第五章 回归分析和曲线拟合

合集下载

sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析 ppt课件
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
2020/12/27
10
線性迴歸:曲線擬合
利用「左除」來算出最佳的 值,並同時畫出 具有最小平方誤差的二次曲線

0
a
1、a
的一次式
2
令上述導式為零之後,我們可以得到一組三元一次
線性聯立方程式,就可以解出參數 佳值。
a
0、
a
1、a
的最
2
2020/12/27
8
線性迴歸:曲線擬合
假設 21 個觀察點均通過此拋物線,將這 21 個點帶入拋物線方程式,得到下列21個等式:
a0 a1 x1 a2 x12 y1 a0 a1 x2 a2 x2 2 y2
範例10-2: census01.m
load census.mat plot(cdate, pop, 'o');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop; theta = A\y;
a0 a1 x21 a2 x212 y21
亦可寫成
1 1
x1
x2
x12 x22
1
2
y1
y2
1
x 21
x
212
3
y21
A
y
其中 2020/12/27

回归分析(曲线拟合)算法探究

回归分析(曲线拟合)算法探究

yi )
0
Q(a, b)
b
m
2 (a bxi
i 1
yi )xi
0
整理得到拟合曲线满足的方程:
ma
(
m i 1
xi )b
m i 1
yi
m
m
m
(
i 1
xi )a
(
i 1
xi2 )b
xi yi
i 1
最小二乘算法介绍
上式称为拟合曲线的法方程,可用消元法或者克莱姆方法解得:
m
yi
a i1 m xi yi i1
属性
text text text text Caption Caption Caption Caption Caption Caption Caption Caption Caption Scale Caption Caption Caption

自变量的观测值 因变量的观测值
X坐标名称 Y坐标名称 拟合类型 三次样条函数插值 最小二乘法 对数拟合 双曲线拟合 指数拟合
m
xi
i1
m
xi2
i1
m
m
xi
mm
mm
m
m
m
i1 m
( yi xi2 xi xi yi ) (m xi2 ( xi )2
xi
xi2
i1 i1
i1 i1
i1
i1
i1
i1
m
m
m
m
mHale Waihona Puke b (m xi yi xi yi ) (m xi2 ( xi )2 )
i 1
i1 i1
CH3COOC2H5 +Na+ +OH- = CH3 COO- +Na++C2H5OH 设NaOH和CH3COOC2H5 的初始浓度分别为a和b. 当a = b时, 有线性方程

回归分析曲线拟合通用课件

回归分析曲线拟合通用课件
生物医学研究
研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归

生物统计学课件--17曲线拟合(回归)

生物统计学课件--17曲线拟合(回归)

一、对数函数曲线的拟合
1、对数方程的一般表达式: yˆ a b lg x
2、对数曲线 yˆ a b lg x 的图象
3、 yˆ a b lg x 直线化方法:
若令 lg x x` ,则有 yˆ a bx`
4、求 a 和 b 的值:
b SSx`y , SSx`
a y b x`
将up= y`= 0 代入 y`= a + bx`, 则有 :0 = a + bx`,
则有:x`= -a/b,
a
因为 x` = lgx,所以 x 10 b
此时的x即为半致死剂量,用LD50表示。
a
LD50 10 b
例题:用不同剂量的 射线照射小麦品种库斑克, 调查死苗率,得到以下结果:
剂量(Kr)x 14
a 10a` 101.6706 0.0214 b 10b` 100.1181 1.3125
yˆ 0.0214 1.3125 x
350
300
250
200
150
100
50
0
15
20
25
30
35
40
回归关系的检验:可以利用 b` 或者 r 进行检验,主要是对线 性关系的检验,线性回归或相关显著,则指数回归关系的拟 合就显著。
答:半致死剂量为18.6(Kr)
五、曲线的检验
有时将同一组数据,我们将其做指数函数或幂函数形式的变 换,都能得到X与Y的拟合曲线,并且可能在做线性回归关 系检验的时候,线性关系都显著,那么,究竟哪一条拟合曲 线是最好的呢?
一般情况下,以剩余平方和或称之为误差平方和的大小来判
断,即SSe最小时的拟合曲线为最好的曲线。
第五节 曲线拟合(非线性回归分析)

spss曲线拟合与回归分析

spss曲线拟合与回归分析

曲线拟合与回归分析1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:(1)说明两变量之间的相关方向;(2)建立直线回归方程;(3)计算估计标准误差;(4)估计生产性固定资产(自变量)为1100万元时的总资产(因变量)的可能值。

解:由表格易知:工业总产值是随着生产性固定资产价值的增长而增长的,而知之间存在正向相关性。

用spss回归有:(2)、可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示:=x.0+y.567395896(3)、用spss回归知标准误差为80.216(万元)。

