x <﹣1故选A8. 若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是( ) A .a <﹣1 B .|a|≤1 C .|a|<1 D .a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.9.函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是()A.b≥0B.b≤0C.b>0D.b<0【答案】A【解析】∵函数y=x2+bx+c在[0,+∞)上为单调函数∴x=﹣≤0,即b≥0.故选A10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.【答案】A【解析】由即.所以函数在上递增.所以即成立.故选A.【考点】1.函数的导数.2.函数的单调性.3.函数的构造的思想.11.已知函数在点处的切线方程为.(1)求、的值;(2)当时,恒成立,求实数的取值范围;(3)证明:当,且时,.【答案】(1),;(2);(3)详见解析.【解析】(1)利用已知条件得到两个条件:一是切线的斜率等于函数在处的导数值,二是切点在切线上也在函数的图象上,通过切点在切线上求出的值,然后再通过和的值列有关、的二元一次方程组,求出、的值;(2)解法1是利用参数分离法将不等式在区间上恒成立问题转化为不等式在区间上恒成立,并构造函数,从而转化为,并利用导数求出函数的最小值,从而求出的取值范围;解法2是构造新函数,将不等式在区间上恒成立问题转化为不等式在区间上恒成立问题,等价于利用导数研究函数的单调性,对的取值进行分类讨论,通过在不同取值条件下确定函数的单调性求出,围绕列不等式求解,从而求出的取值范围;(3)在(2)的条件下得到,在不等式两边为正数的条件下两边取倒数得到,然后分别令、、、、,利用累加法以及同向不等式的相加性来证明问题中涉及的不等式.试题解析:(1),.直线的斜率为,且过点,,即解得,;(2)解法1:由(1)得.当时,恒成立,即,等价于.令,则.令,则.当时,,函数在上单调递增,故.从而,当时,,即函数在上单调递增,故.因此,当时,恒成立,则.所求的取值范围是;解法2:由(1)得.当时,恒成立,即恒成立.令,则.方程(*)的判别式.(ⅰ)当,即时,则时,,得,故函数在上单调递减.由于,则当时,,即,与题设矛盾;(ⅱ)当,即时,则时,.故函数在上单调递减,则,符合题意;(ⅲ)当,即时,方程(*)的两根为,,则时,,时,.故函数在上单调递增,在上单调递减,从而,函数在上的最大值为.而,由(ⅱ)知,当时,,得,从而.故当时,,符合题意.综上所述,的取值范围是.(3)由(2)得,当时,,可化为,又,从而,.把、、、、分别代入上面不等式,并相加得,.【考点】1.导数的几何意义;2.不等式恒成立;3.参数分离法;4.分类讨论;5.数列不等式的证明12.函数的单调递增区间是.【答案】【解析】当时,,增区间为,当时,,增区间为.填.【考点】分段函数的单调区间.13.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.【答案】(1)(2)g(a)=(3)【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2. 当1≤≤2,即≤a≤时,g(a)=f=2a--1.当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3. 综上可得g(a)=(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,则h(x2)-h(x1)==(x2-x1)=(x2-x1).因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,即ax1x2>2a-1.当a=0时,上面的不等式变为0>-1,即a=0时结论成立.当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.所以实数a的取值范围为14.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.15.已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f(f(x)-lnx)=1+e,则f(1)=________.【答案】e【解析】f(x)-lnx必为常数函数,否则存在两个不同数,其对应值均为1+e,与单调函数矛盾.所以可设f(x)-lnx=c,则f(x)=lnx+c.将c代入,得f(c)=1+e,即lnc+c=1+e.∵y=lnx+x是单调增函数,当c=e时,lnc+c=1+e成立,∴f(x)=lnx+e.则f(1)=e16.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.【答案】【解析】f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得,∴-2<x< .17.已知定义在R上的函数y=f(x)满足条件f=-f(x),且函数y=f为奇函数,给出以下四个命题:(1)函数f(x)是周期函数;(2)函数f(x)的图象关于点对称;(3)函数f(x)为R上的偶函数;(4)函数f(x)为R上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3)【解析】由f(x)=f(x+3)⇒f(x)为周期函数,且T=3,(1)为真命题;又y=f关于(0,0)对称,y=f向左平移个单位得y=f(x)的图象,则y=f(x)的图象关于点对称,(2)为真命题;又y=f为奇函数,所以f=-f,f=-f=-f(-x),∴f=-f(-x),f(x)=f(x-3)=-f=f(-x),∴f(x)为偶函数,不可能为R上的单调函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3).18.能够把圆的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是( )A.B.C.D.【答案】A【解析】由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,,所以的图象不过原点,故不为“和谐函数”; B中,,且,所以为奇函数,所以为“和谐函数”; C中,,且,为奇函数,故为“和谐函数”;D中,,且为奇函数,故为“和谐函数”;故选A.【考点】奇偶性与单调性的综合.19.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.20.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.21.已知函数,设,若,则的取值范围是 ___ .【答案】[,2)【解析】函数的图像如图所示.因为,若要使成立,有图像可得.且.由于b的变化是递增的,的变化也是递增的所以.即填[,2).本小题主要考查分段函数的问题.【考点】1.分段函数的知识.2.函数的单调性.22.已知是上的奇函数,对都有成立,若,则等于A.B.C.D.【答案】C.【解析】令x=-2,则f(-2+4)=f(-2)+f(2),又因为f(x)在R上是奇函数.,所以f(-2)+f(2)=0,即f(2)=0.所以得到f(x+4)=f(x).所以函数是以4为周期的周期函数.所以f(2014)=f(2)=0.本题的关键是把奇函数与所给的式子结合起来得到周期为四的结果.注这个条件多余.【考点】1.奇函数.2.周期函数.3.递推的思想.23.已知函数⑴判断函数的单调性,并证明;⑵求函数的最大值和最小值.【答案】(1)增函数,证明见解析;(2),【解析】(1)利用函数单调的定义证明,可得函数在[3,5]上为单调增函数;(2)根据函数的单调递增,可得函数的最值为,.试题解析:⑴设且,所以 4分即,在[3,5]上为增函数. 6分⑵在[3,5]上为增函数,则, 10分【考点】1.函数单调的判断;2.利用函数单调性求最值24.函数有最小值,则实数的取值范围是()A.B.C.D.【答案】B.【解析】若在定义域内有最小值,则满足,且恒成立,所以,故选B.【考点】1.复合函数的单调性与最值.25.关于函数,给出下列四个命题:①,时,只有一个实数根;②时,是奇函数;③的图象关于点,对称;④函数至多有两个零点.其中正确的命题序号为______________.【答案】①②③【解析】①,时,,显然只有一个实数根;②时,显然,,所以是奇函数;③设是函数的图象上的一点,点关于点,对称点,因为,所以点也在函数的图象上,故的图象关于点,对称;④,取,可得有三个零点.【考点】函数的基本性质.26.如果函数上单调递减,则实数满足的条件是()A.B.C.D.【答案】A【解析】函数在区间上单调递减,所以上,,即,故选A.【考点】导数、函数的单调性与最值27.给出下列四个命题:①函数有最小值是;②函数的图象关于点对称;③若“且”为假命题,则、为假命题;④已知定义在上的可导函数满足:对,都有成立,若当时,,则当时,.其中正确命题的序号是 .【答案】①②④.【解析】对于命题①,,,当且仅当,即当时,上式取等号,即函数有最小值,故命题①正确;对于命题②,由于,故函数的图象关于点对称,故命题②正确;对于命题③,若“且”为假命题,则、中至少有一个是假命题,故命题③错误;对于命题④,由于函数是奇函数,当时,,即函数在区间上单调递增,由奇函数的性质知,函数在上也是单调递增的,即当时,仍有,故命题④正确,综上所述,正确命题的序号是①②④.【考点】1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性28.已知函数是上的单调递增函数,若是其图像上的两点,则不等式的解集是.【答案】.【解析】由已知得.【考点】函数的单调性质.29.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有两个不同的根,所以这两个根必为-6、2或-2、6,所以这两个根之和为-4或4.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.30.已知函数,下列结论中错误的是()A.R,B.函数的图像是中心对称图形C.若是的极小值点,则在区间上单调递减D.若是的极值点,则【答案】C【解析】由于,,由于是函数的极小值点,且函数的图象开口向上,故函数存在极大值点,即存在使得,从而函数在上单调递增,在上单调递减,即函数在不是单调递减的.【考点】函数的单调性与极值、函数的对称性31.已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2);(3).【解析】(1)先对求导,由于的正负与参数有关,故要对分类讨论来研究单调性; (2)先由在其定义域内为增函数转化为在不等式中求参数范围的问题,利用分离参数法和基本不等式的知识求出参数的取值范围;(3)先通过导数研究在的最值,然后根据命题“若,,总有成立”分析得到在上的最大值不小于在上的最大值,从而列出不等式组求出参数的取值范围.试题解析:解:(1)的定义域为,且, 1分①当时,,在上单调递增; 2分②当时,由,得;由,得;故在上单调递减,在上单调递增. 4分(2),的定义域为5分因为在其定义域内为增函数,所以,而,当且仅当时取等号,所以 8分(3)当时,,由得或当时,;当时,.所以在上, 10分而“,,总有成立”等价于“在上的最大值不小于在上的最大值”而在上的最大值为所以有 12分所以实数的取值范围是 14分【考点】1、利用导数研究单调性和最值,2、参数的取值范围问题,3、基本不等式.32.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3,,xn,均有g(ln(x1+x2++xn))>g(lnx1)+g(lnx2)++g(lnxn).【答案】(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得证.【解析】(Ⅰ)先求得,再由>得,解得;(Ⅱ)①构造函数,证明为上的增函数,再讨论就可得到,②先证得,即得,整理得,同理可得类似的的等式,累加即可得证.试题解析:(Ⅰ)由,可得,因为函数是函数,所以,即,因为,所以,即的取值范围为. (3分)(Ⅱ)①构造函数,则,可得为上的增函数,当时,,即,得;当时,,即,得;当时,,即,得. (6分)②因为,所以,由①可知,所以,整理得,同理可得,,.把上面个不等式同向累加可得[. (12分)【考点】1.恒成立问题;2.导数在求函数单调性、最值的应用;3.不等式.33.已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3) 设是的零点,,求证:.【答案】(1);(2) ;(3)详见解析.【解析】(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.试题解析:(1),∵在内恒成立∴在内恒成立,∴的单调区间为 4分(2),∵在内恒成立∴在内恒成立,即在内恒成立,设,,,,,故函数在内单调递增,在内单调递减,∴,∴ 8分(3)∵是的零点,∴由(1),在内单调递增,∴当时,,即,∴时,∵,∴,且即∴,∴ 14分【考点】1.函数的单调性;(2)导数的应用;(3)不等式的证明.34.已知函数的定义域是,若对于任意的正数,函数都是其定义域上的减函数,则函数的图象可能是A. B. C. D.【答案】B【解析】直接利用g(x)是减函数⇒导数小于0⇒f(x)的导数是减函数⇒f(x)是凸函数即可得到答案。

