求线性目标函数的最值
线性规划的常见题型
线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。
求线性目标函数在线性约束条件下的最大值或最小值问题
的点(x,y)所形成区域的面积为( B. 2π D.π
)
A.4π C. 3π 2
共 57 页
10
解析:不等式 f(x)+ f(y)≤0 可转化为(x-1)2+ (y-1)2≤2,不 等式 f(x)- f(y)≥0 可转化为(x- y)(x+ y-2)≥0.于是点(x, y)所形成 1 的区域为两个 圆面,而圆面积是 2π. 4
共 57 页
13
解析:设对甲项目投资 x 万元,对乙项目投资 y 万元,获得 总利润为 z 万元,则 z= 0.4x+ 0.6y,且
x+ y≤60, x≥2y, 3 x≥5, y≥5,
作出不等式组表示的平面区域,
共 57 页
14
如图所示,作直线l0:0.4x+0.6y=0,并将l0向 上 平 移 , 过 点 时 z 取 得 最 大 值 , 即 zmax = 0.4×24+0.6×36=31.2(万元).故选B.
点评: (1)用图解法解决线性规划问题时,分析 题目的已知条件找出约束条件和目标函数是关 键,可先将题目中的量分类、列出表格,理清 头绪,然后列出不等式组(方程组)寻求约束条件, 并就题目所述找到目标函数. (2) 可行域可以是封闭的多边形,也可以是一侧 开放的无限大的平面区域. 如果可行域是一个多边形,那么一般在其顶点 处使目标函数取得最大值或最小值,最优解一 般就是多边形的某个顶点. 特别地,当表示线性目标函数的直线与可行域 5 共 57 页 的某条边平行时 (k = ki) ,其最优解可能有无数
共 57 页
15
答案:B
x+y≥0, 5. (全国卷Ⅰ) 若 x 、 y 满足约束条件x-y+3≥0, 0≤x≤3,
决策分析的定量方法
决策分析的定量方法定量决策方法是利用数学模型进行优选决策方案的决策方法。
根据决策条件的确定性划分,定量决策方法一般分为确定型决策方法、风险型决策方法和不确定型决策方法三类。
1.确定型决策方法:确定型决策是指在稳定可控条件下进行决策,只要满足数学模型的前提条件,模型就能给出特定的结果。
(1)线性规划法线性规划法是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。
(2)盈亏平衡点法2.风险型决策方法:风险型决策也叫统计型决策、随机型决策,是指已知决策方案所需的条件,但每种方案的执行都有可能出现不同后果,多种后果的出现有一定的概率,即存在着“风险”。
(1)期望损益决策法期望损益决策法是通过计算各方案的期望损益值,并以此为依据,选择收益最大或者损失最小的方案作为最佳评价方案。
(2)决策树分析法决策树分析法是指将构成决策方案的有关因素以树状图形的方式表现出来,并据以分析和选择决策方案的一种系统分析法。
适用于分析比较复杂的问题。
3.不确定型决策方法:不确定型决策是指在决策所面临的市场状态难以确定而且各种市场状态发生的概率也无法预测的条件下所做出的决策。
定性决策方法也称主观决策法,是直接利用人们的知识、智慧和经验,根据已掌握的有关资料对决策的内容进行分析和研究,对决策的方案进行评价和选优。
分为头脑风暴法、德尔菲法、名义小组技术、哥顿法。
1、头脑风暴法:通过有关专家之间的信息交流,引起思维共振,形成创造性思维。
参与者在完全不受约束的条件下,敞开思路,畅所欲言。
2、德尔菲法:以匿名方式通过几轮函询征求专家的意见,预测组织小组对每一轮的意见进行汇总整理后,作为参考再发给各专家,供他们分析判断,以提出新的结论。
3、名义小组技术:以一个小组的名义来进行集体决策,而并不是实质意义上的小组讨论,要求每个与会者把自己的观点贡献出来,其特点是背靠背,独立思考。
4、哥顿法:又称提喻法。
首先由会议主持人把决策问题向会议成员做笼统的介绍,其次由会议成员海阔天空地讨论解决方案;当会议进行到适当时机时,决策者将决策的具体问题展示给会议成员,使会议成员的讨论进一步深化,最后由决策者吸收讨论结果,进行决策。
线性目标函数的最值
线性目标函数的最值
在线性规划中,我们通常会遇到线性目标函数的最值问题。
线性目标函数是指由线性项组成的目标函数,其中每个变量的系数都是常数。
最值问题要求找出使目标函数取得最大值或最小值的变量取值。
在解决线性目标函数的最值问题时,我们可以使用多种方法。
其中一种常用的方法是图形法。
首先,我们将目标函数表示为一个以变量为自变量的直线方程。
然后,我们将所有约束条件表示为线性不等式,并将它们绘制在一个二维坐标系中。
通过观察约束条件和目标函数在图中的关系,我们可以确定目标函数取得最大值或最小值的范围。
另一种解决线性目标函数最值问题的常用方法是单纯形法。
这是一种基于可行解空间的迭代算法,通过不断迭代改善当前解的目标函数值,直到找到最优解。
单纯形法利用了线性规划解的几何特性,通过在可行解空间中移动,逐步接近最优解。
当线性目标函数的变量较多或约束条件较复杂时,我们还可以使用线性规划软件来求解最值问题。
这些软件能够自动解决包含数百个变量和约束条件的线性规划问题,并给出最优解。
线性目标函数的最值问题在实际中有着广泛的应用。
例如,在生产计划中,我们需要确定如何安排资源以最大化利润或最小化成本。
在运输领域,我们需要确定如何最优地分配货物以最小化运输成本。
在金融领域,我们需要确定如何最优地分配投资以最大化收益。
总之,线性目标函数的最值问题是线性规划中的核心问题之一。
通过图形法、单纯形法或线性规划软件,我们可以解决这类问题,并得出使目标函数取得最大值或最小值的变量取值。
这些方法在实际中有广泛的应用,能够帮助我们进行有效的决策和资源分配。
不等式与线性规划问题解析
基本不等式1. 若x >0,y >0,且x +y =18,则xy 的最大值是________.解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81, 当且仅当x =y =9时,xy 取到最大值81.2. 已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.3. 已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.解析 因为1x +2y =(2x +y )⎝⎛⎭⎫1x +2y =4+y x +4xy ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立. 4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6解析 ∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15(3x +4y )⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号), ∴3x +4y 的最小值为5.5. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎦⎤0,14C.⎝⎛⎭⎫-14,0D.