(4)、当固定资产为1100时,总产值可能是(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216)即(1301.0~146.4)这个范围内的某个值。

另外,用MATLAP也可以得到相同的结果:程序如下所示:function [b,bint,r,rint,stats] = regression1x = [318 910 200 409 415 502 314 1210 1022 1225];y = [524 1019 638 815 913 928 605 1516 1219 1624];X = [ones(size(x))', x'];[b,bint,r,rint,stats] = regress(y',X,0.05);display(b);display(stats);x1 = [300:10:1250];y1 = b(1) + b(2)*x1;figure;plot(x,y,'ro',x1,y1,'g-');industry = ones(6,1);construction = ones(6,1);industry(1) =1022;construction(1) = 1219;for i = 1:5industry(i+1) =industry(i) * 1.045;construction(i+1) = b(1) + b(2)* construction(i+1);enddisplay(industry);display( construction);end运行结果如下所示:b =395.56700.8958stats =1.0e+004 *0.0001 0.0071 0.0000 1.6035industry =1.0e+003 *1.02201.06801.11601.16631.21881.2736construction =1.0e+003 *1.2190 0.3965 0.3965 0.3965 0.3965 0.3965200400600800100012001400生产性固定资产价值(万元)工业总价值(万元)2、设某公司下属10个门市部有关资料如下:(1)、确定适宜的 回归模型; (2)、计算有关指标,判断这三种经济现象之间的紧密程度。

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法回归分析是一种常见的统计分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,很多数据并不符合线性关系,而是呈现出曲线形式。

这时,我们就需要使用非线性回归分析和曲线拟合方法来更好地描述数据的规律。

一、非线性回归分析的基本原理非线性回归分析是一种通过拟合非线性方程来描述自变量与因变量之间关系的方法。

与线性回归不同,非线性回归可以更准确地反映数据的特点。

在非线性回归分析中,我们需要选择适当的非线性模型,并利用最小二乘法来估计模型的参数。

二、常见的非线性回归模型1. 多项式回归模型:多项式回归是一种常见的非线性回归模型,它通过多项式方程来拟合数据。

多项式回归模型可以描述数据的曲线特征,但容易出现过拟合问题。

2. 指数回归模型:指数回归模型适用于自变量与因变量呈指数关系的情况。

指数回归模型可以描述数据的增长或衰减趋势,常用于描述生物学、物理学等领域的数据。

3. 对数回归模型:对数回归模型适用于自变量与因变量呈对数关系的情况。

对数回归模型可以描述数据的增长速度,常用于描述经济学、金融学等领域的数据。

4. S形曲线模型:S形曲线模型适用于自变量与因变量呈S形关系的情况。

S形曲线模型可以描述数据的增长或衰减过程,常用于描述市场营销、人口增长等领域的数据。

三、曲线拟合方法曲线拟合是一种通过选择合适的曲线形状来拟合数据的方法。

在曲线拟合过程中,我们需要根据数据的特点选择适当的拟合方法。

1. 最小二乘法:最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的残差平方和来确定拟合曲线的参数。

2. 非线性最小二乘法:非线性最小二乘法是一种用于拟合非线性模型的方法,它通过最小化观测值与拟合值之间的残差平方和来确定模型的参数。

3. 曲线拟合软件:除了手动选择拟合方法,我们还可以使用曲线拟合软件来自动拟合数据。

常见的曲线拟合软件包括MATLAB、Python的SciPy库等。

四、应用实例非线性回归分析和曲线拟合方法在实际应用中有着广泛的应用。

第五章相关分析与回归分析

第五章相关分析与回归分析

第五章相关分析与回归分析相关分析(Correlation Analysis)和回归分析(Regression Analysis)都是统计学中常用的数据分析方法,用于研究两个或多个变量之间的关系。

相关分析主要用于衡量变量之间的线性关系强度和方向,回归分析则是基于相关分析的基础上建立数学模型来预测或解释因变量的方法。

相关分析是一种用于研究两个变量之间关系强度和方向的统计方法。

相关系数是用来衡量两个变量之间相关关系强度的指标,其取值范围为[-1,1]。

当相关系数为正时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加;当相关系数为负时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减少;当相关系数接近于0时,表示两个变量之间关系弱或不存在。

常用的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼相关系数(Spearman’s rank correlati on coefficient)和肯德尔相关系数(Kendall’s rank correlation coefficient)等。