山东省烟台市芝罘区高三数学专题复习函数(1)抽象函数及题型

山东省烟台市芝罘区高三数学专题复习函数(1)抽象函数及题型

烟台芝罘区数学2015-2016高三专题复习-函数(1)抽象函数及题型无明确解析式,解()f x 的有关问题,记为抽象函数问题。

挺行总结如下 1.判断函数的奇偶性例1 已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠, 求证:()f x 为偶函数。

证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-= ∴()()f y f y -=∴()f x 为偶函数。

2.求参数的取值范围例2:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。

解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式例3:如果()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)<f (4),∴f (2)<f (1)<f (4)◆方法总结:抽象函数常见考点题型解法综述1、定义域问题例1. 已知函数的定义域是[1,2],求f(x)的定义域。

解:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]例2. 已知函数的定义域是,求函数的定义域。

山东省烟台市芝罘区高三数学专题复习函数(1)函数的单调性及题型

山东省烟台市芝罘区高三数学专题复习函数(1)函数的单调性及题型

烟台芝罘区数学2015-2016高三专题复习-函数(1)函数的单调性及题型1、 A为函数f(x)定义域内某一区间,2、单调性的判定:作差f(x1)-f(x2)判定;根据函数图象判定;3、复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x)) 为增函数,f(x),g(x)一增、一减,f(g(x)) 为减函数.【经典例题】例1、设a>0且a≠1,试求函数y=log a(4+3x-x2)的单调递增区间.[解析]:由题意可得原函数的定义域是(-1,4),设u=4+3x-x2,其对称轴是 x=3/2 ,所以函数u=4+3x-x2,在区间(-1,3/2 ]上单调递增;在区间[3/2 ,4)上单调递减.①a>1时,y=log a u 在其定义域内为增函数,由 x↑→u↑→y↑,得函数u=4+3x-x2的单调递增区间(-1,3/2 ],即为函数y=log a(4+3x-x2) 的单调递增区间.②0<a<1时,y=log a u 在其定义域内为减函数,由 x↑→u↓→y↑,得函数u=4+3x-x2的单调递减区间[3/2 ,4),即为函数y=log a(4+3x-x2)的单调递增区间.例2、已知y=log a(2-ax) 在[0,1]上是x 的减函数,求a的取值范围。

[解析]:由题意可知,a>0.设u=g(x)=2-ax,则g(x)在[0,1]上是减函数,且x=1时,g(x)有最小值u min=2-a .又因为u=g(x)=2-ax>0,所以,只要 u min=2-a>0则可,得a<2.又y=log a(2-ax) 在[0,1]上是x 减函数,u=g(x)在[0,1]上是减函数,即x↑→u↓→y↓,所以y=log a u是增函数,故a>1.综上所述,得1<a<2.例3、已知f(x)的定义域为(0,+∞),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1 ,试解不等式f(x)+f(x-2)<3 .[解析]:[此题的关键是求函数值3所对应的自变量的值]由题意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(4×2)=f(8)又f(x)+f(x-2)=f(x2-2x) 所以原不等式可化成f(x2-2x)<f(8)所以原不等式的解集为{x|2<x<4}针对性课堂练习1.函数y =2x -4x +5在闭区间[-1,m ]上有最大值10,则m 的取值范围是( )(A )(-∞,5]; (B )(-1,5]; (C )[2,5]; (D )(-1,+∞).2.函数y =22x x -的单调递减区间是( )(A )[-1,+∞); (B )(-∞,1]; (C )[0,1]; (D )[1,2].3.设0<a <b ,奇函数)(x f 在[-b ,-a ]上是减函数,且有最小值2,则函数)(x F =-|)(x f |() (A )是[a ,b ]上的减函数且有最大值-2;(B )是[a ,b ]上的增函数且有最小值-2;(C )是[a ,b ]上的减函数且有最小值-2;(D )是[a ,b ]上的增函数且有最大值-2.4.已知函数)(x f =c bx ax ++12为奇函数(a 、b ∈Z ),)1(f =2,)2(f <3.(1)求)(x f 的解析式;(2)当x <0时,确定)(x f 的单调递增区间,并给予证明.5.对于x ∈R ,函数)(x f 表示x -1与|2x -4x +3|中大的一个值.(1)求)0(f ,)1(f ,)2(f ,)3(f ;(2)作出y =)(x f 的图象;(3)在[0,2]内,求)(x f 的值域.。