⎝⎛⎭⎫-∞,14 解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝⎛⎭⎪⎫a +b 22=14 (a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎤-∞,14.题型一 利用基本不等式证明简单不等式 例1 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8. 证.证明 ∵x >0,y >0,z >0,∴y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,∴⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xy xyz =8. 当且仅当x =y =z 时等号成立.已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +cc=3+b a +c a +a b +c b +a c +bc =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时,取等号.题型二 利用基本不等式求最值例2 (1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. 解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +yy=3+y x +2x y ≥3+2 2.当且仅当y x =2xy时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.(1)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4C.92D.112(2)已知a >b >0,则a 2+16b (a -b )的最小值是________.解析 (1)依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2(x +1)(2y +1)=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧ x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.(2)∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b (a -b )≥a 2+16a 24=a 2+64a 2≥2a 2·64a2=16,当且仅当a =22时等号成立. ∴当a =22,b =2时,a 2+16b (a -b )取得最小值16.题型三 基本不等式的实际应用1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t +16,则该商场前t 天平均售出(如前10天的平均售出为f (10)10)的月饼最少为( )A .18B .27C .20D .16解析:平均销售量y =f (t )t =t 2+10t +16t =t +16t+10≥18.当且仅当t =16t,即t =4∈等号成立,即平均销售量的最小值为18.答案:A2.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.解析:设仓库建在离车站d 千米处,由已知y 1=2=k 110,得k 1=20,∴y 1=20d ,y 2=8=k 2·10,得k 2=45,∴y 2=45d ,∴y 1+y 2=20d +4d5≥220d ·4d 5=8,当且仅当20d =4d5,即d =5时,费用之和最小.(2011·北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B解析 设每件产品的平均费用为y 元,由题意得y =800x +x8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2011·陕西)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b2B .a <ab <a +b2<bC .a <ab <b <a +b2D.ab <a <a +b2<b答案 B解析 ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab >a ,D 错误,故选B. 2. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3. 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y的最大值为( )A .2B.32C .1D.12答案 C解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y=log 3a+log 3b =log 3ab ≤log 3⎝⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1.4. 已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23答案 B解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.二、填空题(每小题5分,共15分)5. 已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案 3解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 6. (2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2·⎝⎛⎭⎫1x 2+4y 2的最小值为________. 答案 9解析 ⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=5+1x 2y2+4x 2y 2 ≥5+21x 2y2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.7. 某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是_______. 答案 20解析 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x+x ≥2400x·x =40,当且仅当400x =x ,即x =20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨. 三、解答题(共22分)8. (10分)已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a ≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+ba ,同理,1+1b =2+a b,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+ab =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab . 由(1)知,1a +1b +1ab≥8,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab≥9. B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 不等式a 2+b 2≥2|ab |成立时,实数a ,b 一定是( )A .正数B .非负数C .实数D .不存在答案 C解析 原不等式可变形为a 2+b 2-2|ab |=|a |2+|b |2-2|ab |=(|a |-|b |)2≥0,对任意实数都成立.2. 如果0<a <b <1,P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P答案 B解析 因为P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),所以只需比较a +b 2,ab ,a +b 的大小,显然a +b 2>ab .又因为a +b2<a +b (因为a +b >(a +b )24,也就是a +b4<1),所以a +b >a +b2>ab ,而对数函数当底数大于0且小于1时为减函数,故Q >P >M .3. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( )A .2B .4C .8D .16答案 C解析 点A (-2,-1),所以2m +n =1.所以1m +2n =(2m +n )⎝⎛⎭⎫1m +2n =4+n m +4m n ≥8,当且仅当n =2m ,即m =14,n =12时等号成立.二、填空题(每小题5分,共15分)4. 若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”), 即(xy )2-22xy -6≥0,∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18.∴xy 的最小值为18.5. 已知m 、n 、s 、t ∈R +,m +n =2,m s +n t =9,其中m 、n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是圆(x -2)2+(y -2)2=4中一弦的中点,则此弦所在的直线方程为__________.解析 因(s +t )⎝⎛⎭⎫m s +n t =m +n +tm s +snt ≥m +n +2mn ,所以m +n +2mn =4, 从而mn =1,得m =n =1,即点(1,1),而已知圆的圆心为(2,2),所求弦的斜率为-1, 从而此弦的方程为x +y -2=0.6.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a +2a ≥2 2(x -a )·2x -a+2a =2a+4,即2a +4≥7,所以a ≥32,即a 的最小值为32.线性规划【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-abx+z b ,通过求直线的截距zb的最值,间接求出z 的最值. 【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧ x +y =3,2x -y =3,得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧ x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. .【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧ x =1,3x +5y -25=0,解得A ⎝⎛⎭⎫1,225.由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z =y2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝⎛⎭⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4,d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8. 【答案】B3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255.【答案】255角度三:求线性规划中的参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k的值为( )A .2B .-2C .12D .-12【解析】D作出线性约束条件⎩⎨⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝⎛⎭⎫-2k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝⎛⎭⎫-2k ,0时,有最小值,即-⎝⎛⎭⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A=z B>z C或z A=z C>z B或z B=z C>z A,解得a=-1或a=2.法二:目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC 时符合题意,故a=-1或a=2.【答案】D。
线性规划最值问题
线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。
在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。
线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。
求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。
2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。
3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。
4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。
线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。
- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。
- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。
总结线性规划最值问题是一种在实际应用中常见的问题求解方法。
通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。
该方法可以应用于多个领域,帮助优化决策和资源分配。
不等式与线性规划问题试题