皮尔逊相关系数适用于两个变量均为连续型的情况,斯皮尔曼和肯德尔相关系数则适用于至少一个变量为顺序型或等距型的情况。

回归分析是一种建立数学模型来预测或解释因变量的方法。

在回归分析中,通常将一个或多个自变量与一个因变量建立数学关系,然后通过该关系来预测或解释因变量。

回归分析可以分为简单回归分析和多元回归分析两种。

简单回归分析是指只有一个自变量和一个因变量之间的分析。

该方法主要用于研究一个自变量对因变量的影响,通过拟合一条直线来描述自变量和因变量之间的线性关系。

简单回归分析的核心是最小二乘法,即通过最小化误差平方和来确定最佳拟合直线。

多元回归分析是指有多个自变量和一个因变量之间的分析。

该方法主要用于研究多个自变量对因变量的影响,并建立一个多元线性回归模型来描述它们之间的关系。

第5章回归分析

第5章回归分析
表 商品价格与消费量的关系
价格X 5.0 5.2 5.8 6.4 7.0 7.0 8.0 8.3 8.7 9.0 10.0 11 消费量Y 4.0 5.0 3.6 3.8 3.0 3.5 2.9 3.1 2.9 2.2 2.5 2.6
5.2 一元线性回归
15
一元线性回归实例
例: 某种商品与家庭平均消费量的关系(续) 在坐标轴上做出价格与消费量的相关关系。
• 子女的身高与父亲及母亲的身高之间的关系。
• 农田粮食的产量与施肥量之间的关系。 • 商品的销售量与广告费之间的关系。
5.1 回归分析的基本概念
8
回归分析的步骤 • 确定变量。寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响 因素。 • 建立预测模型。依据自变量和因变量的历史统计资料进行计算,在此基础上建立 回归分析预测模型。 • 进行相关分析。作为自变量的因素与作为因变量的预测对象是否有关,相关程度 如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的 问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和 因变量的相关程度。 • 计算预测误差。回归预测模型是否可用于实际预测,取决于对回归预测模型的检 验和对预测误差的计算。 • 确定预测值。利用回归预测模型计算预测值,并对预测值进行综合分析,确定最 后的预测值。
最小二乘法的原理就是,找到一组 aˆ ,bˆ 。使所有点的实际测量值 yi 与预测值 yˆi 的偏差的平方和最小。
残差平方和(Residual Sum of Squares,RSS):
n
n
Q(aˆ,bˆ) (yi -yˆi )2 ( yi - aˆ - bˆxi )2
i=1
i=1
即,找到一组 aˆ ,bˆ 使RSS的值最小。

wps计算回归函数和回归拟合曲线值

wps计算回归函数和回归拟合曲线值

wps计算回归函数和回归拟合曲线值WPS是一款功能强大的办公软件,其中的计算模块和分析工具为用户提供了丰富的数据处理能力。

特别是对于统计分析方面的需求,WPS提供了多种回归函数和回归拟合曲线值的计算方法。

本文将介绍WPS中的回归分析功能,以及如何计算回归函数和拟合曲线值。

一、回归分析回归分析是一种统计学的分析方法,主要用于预测模型的建立和数据分析。

回归分析根据自变量和因变量之间的关系,来预测未来或者未观测到的因变量值。

在WPS 中,我们可以使用回归分析功能,进行数据处理。

回归分析功能在WPS的数据分析功能中,可以通过点击“数据”菜单栏中的“数据分析”来打开。

在数据分析对话框中,选择“回归”选项,即可打开回归分析窗口。

二、计算回归函数在回归分析窗口中,“输入变量”一栏需要填写自变量所在的数据区域;“输出变量”一栏需要填写因变量所在的数据区域。

WPS支持多元回归分析,即可以同时分析多个自变量和一个因变量的关系。

此时,“输入变量”一栏可以填写多列数据区域,以逗号隔开即可。

在回归分析窗口中,我们可以选择不同的回归模型,如线性回归、多项式回归、指数回归、对数回归等。

WPS中提供了多种求解器,可以选择最小二乘法、最大似然估计、非线性最小二乘法等方法,计算回归系数和截距。

回归分析结果的窗口中会显示出回归系数和截距,以及R方值、p值、标准误差等统计数据。

回归系数表示自变量的变化在因变量中产生的影响程度,截距则表示当自变量为0时因变量的值。

根据回归系数和截距,我们可以计算出回归函数。

例如,在线性回归中,回归函数为y = kx + b,其中k为回归系数,b为截距。

在WPS中,我们可以使用函数公式编辑器,直接输入回归函数的表达式,并依据计算结果中的回归系数和截距值,对表达式做出填写。

以上就是计算回归函数的一般方法,我们需要准确选择输入变量和回归模型,以及根据回归系数计算出回归函数表达式,才能进行更为精准的预测和数据分析。

spss曲线拟合与回归分析

spss曲线拟合与回归分析

曲线拟合与回归分析1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:(1)说明两变量之间的相关方向;(2)建立直线回归方程;(3)计算估计标准误差;(4)估计生产性固定资产(自变量)为1100万元时的总资产(因变量)的可能值。