高三一轮复习函数单调性(题型大全)

高三一轮复习函数单调性(题型大全)

高三一轮复习—函数的单调性(题型大全)一、判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数; (4)单调函数的性质法;(5)图象法;(6)复合函数的单调性结论等二、题型(1)求函数单调区间(2)证明函数单调性(3)利用函数单调性求值域、最值(4)利用函数单调性比较大小(5)利用函数单调性求参数值和参数的取值范围(6)抽象函数单调性三、分类练习(1)求函数单调区间1.32()23f x x x =-2.3()f x x ax =-3.3()f x ax x =-4.2237()(1)x f x x -=- 5.5()x f x x e -=⋅(2)证明函数单调性1、求证函数y=x ³+x 在R 上是增函数。

2、证明函数xx x f 1)(+=在)1,0(上是减函数。

3、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明. (3)利用函数单调性求值域、最值1、 y=-+2x x -6 2、 y=+x 1-x 3、 y=+3-x 2x + 4、 求函数12-=x y 在区间]6,2[上的最大值和最小值. (4) 利用函数单调性比较大小1、如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。

2、已知函数()f x 在区间()0+∞,上是减函数,那么()21f a a -+与34f ⎛⎫⎪⎝⎭的大小 关系为 3、已知f(x)在区间),(+∞-∞上是减函数,a,b ∈R,且a+b ≤0,则下列正确的是:A 、f(a)+f(b) ≤-[f(a)+f(b)]B 、f(a)+f(b) ≤f(-a)+f(-b)C 、f(a)+f(b) ≥-[f(a)+f(b)]D 、f(a)+f(b) ≥f(-a)+f(-b)(5)利用函数单调性求参数值和参数的取值范围1、已知函数3)3(422--+=x a x y 在区间(-∞,-3)上是减函数,则实数a 的取值范围是_________.2、函数32)(2--=ax x x f 在区间]2,1[上单调,求a 的取值范围.3、若函数)(x f y =在),0[+∞上单调递减,且0)()(2<-t f t f ,求t 的取值范围.(6)抽象函数单调性1、 )(x f 是定义在),0(+∞上的增函数,且)()(f y f x f y x -=⎪⎪⎭⎫⎝⎛。

巅峰冲刺山东省2020高考数学一轮考点扫描专题05 函数单调性与最值 含解析

巅峰冲刺山东省2020高考数学一轮考点扫描专题05 函数单调性与最值 含解析

巅峰冲刺 山东省2020年高考数学一轮考点扫描专题05 函数的单调性与最值一、【知识精讲】 1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值(1)对∀x 1,x 2∈D (x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D 上是减函数,即Δx 与Δy 同号增,异号减.(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.(4)f (x )=x +ax(a >0)的单调性,如图可知,(0,a ]减,[a ,+∞)增,[-a ,0)减,(-∞,-a ]增.二、【典例精练】例1.(1)(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】(1)D【解析】由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 故选D .(2) 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解析】 法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减;当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.【方法小结】 1.对于选择题,填空题可用下面四种方法判断函数单调性(1)定义法:取值、作差、变形因式分解、配方、有理化、通分、定号、下结论. (2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.2.证明函数的单调性有定义法、导数法.但在高考中,见到有解析式,尽量用导数法. 易错警示:①求函数的单调区间,应先求定义域,在定义域内求单调区间. ②如有多个单调增减区间应分别写,不能用“∪”联结.例2. (1) (2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.【答案】(1)B (2)1, 52(3)4【解析】(1) 法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M=x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B .法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,故函数f (x )在区间[0,1]的最大值M 和最小值m 变化,则M -m 的值在变化,故与a 有关.故选B . (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.【解法小结】 求函数最值的5种常用方法21212x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c【答案】D【解析】 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数.所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,f (2)>f (2.5)>f (3),所以b >a >c .(2)设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)【答案】B【解析】 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2].(3)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________. 【答案】(2,3]【解析】 要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].【方法小结】 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值. 三、【名校新题】1.(2019·广州模拟)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A.f (x )=2x B.f (x )=|x -1| C.f (x )=1x -xD.f (x )=ln(x +1)【答案】C【解析】由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.(2019·石家庄调研)若函数f (x )=(m -1)x +b 在R 上是增函数,则f (m )与f (1)的大小关系是( ) A. f (m )>f (1) B. f (m )<f (1) C. f (m )≥f (1)D. f (m )≤f (1)【答案】A【解析】因为f (x )=(m -1)x +b 在R 上是增函数,则m -1>0,所以m >1,所以f (m )>f (1).3.(2019·东北三省四校质检)若函数y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A.(-∞,-4)∪[2,+∞)B.(-4,4]C.[-4,4)D.[-4,4]【答案】D【解析】令t =x 2-ax +3a ,则y =log 12t (t >0),易知t =x 2-ax +3a 在⎝⎛⎭⎫-∞,a2上单调递减, 在⎝⎛⎭⎫a 2,+∞上单调递增.∵y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,∴t =x 2-ax +3a 在(2,+∞)上是增函数,且在(2,+∞)上t >0, ∴2≥a2,且4-2a +3a ≥0,∴a ∈[-4,4].4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12【答案】C【解析】由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.(2019·郑州调研)函数f (x )=x -1x 2在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( )A.3116B.2C.94D.114【答案】A【解析】易知f (x )=x -1x 2在[1,4]上是增函数,∴M =f (x )max =f (4)=2-116=3116,m =f (1)=0.因此M -m =3116.6.(2019·兰州一模)已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( ) A.(-∞,-1] B.[-1,+∞) C.[-1,1)D.(-3,-1]【答案】C【解析】令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1).7.(2019·蚌埠模拟)已知单调函数f (x ),对任意的x ∈R 都有f [f (x )-2x ]=6,则f (2)=( ) A.2B.4C.6D.8【答案】C【解析】设t =f (x )-2x ,则f (t )=6,且f (x )=2x +t ,令x =t ,则f (t )=2t +t =6,∵f (x )是单调函数,且f (2)=22+2=6,∴t =2,即f (x )=2x +2,则f (2)=4+2=6. 8. (2019·成都诊断)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是______. 【答案】1【解析】法一 在同一坐标系中, 作函数f (x ),g (x )图象,依题意,h (x )的图象如图所示的实线部分. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 因此h (x )在x =2时取得最大值h (2)=1.9.(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________. 【答案】[3,+∞).【解析】函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞) 10.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________. 【答案】(-∞,3)【解析】f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.11.(2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.【答案】 [-1,+∞) 【解析】设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). 11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 【解析】(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 【解析】(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].13.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )> -1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 【解析】(1)令x =y =0,得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。