基本不等式1. 若x >0,y >0,且x +y =18,则xy 的最大值是________. 2. 已知t >0,则函数y =t 2-4t +1t的最小值为________.3. 已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_____________.4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .65. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎦⎤0,14C.⎝⎛⎭⎫-14,0D.⎝⎛⎭⎫-∞,14题型一 利用基本不等式证明简单不等式例1已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.题型二 利用基本不等式求最值例2(1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. (1)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4C.92D.112题型三 基本不等式的实际应用1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t +16,则该商场前t 天平均售出(如前10天的平均售出为f (10)10)的月饼最少为( )A.18 B.27 C.20 D.162.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.(2011·北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2011·陕西)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<bC .a <ab <b <a +b2D.ab <a <a +b2<b2. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R )3. 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( ) 4. 已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23二、填空题(每小题5分,共15分)5. 已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.6. (2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2·⎝⎛⎭⎫1x 2+4y 2的最小值为________. .7. 某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是_______. .三、解答题(共22分)8. (10分)已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 不等式a 2+b 2≥2|ab |成立时,实数a ,b 一定是( )A .正数B .非负数C .实数D .不存在2. 如果0<a <b <1,P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P3. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( )A .2B .4C .8D .16二、填空题(每小题5分,共15分)4. 若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.5. 已知m 、n 、s 、t ∈R +,m +n =2,m s +n t =9,其中m 、n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是圆(x -2)2+(y -2)2=4中一弦的中点,则此弦所在的直线方程为__________.6.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.线性规划【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. .1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义. 角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .23.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( ) A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.角度三:求线性规划中的参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .3410.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k的值为( )A .2B .-2C .12D .-1211.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1。
线性规划求最值
线性规划求最值线性规划(Linear Programming)是一种优化问题的数学方法,通过建立线性模型来求解最大或最小值。
线性规划的目标是在给定的限制条件下,找到一个最优解,使得目标函数取得最大(或最小)值。
线性规划的数学模型可以表示为:目标函数:max(min)Z = c₁x₁ + c₂x₂ + … + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙ其中x₁, x₂, …, xₙ为决策变量,c₁, c₂, …, cₙ为目标函数的系数,a₁₁, a₁₂, …, a₈ₙ为约束条件中的系数,b₁, b₂, …,bₙ为约束条件的常数。
解线性规划问题的过程可以分为以下几个步骤:1. 建立数学模型:根据实际问题,确定目标函数以及约束条件。
2. 线性规划的几何表示:将目标函数和约束条件用图形表示,目标函数是一个线性函数,而约束条件则是一组线性不等式。
3. 求解可行解:通过图形方法,找到目标函数与所有约束条件的交点,得到一组可行解。
4. 求解最优解:在可行解中,通过计算目标函数在每个可行解点的函数值,找到使目标函数取得最大(或最小)值的可行解,即为最优解。
5. 检验最优解的可行性:将最优解代入到原始线性规划问题中,检验是否满足所有约束条件。
如果不满足,则需要重新调整模型。
线性规划在实际应用中广泛使用,例如生产计划、资源分配、运输调度等领域。
通过线性规划,可以有效地进行决策,并找到最优解,提高效率,节约资源。
然而,线性规划也有一些局限性,如对问题的要求较高,不能解决非线性的问题等。
总之,线性规划是一种数学方法,通过建立线性模型,在给定的约束条件下求解最大或最小值,可以在各种实际问题中应用,并得到最优解。
通过线性规划,可以优化决策,提高效率,实现最大化利益。
高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题