解:由表格易知:工业总产值是随着生产性固定资产价值的增长而增长的,而知之间存在正向相关性。

用spss回归有:(2)、可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示:=x.0+y.567395896(3)、用spss回归知标准误差为80.216(万元)。

(4)、当固定资产为1100时,总产值可能是(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216)即(1301.0~146.4)这个范围内的某个值。

另外,用MATLAP也可以得到相同的结果:程序如下所示:function [b,bint,r,rint,stats] = regression1x = [318 910 200 409 415 502 314 1210 1022 1225];y = [524 1019 638 815 913 928 605 1516 1219 1624];X = [ones(size(x))', x'];[b,bint,r,rint,stats] = regress(y',X,0.05);display(b);display(stats);x1 = [300:10:1250];y1 = b(1) + b(2)*x1;figure;plot(x,y,'ro',x1,y1,'g-');industry = ones(6,1);construction = ones(6,1);industry(1) =1022;construction(1) = 1219;for i = 1:5industry(i+1) =industry(i) * 1.045;construction(i+1) = b(1) + b(2)* construction(i+1);enddisplay(industry);display( construction);end运行结果如下所示:b =395.56700.8958stats =1.0e+004 *0.0001 0.0071 0.0000 1.6035industry =1.0e+003 *1.02201.06801.11601.16631.21881.2736construction =1.0e+003 *1.2190 0.3965 0.3965 0.3965 0.3965 0.3965200400600800100012001400生产性固定资产价值(万元)工业总价值(万元)2、设某公司下属10个门市部有关资料如下:(1)、确定适宜的 回归模型; (2)、计算有关指标,判断这三种经济现象之间的紧密程度。

spss曲线拟合与回归分析

spss曲线拟合与回归分析

曲线拟合与回归分析
1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
企业编号生产性固定资产
价值(万元) 工业总产值(万元)
1 318 524
2 910 1019
3 200 638
4 409 815
5 415 913
6 502 928
7 314 605
8 1210 1516
9 1022 1219
10 1225 1624
合计6525 9801
(1)说明两变量之间的相关方向;
(2)建立直线回归方程;
(3)计算估计标准误差;
(4)估计生产性固定资产(自变量)为1100万元时的总资产(因变量)的可能值。

解:由表格易知:工业总产值是随着生产性固定资产价值的增长而增长的,而知之间存在正向相关性。

用spss回归有:
(2)、可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示:
567
.
395
896
.0x
y。

数学建模实验 ――曲线拟合与回归分析

数学建模实验 ――曲线拟合与回归分析

曲线拟合与回归分析1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:(1说明两变量之间的相关方向;(2建立直线回归方程;(3计算估计标准误差;(4估计生产性固定资产(自变量为 1100万元时的总资产(因变量的可能值。

解:(1工业总产值是随着生产性固定资产价值的增长而增长的,存在正向相关性。

用 spss 回归(2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示:567.395896. 0+=xy(3 spss 回归知标准误差为 80.216(万元。

(4当固定资产为 1100时,总产值为:(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。

MATLAB 程序如下所示:function [b,bint,r,rint,stats] = regression1x = [318 910 200 409 415 502 314 1210 1022 1225];y = [524 1019 638 815 913 928 605 1516 1219 1624];X = [ones(size(x', x'];[b,bint,r,rint,stats] = regress(y',X,0.05;display(b;display(stats;x1 = [300:10:1250];y1 = b(1 + b(2*x1;figure;plot(x,y,'ro',x1,y1,'g-';生产性固定资产价值 (万元工业总价值 (万元industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5industry(i+1 =industry(i * 1.045;construction(i+1 = b(1 + b(2* construction(i+1; enddisplay(industry; display( construction; end运行结果:b = 395.5670 0.8958 stats = 1.0e+004 *0.0001 0.0071 0.0000 1.6035 industry = 1.0e+003 * 1.0220 1.0680 1.1160 1.16631.2188 1.2736 construction = 1.0e+003 * 1.2190 0.3965 0.3965 0.3965 0.3965 0.3965。