高三数学一轮复习函数的单调性

高三数学一轮复习函数的单调性

函数的单调性〖考纲要求〗理解增函数、减函数的定义,并会运用定义判定或证明一些简单函数的增减性;能结合函数的图象划分函数的单调区间;〖复习要求〗理解增函数、减函数的定义,并会运用定义判定或证明一些简单函数的增减性;能结合函数的图象划分函数的单调区间;会讨论复合函数的单调性.〖复习建议〗理解增函数、减函数的定义,掌握判断函数单调性的方法与步骤:设值、作差、比较、结论,能借助图象寻找函数的单调区间,掌握简单的复合函数单调性规律,学会用变量变化规律逐步寻找函数变化规律的判断方法〖双基回顾〗1、函数y =f (x )在其定义域的一个子区间M 上为增函数(减函数)的充要条件是:、在此区间M 上,函数的图象是 ;如果函数y =f (x )在区间M 上为增函数或为减函数,则称在M 上具有 、M 称为f (x )的 .2、一次函数y =kx +b ,当k >0时,在 上是 函数、当k <0时,在 上是函数、3、奇函数y =f (x )在区间[a ,b ]上是减函数,那么它在区间[-b ,-a ]上是 ;偶函数y =f (x )在区间[a ,b ]上是减函数,那么它在区间[-b ,-a ]上是 .(填增减性)4、函数y =x +xa (a >0)的单调区间为 .(记住这个结论) 一、基础知识练习:1、奇函数f (x )在[3,7]上单调递增且最小值为5,那么在[-7,-3]上……………………( )(A )递增,最小-5 (B )递减,最小-5 (C )递增,最大-5 (D )递减,最大-52、函数f (x )在[a ,b ]上单调并且f (a )·f (b )<0,则方程f (x )=0在[a ,b ]上…………( )(A )至少一解 (B )至多一解 (C )恰一解 (D )无解3、函数f (x )=x 2+mx +n 满足f (2+t)=f (2-t),那么a =f (1),b =f (2),c =f (4)的大小关系是…………( )(A )b <a <c (B )a <b <c (C ) b <c <a (D ) c <b <a4、函数y =(2k +1)x +b 在R 上为减函数,则k ∈ .5、f (x )=log a |x +1|在(-1,0)上恒正,则在(-∞,-1)上f (x )=log a |x +1|的单调性为 .6、函数f (x )=xx x 1log 823-+-的值域为 . 题型一:函数单调性的判断或证明[例1] 已知函数f (x )=x 2+1-ax ,其中a >0.证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数.3.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.题型二:求函数的单调区间例2求下列函数的单调区间.(1)f(x)=-x2+2|x|+3;(2)f(x)=log12(-x2-2x+3).思考题2求下列函数的单调区间.(1)f(x)=13-2x-x2;(2)y=x-ln(x-1).题型三:由函数的单调性求参数的值(或范围)1.已知函数f(x)=x2+ax(a>0)在(2,+∞)上为单调递增函数,求实数a的取值范围.2.已知函数f(x)=x-5x-a-2在(2,+∞)上为单调递增函数,求实数a的取值范围.3.若函数f(x)=4x2-kx-8在[5,20]上是单调递增函数,则实数k的取值范围是________.题型三:单调性性质应用1.若f(x)为R上的增函数,则满足f(2-m)<f(m2)的实数m的取值范围是________.2、定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.3.已知函数f (x )=x 2+2x +a x ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.巩固练习:1.函数y =-x 2+2x -3(x <0)的单调增区间是( )A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]2.(2012·佛山月考)若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是() A .增函数 B .减函数C .先增后减D .先减后增3.(2010·天津高考)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧ g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是( )A .[-94,0]∪(1,+∞)B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)4.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)5.函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32B.⎣⎡⎭⎫32,+∞C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,46.已知函数f (x )=x 2-cos x ,则f (-0.5),f (0),f (0.6)的大小关系是A .f (0)<f (-0.5)<f (0.6)B .f (-0.5)<f (0.6)<f (0)C .f (0)<f (0.6)<f (-0.5)D .f (-0.5)<f (0)<f (0.6)7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)8.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意的x ∈[t ,t +2],不等式f (x +t )≥2f (x )恒成立,则实数t 的取值范围是A .[2,+∞)B .[3,5)C .[2,3)D .[3,+∞)6.函数y =-(x -3)|x |的递增区间是________.9.已知函数f (x )=2x -12x ,且g (x )=⎩⎨⎧f (x ), x ≥0,f (-x ), x <0,则函数g (x )的最小值是________.10.已知函数f (x )=3-ax a -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________.11.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f ⎝⎛⎭⎫13=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值范围.12.已知:)1()1()(log 22--=a x x a x f a ,讨论函数f (x )的单调性13已知函数f (x )=(a +1)ln x +ax 2+1.(1)讨论函数f (x )的单调性;(2)设a <-1.如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.。

高考总复习函数的单调性与最值习题及详解

高考总复习函数的单调性与最值习题及详解

高考总复习函数的单调性与最值习题及详解一、选择题1.已知f〔x〕=-x-x3,x∈[a,b],且f〔a〕·f〔b〕<0,则f〔x〕=0在[a,b]内〔〕A.至少有一实数根B.至多有一实数根C.没有实数根D.有唯一实数根[答案] D[解析] ∵函数f〔x〕在[a,b]上是单调减函数,又f〔a〕,f〔b〕异号.∴f〔x〕在[a,b]内有且仅有一个零点,故选D.2.〔2010·北京文〕给定函数①y=x,②y=log〔x+1〕,③y=|x-1|,④y=2x+1,其中在区间〔0 ,1〕上单调递减的函数的序号是〔〕A.①②B.②③C.③④D.①④[答案] B[解析]易知y=x在〔0,1〕递增,故排除A、D选项;又y=log〔x+1〕的图象是由y=logx的图象向左平移一个单位得到的,其单调性与y=logx相同为递减的,所以②符合题意,故选B.3.〔2010·济南市模拟〕设y1=0.4,y2=0.5,y3=0.5,则〔〕A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y2[答案] B[解析]∵y=0.5x为减函数,∴0.5<0.5,∵y=x在第一象限内是增函数,∴0.4<0.5,∴y1<y2<y3,故选B.4.〔2010·广州市〕已知函数,若f〔x〕在〔-∞,+∞〕上单调递增,则实数a的取值范围为〔〕A.〔1,2〕B.〔2,3〕C.〔2,3] D.〔2,+∞〕[答案] C[解析] ∵f〔x〕在R上单调增,∴,∴2<a≤3,故选C.5.〔文〕〔2010·山东济宁〕若函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,则实数a的取值范围是〔〕A.a≥0 B.a≤0C.a≥-4 D.a≤-4[答案] D[解析]∵函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,∴当x∈〔0,1〕时,f ′〔x〕=2x+2+=≤0,∴g〔x 〕=2x2+2x+a≤0在x∈〔0,1〕时恒成立,∴g〔0〕≤0,g〔1〕≤0,即a≤-4.〔理〕已知函数y=tanωx在内是减函数,则ω的取值范围是〔〕A.0<ω≤1 B.-1≤ω<0C.ω≥1 D.ω≤-1[答案] B[解析]∵tanωx在上是减函数,∴ω<0.当-<x<时,有-≤<ωx<-≤,∴,∴-1≤ω<0.6.〔2010·天津文〕设a=log54,b=〔log53〕2,c=log45,则〔〕A.a<c<b B.b<c<aC.a<b<c D.b<a<c[答案] D[解析] ∵1>log54>log53>0,∴log53>〔log53〕2>0,而log45>1,∴c>a>b.7.若f〔x〕=x3-6ax的单调递减区间是〔-2,2〕,则a的取值范围是〔〕A.〔-∞,0] B.[-2,2]C.{2} D.[2,+∞〕[答案] C[解析] f ′〔x〕=3x2-6a,若a≤0,则f ′〔x〕≥0,∴f〔x〕单调增,排除A;若a>0,则由f ′〔x〕=0得x=±,当x<-和x>时,f ′〔x〕>0,f〔x〕单调增,当-<x<时,f〔x〕单调减,∴f〔x〕的单调减区间为〔-,〕,从而=2,∴a=2.[点评]f〔x〕的单调递减区间是〔-2,2〕和f〔x〕在〔-2,2〕上单调递减是不同的,应加以区分.8.〔文〕定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,若f〔〕=0,则适合不等式f〔logx〕> 0的x的取值范围是〔〕A.〔3,+∞〕B.〔0,〕C.〔0,+∞〕D.〔0,〕∪〔3,+∞〕[答案] D[解析]∵定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,且f〔〕=0,则由f〔logx〕>0,得|logx|>,即logx>或logx<-.选D.〔理〕〔2010·南充市〕已知函数f 〔x 〕图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上f 〔x 〕单调递增,设a =f 〔3〕,b =f 〔〕,c =f 〔2〕,则a 、b 、c 的大小关系是〔 〕A .a>b>cB .a>c>bC .b>c>aD .c>b>a [答案] D[解析] ∵f 〔x 〕在[-1,0]上单调增,f 〔x 〕的图象关于直线x =0对称,∴f〔x 〕在[0,1]上单调减;又f 〔x 〕的图象关于直线x =1对称,∴f〔x 〕在[1,2]上单调增,在[2,3]上单调减.由对称性f 〔3〕=f 〔-1〕=f 〔1〕<f 〔〕<f 〔2〕,即a<b<c.9.〔2009·天津高考〕已知函数f 〔x 〕=若f 〔2-a2〕>f 〔a 〕,则实数a 的取值范围是〔 〕A .〔-∞,-1〕∪〔2,+∞〕B .〔-1,2〕C .〔-2,1〕D .〔-∞,-2〕∪〔1,+∞〕[答案] C[解析]∵x≥0时,f 〔x 〕=x2+4x =〔x +2〕2-4单调递增,且f 〔x 〕≥0;当x<0时,f 〔x 〕=4x -x2=-〔x -2〕2+4单调递增,且f 〔x 〕<0,∴f 〔x 〕在R 上单调递增,由f 〔2-a2〕>f 〔a 〕得2-a2>a ,∴-2<a<1.10.〔2010·泉州模拟〕定义在R 上的函数f 〔x 〕满足f 〔x +y 〕=f 〔x 〕+f 〔y 〕,当x<0时,f 〔x 〕>0,则函数f 〔x 〕在[a ,b]上有〔 〕A .最小值f 〔a 〕B .最大值f 〔b 〕C .最小值f 〔b 〕D .最大值f ⎝⎛⎭⎪⎫a +b 2 [答案] C[解析] 令x =y =0得,f 〔0〕=0,令y =-x 得,f 〔0〕=f 〔x 〕+f 〔-x 〕,∴f〔-x 〕=-f 〔x 〕.对任意x1,x2∈R 且x1<x2,,f 〔x1〕-f 〔x2〕=f 〔x1〕+f 〔-x2〕=f 〔x1-x2〕>0,∴f 〔x1〕>f 〔x2〕,∴f〔x 〕在R 上是减函数,∴f〔x 〕在[a ,b]上最小值为f 〔b 〕.二、填空题11.〔2010·重庆中学〕已知函数f 〔x 〕=ax +-4〔a ,b 为常数〕,f 〔lg2〕=0,则f 〔lg 〕=________.[答案] -8[解析] 令φ〔x 〕=ax +,则φ〔x 〕为奇函数,f 〔x 〕=φ〔x 〕-4,∵f〔lg2〕=φ〔lg2〕-4=0,∴φ〔lg2〕=4,∴f〔lg 〕=f 〔-lg2〕=φ〔-lg2〕-4=-φ〔lg2〕-4=-8.12.偶函数f 〔x 〕在〔-∞,0]上单调递减,且f 〔x 〕在[-2,k]上的最大值点与最小值点横坐标之差为3,则k =________.[答案] 3[解析] ∵偶函数f 〔x 〕在〔-∞,0]上单调递减,∴f 〔x 〕在[0,+∞〕上单调递增.因此,若k≤0,则k -〔-2〕=k +2<3,若k>0,∵f 〔x 〕在[-2,0]上单调减在[0,-k]上单调增,∴最小值为f 〔0〕,又在[-2,k]上最大值点与最小值点横坐标之差为3,∴k -0=3,即k =3.13.函数f 〔x 〕=在〔-∞,-3〕上是减函数,则a 的取值范围是________.[答案] ⎝⎛⎭⎪⎫-∞,-13 [解析] ∵f 〔x 〕=a -在〔-∞,-3〕上是减函数,∴3a +1<0,∴a<-.14.〔2010·江苏无锡市调研〕设a 〔0<a<1〕是给定的常数,f 〔x 〕是R 上的奇函数,且在〔0,+∞〕上是增函数,若f =0,f 〔logat 〕>0,则t 的取值范围是______.[答案] 〔1,〕∪〔0,〕[解析] f 〔logat 〕>0,即f 〔logat 〕>f ,∵f〔x 〕在〔0,+∞〕上为增函数,∴logat>,∵0<a<1,∴0<t<.又f 〔x 〕为奇函数,∴f =-f =0,∴f〔logat 〕>0又可化为f 〔logat 〕>f ,∵奇函数f 〔x 〕在〔0,+∞〕上是增函数,∴f〔x 〕在〔-∞,0〕上为增函数,∴0>logat>-,∵0<a<1,∴1<t<,综上知,0<t<或1<t<.三、解答题15.〔2010·北京市东城区〕已知函数f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕,a>0且a≠1.〔1〕求f 〔x 〕的定义域;〔2〕判断f 〔x 〕的奇偶性并予以证明;〔3〕当a>1时,求使f 〔x 〕>0的x 的取值集合.[解析] 〔1〕要使f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕有意义,则⎩⎪⎨⎪⎧ x +1>01-x>0,解得-1<x<1.故所求定义域为{x|-1<x<1}.〔2〕由〔1〕知f 〔x 〕的定义域为{x|-1<x<1},且f 〔-x 〕=loga 〔-x +1〕-loga 〔1+x 〕=-[loga 〔x +1〕-loga 〔1-x 〕]=-f 〔x 〕,故f 〔x 〕为奇函数.〔3〕因为当a>1时,f 〔x 〕在定义域{x|-1<x<1}内是增函数,所以f 〔x 〕>0⇔>1.解得0<x<1.所以使f 〔x 〕>0的x 的取值集合是{x|0<x<1}.16.〔2010·北京东城区〕已知函数f 〔x 〕=loga 是奇函数〔a>0,a≠1〕.〔1〕求m 的值;〔2〕求函数f 〔x 〕的单调区间;〔3〕若当x ∈〔1,a -2〕时,f 〔x 〕的值域为〔1,+∞〕,求实数a 的值.[解析] 〔1〕依题意,f 〔-x 〕=-f 〔x 〕,即f 〔x 〕+f 〔-x 〕=0,即loga +loga =0, ∴·=1,∴〔1-m2〕x2=0恒成立,∴1-m2=0,∴m=-1或m =1〔不合题意,舍去〕当m =-1时,由>0得,x ∈〔-∞,-1〕∪〔1,+∞〕,此即函数f 〔x 〕的定义域,又有f 〔-x 〕=-f 〔x 〕,∴m =-1是符合题意的解.〔2〕∵f 〔x 〕=loga ,∴f ′〔x 〕=′logae=·logae =2logae 1-x2①若a>1,则logae>0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕<0,f 〔x 〕在〔1,+∞〕上单调递减,即〔1,+∞〕是f 〔x 〕的单调递减区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递减区间.②若0<a<1,则logae<0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕>0,∴〔1,+∞〕是f 〔x 〕的单调递增区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递增区间.〔3〕令t ==1+,则t 为x 的减函数∵x∈〔1,a -2〕,∴t∈且a>3,要使f 〔x 〕的值域为〔1,+∞〕,需loga =1,解得a =2+.17.〔2010·山东文〕已知函数f 〔x 〕=lnx -ax +-1〔a ∈R 〕.〔1〕当a=-1时,求曲线y=f〔x〕在点〔2,f〔2〕〕处的切线方程;〔2〕当a≤时,讨论f〔x〕的单调性.[解析] 〔1〕a=-1时,f〔x〕=lnx+x+-1,x∈〔0,+∞〕.f ′〔x〕=,x∈〔0,+∞〕,因此f ′〔2〕=1,即曲线y=f〔x〕在点〔2,f〔2〕〕处的切线斜率为1.又f〔2〕=ln2+2,所以y=f〔x〕在〔2,f〔2〕〕处的切线方程为y-〔ln2+2〕=x-2,即x-y+ln2=0.〔2〕因为f〔x〕=lnx-ax+-1,所以f ′〔x〕=-a+=-x∈〔0,+∞〕.令g〔x〕=ax2-x+1-a,①当a=0时,g〔x〕=1-x,x∈〔0,+∞〕,当x∈〔0,1〕时,g〔x〕>0,f ′〔x〕<0,f〔x〕单调递减;当x∈〔1,+∞〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;②当a≠0时,f ′〔x〕=a〔x-1〕[x-〔-1〕],〔ⅰ〕当a=时,g〔x〕≥0恒成立,f ′〔x〕≤0,f〔x〕在〔0,+∞〕上单调递减;〔ⅱ〕当0<a<时,-1>1>0,x∈〔0,1〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;x∈〔1,-1〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;x∈〔-1,+∞〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;③当a<0时,-1<0,x∈〔0,1〕时,g〔x〕>0,有f ′〔x〕<0,f〔x〕单调递减x∈〔1,+∞〕时,g〔x〕<0,有f ′〔x〕>0,f〔x〕单调递增.综上所述:当a≤0时,函数f〔x〕在〔0,1〕上单调递减,〔1,+∞〕上单调递增;当a=时,f〔x〕在〔0,+∞〕上单调递减;当0<a<时,f〔x〕在〔0,1〕上单调递减,在〔1,-1〕上单调递增,在〔-1,+∞〕上单调递减.注:分类讨论时要做到不重不漏,层次清楚.。