线性回归与曲线拟合【实用资料】

线性回归与曲线拟合【实用资料】
因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何 无规律的试验点,均可配出一条线,使该线离 各点的误差最小。为检查所配出的回归方程有 无实际意义,可以用相关关系,或称相关系数 检验法。
合成纤维强度与拉伸倍数的关系,24组实验。 2在化回工归实方验程数的据相处关理系中数,我们经常会遇到这样的问题,即已知两个变量之间存在着函数关系,但是,不能从理论上推出公式的形式, 因要变我量 们y建与立自一变个量经x验之公间式是来否表存达在这相两关个关变系量,之在间求的回函归数方关程系的。过程中并不能回答,因为对任何无规律的试验点,均可配出一条线,使该 线 分离析各化点 学的 制误 备差 标最 准小 工。 作曲线,浓度与吸光度间的关系。 要分研析究 化两学个制变备量标之准间工是作否曲存线在,相浓关度关与系吸,光自度然间要的先关作系实。验,拥有一批实验数据,然后,作散点图,以便直观地观察两个变量之间的关 系在。化工实验数据处理中,我们经常会遇到这样的问题,即已知两个变量之间存在着函数关系,但是,不能从理论上推出公式的形式, 求要回我归 们方建程立的一方个法经,验通公常式是来用表最达小这二两乘个法变,量其之基间本的思函想数就关是系从。并不完全成一条直线的各点中用数理统计的方法找出一条直线,使各数 据要点研到 究该两直个线变的量距之离间的是总否和存相在对相其关他关任系何,线自来然说要最先小作,实即验各,点拥到有回一归批线实的验差数分据和,为然最后小,,作简散称点最图小 ,二以乘便法直。观地观察两个变量之间的关 分系析。化学制备标准工作曲线,浓度与吸光度间的关系。 要某研合究 成两纤个维变拉量伸之倍间数是和否强存度在的相关关系关系,自然要先作实验,拥有一批实验数据,然后,作散点图,以便直观地观察两个变量之间的关 系为。检查所配出的回归方程有无实际意义,可以用相关关系,或称相关系数检验法。 为2 检回查归所方配程出的的相回关归系方数程有无实际意义,可以用相关关系,或称相关系数检验法。 在为化检工 查实所验配数出据的处回理归中方,程我有们无经实常际会意遇义到,这可样以的用问相题关,关即系已,知或两称个相变关量系之数间检存验在法着。函数关系,但是,不能从理论上推出公式的形式, 要二我元们 溶建液立的一溶个解经热验与公浓式度来的表函达数这关两系个变量之间的函数关系。 合要成研纤 究维两强个度变与量拉之伸间倍是数否的存关在系相,关关24系组,实自验然。要先作实验,拥有一批实验数据,然后,作散点图,以便直观地观察两个变量之间的关 为系检。查所配出的回归方程有无实际意义,可以用相关关系,或称相关系数检验法。 某为合检成 查纤所维配拉出伸的倍回数归和方强程度有的无关实系际意义,可以用相关关系,或称相关系数检验法。 矿求物回中 归A方组程分的含方量法与,B通组常分是含用量最间小的二关乘系法;,其基本思想就是从并不完全成一条直线的各点中用数理统计的方法找出一条直线,使各数 合据成点纤 到维该强直度线与的拉距伸离倍的数总的和关相系对,其他24任组何实线验来。说最小,即各点到回归线的差分和为最小,简称最小二乘法。 求某回合归 成方纤程维的拉方伸法倍,数通和常强是度用的最关小系二乘法,其基本思想就是从并不完全成一条直线的各点中用数理统计的方法找出一条直线,使各数 据在点化到 工该实直验线数的据距处离理的中总,和我相们对经其常他会任遇何到线这来样说的最问小题,即各已点知到两回个归变线量的之差间分存和在为着最函小数,关简系称,最但小 是二,乘不法能。从理论上推出公式的形式, 在要化我工 们实建验立数一据个处经理验中公,式我来们表经达常这会两遇个到变这量样之的间问的题函,数即关已系知。两个变量之间存在着函数关系,但是,不能从理论上推出公式的形式, 要某我合们 成建纤立维一拉个伸经倍验数公和式强来度表的达关这系两个变量之间的函数关系。 某合成纤维拉伸倍数和强度的关系

sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析
10
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
範例10-2: census01.m
load census.mat
% 載入人口資料
plot(cdate, pop, 'o');
% cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop;
theta = A\y;
% 利用「左除」,找出最佳的 theta 值
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
(Nonlinear Regsurp曲es线s拟i合o与n回)归。分析
2
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
sup曲线拟合与回归分析
8

社会科学研究方法回归分析

社会科学研究方法回归分析

2014年4月29日12时48分
第6页
社会科学研究方法
二、一元线性回归模型的参数估计
• 回归模型中的参数a与b 在一般情况下都是未知数,必 须根据样本数据( x,y )来估计。 • 确定参数 与 值的原则是要使得样本的回归直线同观察 值的拟合状态最好,即要使得偏差最小。为此,可以 采普通最小二乘法(Ordinary Least Square,OLS) 来解决这个问题。 • 估计值和观察值之间的偏差
y 30391 .69 66.13x
2014年4月29日12时48分
第12页
社会科学研究方法
三、总离差的分解
残差可表示如下:
ˆi ei yi y
试验得到的数据 上式可改写成: 回归直线对应的数据
ˆi ( yi y) ( y ˆi y) ei yi y
移项得:
S XX xi x S XY SYY
Y
y n
i