芝罘区数学必修一函数及其表示复习课

芝罘区数学必修一函数及其表示复习课

课题:函数及其表示复习课一、基础习题练习:(口答下列基础题的主要解答过程 → 指出题型解答方法)1.说出下列函数的定义域与值域: 835y x =+; 243y x x =-+; 2143y x x =-+; 2.已知1()1f x x =-,求(2)f , ((3))f f , (())f f x ; 3.已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩,(1)作出()f x 的图象;(2)求(1),(1),(0),{[(1)]}f f f f f f -- 的值二、讲授典型例题:例1.已知函数)(x f =4x+3,g(x)=x 2, 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].例2.求下列函数的定义域:(1)0(1)x y x x +=-;(2)22423x y x x -=+-; 例3.若函数222(1)(1)1y a x a x a =-+-++的定义域为R,求实数a 的取值范围. ([]1,9a ∈)例4. 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x 分钟,两种通讯方式的费用分别为12,y y (元).(1).写出12,y y 与x 之间的函数关系式?(2).一个月内通话多少分钟,两种通讯方式的费用相同?(3).若某人预计一个月内使用话费200元,应选择哪种通讯方式?三.巩固练习:1.已知)(x f =x 2-x+3 ,求:f(x+1), f(x1)的值; 2.若(12f x x x +=+),求函数(x f )的解析式; 3.设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(xf的解析式.4.已知函数3231()3xf xax ax-=+-的定义域为R,求实数a的取值范围.。

高考数学(山东新高考版)一轮复习课件:2.2函数的单调性与最值

高考数学(山东新高考版)一轮复习课件:2.2函数的单调性与最值
- =
-
1 2
2
1 2
2
1
+ , ≥ 0,
4
1
- , < 0.
4
画出函数的图象如图所示.
1
由图易知原函数在 0, 2 上单调递增.故选 B.
核心素养专项提升
-20-
第八单元
考点一
考点1
考点2
考点二
核心素养专项提升
-21-
考点3
-10-
第八单元
考点一
考点1
考点2
考点二
核心素养专项提升
考点3
思考判断函数单调性的基本方法有哪些?
解题心得1.判断函数单调性的四种方法:
(1)定义法;(2)图象法;(3)利用已知函数的单调性;(4)导数法.
2.证明函数在某区间上的单调性有两种方法:
(1)定义法:基本步骤为取值、作差或作商、变形、判断.
5.(202X江西新余一中质检一,13)已知y=f(x)是定义在(-2,2)上的
1
1 2
- ,
2 3
2
2
3
增函数,若f(m-1)<f(1-2m),则m的取值范围是
解析:由已知可得-2<m-1<1-2m<2,解得- <m< .
.
-8-
第八单元
考点一
考点1
考点2
考点二
核心素养专项提升
考点3
证明或判断函数的单调性
那么就说函数 f(x)在区间 D 那么就说函数 f(x)在区间 D 上
上是增函数
是减函数
自左向右看图象是上升的
自左向右看图象是降落的
-2-
第八单元
考点一
知识梳理

芝罘区数学必修一单调性与最大(小)值

芝罘区数学必修一单调性与最大(小)值

高中数学必修——单调性与最大(小)值 (例题讲解)1.教学增函数、减函数、单调性、单调区间等概念:①根据f(x)=3x +2、 f(x)=x 2 (x>0)的图象进行讨论变化趋势:②.一次函数、二次函数和反比例函数,增大或减小的性质?③增函数定义:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function )④减函数的定义;⑤定义:如果函数f(x)在某个区间D 上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D 叫f(x)的单调区间。

1、 例题讲解例1(P29例1) 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?探究:32y x =-的图象与3y x =的关系? 三、巩固练习:1.求证f(x)=x +x1的(0,1)上是减函数,在[1,+∞]上是增函数。

2.判断f(x)=|x|、y=x 3的单调性并证明。

3.讨论f(x)=x 2-2x 的单调性。

推广:二次函数的单调性四、小结:比较函数值的大小问题,运用比较法而变成判别代数式的符号。

判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2; →计算f(x 1)-f(x 2)至最简→判断差的符号→下结论。

课题: 单调性与最大(小)值 (二)1.教学函数最大(小)值的概念:① 指出下列函数图象的最高点或最低点,→ 能体现函数值有什么特征?()23f x x =-+,()23f x x =-+ [1,2]x ∈-;2()21f x x x =++,2()21f x x x =++ [2,2]x ∈-② 定义最大值:设函数y=f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x)≤M ;存在x 0∈I ,使得f(x 0) = M . 那么,称M 是函数y=f(x)的最大值(Maximum Value )2、 例题讲解:例1函数21y x =-在区间[2,6] 上的最大值和最小值. 例2.求函数1y x x =+-的最大值三、巩固练习:1. 求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--2.一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?3、 求函数21y x x =+-的最小值.。

烟台芝罘区数学高三专题复习 函数分段函数及题型

烟台芝罘区数学高三专题复习 函数分段函数及题型

烟台芝罘区数学2015-2016高三专题复习-函数(1)分段函数及题型烟台乐博士教育特供 明老师整理【经典例题赏析】例1.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时,5154x -+<-+=, 综上有max ()4f x =.例2.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 答案A.222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 例3.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->,22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有yxx()()f x f x -=, 所以()f x 为偶函数.例4.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例5.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-. 例6.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )答案D..(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例7.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨≥⎪⎩, 则使得()1f x ≥的自变量x的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时,()141310f x x ≥⇔-≥⇔≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.xy针对性课堂训练1.函数xxx y +=的图象是( )3 函数lg y x =( )A . 是偶函数,在区间(,0)-∞ 上单调递增B . 是偶函数,在区间(,0)-∞上单调递减C . 是奇函数,在区间(0,)+∞ 上单调递增D 是奇函数,在区间(0,)+∞上单调递减2、画出函数|32||1|++-=x x y 在区间)3,4[-的图象⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+<<-+-≤≤---=)31(23)123(4)234(23x x x x x x y4.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t N p t t t N +<<∈⎧=⎨-+≤≤∈⎩该商品的日销售量Q (件)与时间t (天)的函数关系是40+-=t Q ),300(N t t ∈≤<,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?。

(山东专用)高考数学总复习 第二章第2课时 函数的单调性与最值

(山东专用)高考数学总复习 第二章第2课时 函数的单调性与最值

(山东专用)高考数学总复习第二章第2课时函数的单调性与最值2021年高考数学总复习(山东专用)第二章第2课时函数的单调性与最值课时闯关(含解析)一、选择题1.(2021・郑州质检)函数y=1-1( ) x-1A.在(-1,+∞)上单调递增 B.在(-1,+∞)上单调递减 C.在(1,+∞)上单调递增 D.在(1,+∞)上单调递减答案:C22.若函数f(x)=ax+1在R上递减,则函数g(x)=a(x-4x+3)的增区间是( ) A.(2,+∞) B.(-∞,2) C.(-2,+∞) D.(-∞,-2) 答案:B2??x+4x,x≥0,23.已知函数f(x)=?若f(2-a)>f(a),则实数a的取值范围是( ) 2?4x-x,x<0.?A.(-∞,-1)∪(2,+∞) B.(-1,2)C.(-2,1) D.(-∞,-2)∪(1,+∞) 解析:选C.由f(x)的图象可知f(x)在(-∞,+∞)上是单调递增函数,222由f(2-a)>f(a)得2-a>a,即a+a-2<0,解得-2<a<1.4.已知函数y=f(x)满足:f(-2)>f(-1),f(-1)<f(0),则下列结论正确的是( ) A.函数y=f(x)在区间[-2,-1]上单调递减,在区间[-1,0]上单调递增 B.函数y=f(x)在区间[-2,-1]上单调递增,在区间[-1,0]上单调递减 C.函数y=f(x)在区间[-2,0]上的最小值是f(-1) D.以上的三个结论都不正确解析:选D.仅由几个函数值的大小关系无法确定函数的单调性,可以举反例说明.ax??5.若f(x)=??a??4-?x+???2?xx<是R上的单调递增函数,则实数a的取值范围为( )A.(1,+∞) B.[4,8) C.(4,8) D.(1,8)解析:选B.函数f(x)在(-∞,1)和[1,+∞)上都为增函数,且f(x)在(-∞,1)上的最?a?4->0高点不高于其在[1,+∞)上的最低点,即?2aa≥4-??2+2二、填空题a>1,解得a∈[4,8),故选B.?|x|,|x|≥1,?6.设f(x)=?则f(x)的值域为________.?x,|x|<1,?解析:当|x|<1时,-1<f(x)<1;当|x|≥1时,f(x)≥1. 综上知:值域为(-1,+∞).答案:(-1,+∞)7.函数y=-(x-3)|x|的递增区间是________.解析:y=-(x-3)|x|??-x+3x,x>0,=?2?x-3x,x≤0.?23作出该函数的图象,观察图象知递增区间为[0,].23答案:[0,] 228.如果函数f(x)=ax+2x-3在区间(-∞,4)上是单调递增的,则实数a的取值范围是________.解析:(1)当a=0时,f(x)=2x-3,在定义域R上是单调递增的,故在(-∞,4)上单调递增;1(2)当a≠0时,二次函数f(x)的对称轴为直线x=-,因为f(x)在(-∞,4)上单调递增,a111所以a<0,且-≥4,解得-≤a<0.综上所述-≤a≤0.a44?1?答案:?-,0? ?4?三、解答题29.求函数f(x)=2x+(x-1)|x-1|的最小值.解:当x≥1时,f(x)=2x+(x-1)(x-1)=3x-2x+1 ?1?22=3?x-?+, ?3?3故x=1时,取最小值2.222当x<1时,f(x)=2x-(x-1)(x-1)=x+2x-1=(x+1)-2,故x=-1时,取到最小值-2.综上所述,f(x)的最小值为-2.1110.已知函数f(x)=-(a>0,x>0).ax(1)求证:f(x)在(0,+∞)上是单调递增函数;11(2)若f(x)在[,2]上的值域是[,2],求a的值.22解:(1)证明:设x2>x1>0,则x2-x1>0,x1x2>0. ∵f(x2)-f(x1) 1111=(-)-(-)ax2ax111=- x1x2x2-x1=>0, x1x2∴f(x2)>f(x1),∴f(x)在(0,+∞)上是单调递增的.11(2)∵f(x)在[,2]上的值域是[,2],221又f(x)在[,2]上单调递增,211∴f()=,f(2)=2,2易得a=. 511.(2021・贵阳质检)已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.解:(1)证明:任设x1<x2<-2,则f(x1)-f(x2)==- x1+2x2+2x1x22x1-x2.x1+x2+∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增. (2)任设1<x1<x2,则x1x2f(x1)-f(x2)=- x1-ax2-aax2-x1=.x1-ax2-a∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1. 综上所述知0<a≤1.感谢您的阅读,祝您生活愉快。

(山东专用)2020年高考数学一轮复习专题05函数单调性与最值(含解析)

(山东专用)2020年高考数学一轮复习专题05函数单调性与最值(含解析)