2
1 x n
2 i
x
i
2


1 xi x yi y xi yi n 2 2 1 2 yi y yi yi n


x y
i i



2014年4月29日12时48分 第20页
社会科学研究方法
-1≤ r ≤1 r > 0,正相关;r = 1 为完全正相关 r < 0,负相关;r = -1 为完全负相关 |r| 越大,两变量相关越密切 正相关:0< r ≤1
2014年4月29日12时48分
第21页
社会科学研究方法
负相关:-1 ≤ r < 0

曲线拟合的一般步骤

曲线拟合的一般步骤

曲线拟合的一般步骤曲线拟合是数学中的一个重要概念,可以用于回归分析、模拟计算、数据预测等领域。

本文将简单介绍曲线拟合的一般步骤,帮助读者了解如何应用曲线拟合进行数据分析。

一、确定曲线类型在进行曲线拟合之前,首先需要确定所拟合的曲线类型。

曲线类型的选择取决于数据的特性和预测的目标。

例如,如果数据呈现出周期性变化的趋势,可以选择对数周期函数或三角函数进行拟合;如果数据呈现出指数增长的趋势,可以选择指数函数进行拟合。

选择合适的曲线类型有助于提高拟合的准确度和预测的精度。

二、收集数据收集数据是进行曲线拟合的前提。

数据的收集需要考虑采样的频率、样本量的大小等因素。

通常情况下,数据的样本量越大、采样的频率越高,得到的拟合曲线越精确。

在进行数据收集时,还需要考虑数据的可信度和数据的质量。

三、对数据进行处理在收集完数据之后,需要对数据进行处理。

数据处理的主要目的是为了减少数据存在的噪声,并消除异常数据对拟合的影响。

数据处理方法可以采用平滑处理、滤波处理、插值法等方法。

同时,还需要进行数据标准化,将不同尺度的数据进行标准化处理,以便进行合理的拟合。

四、选择拟合算法选择合适的拟合算法对于拟合的准确度和模型的复杂度有重要影响。

拟合算法通常分为参数拟合和非参数拟合两种。

其中,参数拟合根据已有数据,估计模型中的参数,并针对参数进行优化;非参数拟合则不需要对模型参数进行预先确定。

常用的参数拟合算法包括最小二乘法、梯度下降法、牛顿迭代法等;非参数拟合算法包括局部加权线性回归、核函数回归等。

五、拟合模型评估进行拟合之后,需要对拟合模型进行评估。

评估的目的是为了验证拟合模型的有效性、准确性和稳定性。

评估方法可以采用拟合优度、均方误差、残差分布等指标。

根据评估结果,进行参数调整和算法选择,逐步提高拟合的精度和模型的可行性。

总结曲线拟合是一项基础而重要的数据处理技术。

选择合适的曲线类型、收集准确的数据、对数据进行处理、选择合适的拟合算法、评估拟合模型,这是曲线拟合的一般步骤。

第五章回归模型的函数形式

第五章回归模型的函数形式

第五章回归模型的函数形式1.引言回归分析是统计学中一种重要的数据分析方法,用于研究自变量与因变量之间的关系。

在回归分析中,我们需要确定一个合适的函数形式来描述变量之间的关系,这个函数形式即为回归模型的函数形式。

本章将介绍回归模型的函数形式的基本概念和常用的函数形式。

2.线性回归模型线性回归模型是最简单的回归模型之一,其函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,Xi是自变量,βi是参数,ε是误差项。

线性回归模型假设自变量与因变量之间的关系是线性的,并且误差项服从正态分布。

3.多项式回归模型多项式回归模型是线性回归模型的一种扩展形式,其函数形式为:Y=β0+β1X+β2X^2+...+βnX^n+ε多项式回归模型允许自变量的幂次大于1,通过引入幂项和交互项,可以更好地拟合非线性关系。

4.对数回归模型对数回归模型是一种特殊的回归模型,其函数形式为:ln(Y) = β0 + β1X1 + β2X2 + ... + βnXn + ε对数回归模型适用于因变量为正数且取值范围较广的情况,通过取对数可以将因变量的范围缩小,使得模型更易拟合。