专题05 函数的单调性与最值一、【知识精讲】 1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值[(1)对∀x 1,x 2∈D (x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D 上是减函数,即Δx 与Δy 同号增,异号减.(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(3)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.(4)f (x )=x +ax(a >0)的单调性,如图可知,(0,a ]减,[a ,+∞)增,[-a ,0)减,(-∞,-a ]增.二、【典例精练】例1.(1)(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】(1)D【解析】由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 故选D .(2) 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解析】 法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.【方法小结】 1.对于选择题,填空题可用下面四种方法判断函数单调性(1)定义法:取值、作差、变形因式分解、配方、有理化、通分、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性判断函数单调性. (4)导数法:利用导函数的正负判断函数单调性.2.证明函数的单调性有定义法、导数法.但在高考中,见到有解析式,尽量用导数法. 易错警示:①求函数的单调区间,应先求定义域,在定义域内求单调区间. ②如有多个单调增减区间应分别写,不能用“∪”联结.例2. (1) (2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.【答案】(1)B (2)1, 52(3)4【解析】(1)法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B .法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,故函数f (x )在区间[0,1]的最大值M 和最小值m 变化,则M -m 的值在变化,故与a 有关.故选B . (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数,∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.【解法小结】 求函数最值的5种常用方法例2121x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【答案】D【解析】 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数.所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,f (2)>f (2.5)>f (3),所以b >a >c . (2)设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)【答案】B【解析】 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2].(3)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________. 【答案】(2,3]【解析】 要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].【方法小结】 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值. 三、【名校新题】1.(2019·广州模拟)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A.f (x )=2xB.f (x )=|x -1|C.f (x )=1x-xD.f (x )=ln(x +1)【答案】C【解析】由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.(2019·石家庄调研)若函数f (x )=(m -1)x +b 在R 上是增函数,则f (m )与f (1)的大小关系是( ) A.f (m )>f (1) B.f (m )<f (1) C.f (m )≥f (1)D.f (m )≤f (1)【答案】A【解析】因为f (x )=(m -1)x +b 在R 上是增函数,则m -1>0,所以m >1,所以f (m )>f (1).3.(2019·东北三省四校质检)若函数y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A.(-∞,-4)∪[2,+∞)B.(-4,4]C.[-4,4)D.[-4,4]【答案】D【解析】令t =x 2-ax +3a ,则y =log 12t (t >0),易知t =x 2-ax +3a 在⎝⎛⎭⎪⎫-∞,a 2上单调递减,在⎝ ⎛⎭⎪⎫a2,+∞上单调递增.∵y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,∴t =x 2-ax +3a 在(2,+∞)上是增函数,且在(2,+∞)上t >0, ∴2≥a2,且4-2a +3a ≥0,∴a ∈[-4,4]. 4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12【答案】C【解析】由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.(2019·郑州调研)函数f (x )=x -1x2在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( )A.3116B.2C.94D.114【答案】A【解析】易知f (x )=x -1x2在[1,4]上是增函数,∴M =f (x )max =f (4)=2-116=3116,m =f (1)=0.因此M -m =3116.6.(2019·兰州一模)已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( ) A.(-∞,-1] B.[-1,+∞) C.[-1,1)D.(-3,-1]【答案】C【解析】令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1).7.(2019·蚌埠模拟)已知单调函数f (x ),对任意的x ∈R 都有f [f (x )-2x]=6,则f (2)=( ) A.2 B.4 C.6 D.8【答案】C【解析】设t =f (x )-2x ,则f (t )=6,且f (x )=2x +t ,令x =t ,则f (t )=2t+t =6,∵f (x )是单调函数,且f (2)=22+2=6,∴t =2,即f (x )=2x+2,则f (2)=4+2=6. 8. (2019·成都诊断)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是______. 【答案】1【解析】法一 在同一坐标系中, 作函数f (x ),g (x )图象,依题意,h (x )的图象如图所示的实线部分. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 因此h (x )在x =2时取得最大值h (2)=1.9.(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________. 【答案】[3,+∞).【解析】函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞) 10.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________. 【答案】(-∞,3)【解析】f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.11.(2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.【答案】 [-1,+∞) 【解析】设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝⎛⎭⎪⎫x 2-a x 2+a2=(x 1-x 2)⎝⎛⎭⎪⎫1+a x 1x 2<0. ∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2. ∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). 11.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 【解析】(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎢⎡⎦⎥⎤12,2上是增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 【解析】(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a-x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].13.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 【解析】(1)令x =y =0,得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟台芝罘区数学2015-2016高三专题复习-函数(1)函数的单调性及题型
1、 A为函数f(x)定义域内某一区间,
2、单调性的判定:作差f(x1)-f(x2)判定;根据函数图象判定;
3、复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x)) 为增函数,f(x),g(x)一增、一减,f(g(x)) 为减函数.
【经典例题】
例1、设a>0且a≠1,试求函数y=log a(4+3x-x2)的单调递增区间.
[解析]:由题意可得原函数的定义域是(-1,4),
设u=4+3x-x2,其对称轴是 x=3/2 ,
所以函数u=4+3x-x2,在区间(-1,3/2 ]上单调递增;在区间[3/2 ,4)上单调递减.
①a>1时,y=log a u 在其定义域内为增函数,
由 x↑→u↑→y↑,得函数u=4+3x-x2的单调递增区间(-1,3/2 ],
即为函数y=log a(4+3x-x2) 的单调递增区间.
②0<a<1时,y=log a u 在其定义域内为减函数,
由 x↑→u↓→y↑,得函数u=4+3x-x2的单调递减区间[3/2 ,4),
即为函数y=log a(4+3x-x2)的单调递增区间.
例2、已知y=log a(2-ax) 在[0,1]上是x 的减函数,求a的取值范围。

[解析]:由题意可知,a>0.设u=g(x)=2-ax,
则g(x)在[0,1]上是减函数,且x=1时,g(x)有最小值u min=2-a .
又因为u=g(x)=2-ax>0,所以,只要 u min=2-a>0则可,得a<2.
又y=log a(2-ax) 在[0,1]上是x 减函数,u=g(x)在[0,1]上是减函数,
即x↑→u↓→y↓,所以y=log a u是增函数,故a>1.
综上所述,得1<a<2.
例3、已知f(x)的定义域为(0,+∞),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1 ,试解不等式f(x)+f(x-2)<3 .
[解析]:[此题的关键是求函数值3所对应的自变量的值]
由题意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(4×2)=f(8)
又f(x)+f(x-2)=f(x2-2x) 所以原不等式可化成f(x2-2x)<f(8)
所以原不等式的解集为{x|2<x<4}
针对性课堂练习
1.函数y =2x -4x +5在闭区间[-1,m ]上有最大值10,则m 的取值范围是( )
(A )(-∞,5]; (B )(-1,5]; (C )[2,5]; (D )(-1,+∞).
2.函数y =22x x -的单调递减区间是( )
(A )[-1,+∞); (B )(-∞,1]; (C )[0,1]; (D )[1,2].
3.设0<a <b ,奇函数)(x f 在[-b ,-a ]上是减函数,且有最小值2,则函数)(x F =-|)(x f |(
) (A )是[a ,b ]上的减函数且有最大值-2;(B )是[a ,b ]上的增函数且有最小值-2;
(C )是[a ,b ]上的减函数且有最小值-2;(D )是[a ,b ]上的增函数且有最大值-2.
4.已知函数)(x f =c bx ax ++1
2
为奇函数(a 、b ∈Z ),)1(f =2,)2(f <3.
(1)求)(x f 的解析式;
(2)当x <0时,确定)(x f 的单调递增区间,并给予证明.
5.对于x ∈R ,函数)(x f 表示x -1与|2x -4x +3|中大的一个值.
(1)求)0(f ,)1(f ,)2(f ,)3(f ;(2)作出y =)(x f 的图象;
(3)在[0,2]内,求)(x f 的值域.。

相关文档
最新文档