5.非线性回归模型除了线性回归模型和多项式回归模型外,还存在许多其他形式的非线性回归模型。

非线性回归模型的函数形式通常不容易直接确定,需要通过试验和拟合来确定参数。

常见的非线性回归模型包括指数模型、幂函数模型、对数模型等。

在实际应用中,选择适当的函数形式是回归分析的一个重要问题。

选择不合适的函数形式可能导致模型的预测效果较差。

为了选择适当的函数形式,可以通过观察变量之间的散点图、拟合曲线图、残差图等进行初步判断,然后利用统计方法进行模型的比较和选择。

7.总结回归模型的函数形式是回归分析的基础,选择合适的函数形式对于模型的拟合和预测效果至关重要。

线性回归模型、多项式回归模型、对数回归模型和非线性回归模型是常用的函数形式。

选择适当的函数形式需要综合考虑变量之间的实际关系和统计分析的要求,可以通过观察图形和利用统计方法进行模型的比较和选择。

回归分析和曲线拟合

回归分析和曲线拟合
n-2
21 22 23 24 25 26 27 28 29 30
0.05 0.01
0.413 0.404 0.396 0.388 0.381 0.374 0.367 0.364 0.355 0.349
0.526 0.515 0.505 0.496 0.487 0.478 0.470 0.463 0.456 0.449
单击此处添加大标题内容
04
05
从偏回归平方和的意义可以看出,凡是对Y作用显著的因素一般具有较大的Pi值。Pi愈大,该因素对Y的作用也就愈大,这样通过比较各个因素的Pi值就可以大致看出各个因素对因素变量作用的重要性。在实用上,在计算了偏回归平方和后,对各因素的分析可以按下面步骤进行:
01
为此,我们要先计算
腐蚀时间x(秒)
腐蚀深度y(μ)
5 5 10 20 30 40 50 60 65 90 120
4 6 8 13 16 17 19 25 25 29 46
40 30 20 10
y
x
10 20 30 40 50 60 70 80 90 100 110 120
只有当正规方程的系数矩阵为对角型
在化工实验数据处理中,我们经常会遇到这样的问题,即已知两个变量之间存在着函数关系,但是,不能从理论上推出公式的形式,要我们建立一个经验公式来表达这两个变量之间的函数关系。
01Leabharlann 二元溶液的溶解热与浓度的函数关系
02
反应物的浓度与反应时间的函数关系
03
做散点图,选经验方程,曲线变直,相关系数对比,求出常数
相关系数临界值表
预报与控制
01
当我们求得变量x、y之间的回归直线方程后,往往通过回归方程回答这样两方面的问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
^
y0落在
y0
S
范围内的可能性为68%
y
利用此关系,对于指定的x0,我们有95%的把握说,在x x0
^
^
处的实际观测值y0介于
y0
2S

y
y0
2S
y
之间
即:
^
^
y0 2Sy y0 y0 2Sy
这样,预报问题就得到了解决
量S
y
称为剩余标准差。S
用来衡量预报的精确度
y
27
(二)控制问题 控制问题只不过是预报的反问题。若要求观测值y0 在y1 y0 y2范围内取值,则可从 a 2Sy bx1 y(1 或a 3Sy bx1 y1) 及 a 2Sy bx2 y(2 或a 3S2 bx2 y2) 中分别解出x1、x2,只要将x的取值控制在x1与x2之间, 我们就能以95%(或99.7%)的把握保证,y0在y1与 y2范围内取值。
^
一般来说,对于固定x0处的观测值y0,其取值是以 y0 为
^
中心而对称分布的。愈靠近 y0 的地方,出现的机会愈大,
^
离 y0 愈元的地方,出现的机会少,而且y0的取值范围与量
Sy
Q N 2
有下述关系: 26
^
y0落在
y0
3S
范围内的可能性为99.7%
y
^
y0落在
y0
2S
范围内的可能性为95%
_
_
a y b x
b Lxy Lxx
(6 19)
r lxy
(6 20) U Lxy2
(6 21)
lxx l yy
Lxx
33
序号
x
y
x2
y2
1
5
4
25
16
2
5
6
25
363108Fra bibliotek100
64
4
20
13
400
169
5
30
16
900
256
6
40
17
1600
289
7
50
19
2500
361
8
60
25
N i 1
yi
求得a,b后,回归方程为:
^
y a bx
便可以确定,b称为回归系数
(6 5) (6 6)
11
三、回归方程检验方法
(一)方差分析法
回顾方差分析的基本特点:
把所给数据的总波动分解为两部分,一部分反映水平
变化引起的波动,另一部分反映由于存在试验误差而引起
的波动。然后把各因素水平变化引起的波动与试验误差引 起的波动大小进行比较,而达到检验因素显著性的目的.
f
=1
U
fQ=N-2
三者之间仍然有:f总 fU fQ
15
可用F检验考察回归直线的显著性:
(1)计算F= U/fu Q/fQ
(N
2) U Q
(2)对于选定的显著性水平a=0.0(5 或0.01),从F分布
上找出临界值Fa (1, N 2) (3)比较F与Fa的大小。
若F>Fa,则回归方程有意义,反之则说明方程意义不大
16
(二)相关系数检验法
N^ _
N
_
由U ( yi y)2 U [(a bxi ) (a b x)]2
i=1
i=1
N
_
b2 (xi x)2
i=1
N
^
^_
代入 Lyy [( yi yi ) ( yi y)]2整理后可得
i=1
N
_
N
_
( yi yi )2
(xi x)2
11
11
回归方程为: y 4.37 .323x
(2)显著性检验
相关系数
N^ _
第二项 U ( yi y)2 i=1
(6 8)
U反映了总变动中,由于x与y的线性关系而引起y变化的
一部分,称为回归平方和
第三项为零
Lyy U Q
(6 9)
14
每一个变动平方和(即Lyy、U、Q)都有一个“自由度”
和它们对应,Lyy自由度称为总自由度,记做f总。
f总=观测值个数-1=N-1
i1 i1 i1
i 1
i 1
_
x
495
11
_
y
208
11
Lxy
13755 1 495 208 11
48345 11
Lxx
35875
1 11
4952
149600 11
35
b Lxy 48345 0.328 Lxx 149600
_ _ 208
495
a y b x 0.323 4.37
28
进行预报和控制,通常也采用图解法。其作法是:在
散点图上作两条平行与回归直线的直线
y a bx1 2Sy
(6 17)
y a bx2 2Sy
y
y a bx 2Sy
y
y2
^
y a bx
y2
(6 18) y a bx 2Sy
^
y1
y a bx 2Sy
x y1
x1 x2
i 1
i 1
Q反映了全部观测值yi (i 1,2,..., N )对直线的偏离程度,显
然,离差平方和Q越小,愈能较好地表示x, y之间的关系。
用最小二乘法原理,通过选择合适的系数a,b,使Q最小 9
Q
N
a
2 ( yi
i 1
a bxi ) 0
Q
b
N
2
i 1
( yi
a
bxi )xi
0
联合求解得:
回归分析主要解决以下几方面的问题: (1)确定几个特定变量之间是否存在相关关系,
如果存在的话,找出她们之间合适的数学表达式 (2)根据一个或几个变量的值,预报或控制另一
个变量的取值,并且要知道这种预报或控制的精确 度 (3)进行因素分析,确定因素的主次以及因素之 间的相互关系等等
4
一元线性回归分析,只要解决: (1)求变量x与y之间的回归直线方程 (2)判断变量x和y之间是否确为线性关系 (3)根据一个变量的值,预测或控制另一变量
n-2 0.05 0.01
11 0.553 0.684 12 0.532 0.661 13 0.514 0.641 14 0.479 0.623 15 0.482 0.606 16 0.468 0.590 17 0.456 0.575 18 0.444 0.561 19 0.433 0.549 20 0.413 0.537
腐蚀时间x(秒) 5 5 10 20 30 40 50 60 65 90 120 腐蚀深度y(μ) 4 6 8 13 16 17 19 25 25 29 46
31
作散点图,即(xi,yi)图
y
40
30
20
10
10 20 30 40 50 60 70 80 90 100 110 120
x
可见x与y之间无确定的函数关系,而表现为相关关系
的取值
5
二、一元线性回归方程的确定
数学上判定直线合理的原则: 如果直线与全部观测数据yi (i 1, 2,..., N )的离差平方和, 比任何其它直线与全部观测数据的离差平方和更小,该 直线就是代表x与y之间关系较为合理的一条直线,这条 直线就是x和y之间的回归直线。
6
设y* a bx是平面上的一条任意直线,(xi , yi )(i 1,2, ..., N)是变量x,y的一组观测数据。 那么,对于每一个xi,在直线y* a bx上确可以确定一 个yi* a bxi的值,yi*与xi处实际观测值yi的差:
3600
625
9
65
25
4225
625
10
90
29
8100
841
11 120
46
14400
2116
495
208
35875
5398
xy
20 30 80 260 480 680 950 1500 1625 2610 5520 13755
34
具体计算格式如下:
N
N
N
N
N
列表计算xi2、yi2、xi yi以及 xi, yi, xi2, yi2, xi yi
i=1 N
_
1 b2
i=1 N
_
(6 11)
( yi y)2
( yi y)2
17
i=1
i=1
N
_
N
^
(xi x)2
( yi yi )2

r2 b2
i=1 N
_
1
i=1 N
_
( yi y)2
( yi y)2
i=1
i=1
N
_
(xi x)2
r b
i=1 N
_
( yi y)2
Lyy ( yi y)2 [( yi yi ) ( yi y)]2
i=1
i=1
N
^
N^ _
N
^ ^_
( yi yi )2 ( yi y)2 2 ( yi yi )( yi y)
i=1
i=1
i=1
13
N
^
第一项 Q ( yi yi )2
i=1
Q是观测值与回归直线的离差平方和,反映了误差的大小
‹#›
‹#›
变量S的值随t而定,这就是说,如果t去了固定 值,那么S的值就完全确定了
这种关系就是所谓的函数关系或确定性关系
相关文档
最新文档