高考数学二轮复习考点知识讲解与练习第40讲 二元一次不等式(组)与简单的线性规划问题考点知识:1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域111222112+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 3.线性规划的有关概念线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.判定二元一次不等式表示的区域(1)若B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方.(2)若B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )答案(1)×(2)√(3)√(4)×解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b.2.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案 B解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B.3.已知x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y +1的最大值、最小值分别是( )A .3,-3B .2,-4C .4,-2D .4,-4 答案 C解析 不等式组所表示的平面区域如图所示.其中A (-1,-1),B (2,-1), C ⎝ ⎛⎭⎪⎫12,12, 画直线l 0:y =-2x ,平移l 0过B 时,z max =4,平移l 0过点A 时, z min =-2.4.(2022·浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0, 则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞) 答案 B解析 画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).5.(2022·汉中质检)不等式组⎩⎨⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________. 答案14解析 画出可行域如图中阴影部分(含边界)所示,通过上图,可以发现不等式组表示的平面区域以点A ⎝ ⎛⎭⎪⎫32,12,B (1,0)和C (2,0)为顶点的三角形区域(含边界),因此S △ABC =12×(2-1)×12=14.6.(2021·成都诊断)已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值为________. 答案 -1解析 先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.考点一 二元一次不等式(组)表示的平面区域1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 答案 B解析 根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 2.在平面直角坐标系xOy 中,不等式组⎩⎨⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4 答案 B解析 不等式组对应的平面区域如图,即对应的区域为正方形ABCD ,其中A (0,1),D (1,0),边长AD =2,则正方形的面积S =2×2=2.3.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是()A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1] C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞答案 D解析作出不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分表示).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3),故0<a ≤1或a ≥43.感悟升华 平面区域的形状问题主要有两种题型:(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状; (2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论. 考点二 求目标函数的最值角度1 求线性目标函数的最值【例1】(2021·郑州模拟)设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x -2y +3≥0,x -y ≥0,则目标函数z=2x -y 的最小值为( )A .-1B .0C .1D .3 答案 C解析 由约束条件可得可行域如图阴影部分(含边界)所示,将z =2x -y 变为y =2x -z ,当z 取最小值时,y =2x -z 在y 轴截距最大,由y =2x 图象平移可知,当y =2x -z 过点A 时,在y 轴截距最大,由⎩⎨⎧y =x ,y =x得A (1,1),∴z min =2×1-1=1,故选C.角度2 求非线性目标函数的最值【例2】(1)已知实数x ,y 满足⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1,则z =y x +2的取值范围是________.(2)(2022·景德镇模拟改编)若变量x ,y 满足约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为________. 答案 (1)⎣⎢⎡⎦⎥⎤23,76 (2)45解析 (1)作出不等式组⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1表示的平面区域如图中阴影部分所示,这是一个三角形区域(包含边界),三角形的三个顶点的坐标分别为B (1,2),C⎝ ⎛⎭⎪⎫1,72,D (2,3),y x +2的几何意义是可行域内任一点(x ,y )与点P (-2,0)连线的斜率,连接PB ,PC ,由于直线PB 的斜率为23,直线PC 的斜率为76,由图可知z =yx +2的取值范围是⎣⎢⎡⎦⎥⎤23,76. (2)画出约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0表示的可行域,如图中阴影部分所示.设z =(x -1)2+y 2,则其几何意义是区域内的点到定点(1,0)的距离的平方,由图知点(1,0)到直线2x -y =0的距离最小,点(1,0)到直线2x -y =0的距离d =|2×1-0|22+(-1)2=25,则z min =d 2=45,所以(x -1)2+y 2的最小值为45.角度3 求参数值或取值范围【例3】(2021·太原调研)已知实数x ,y 满足⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8 答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2.感悟升华 线性规划两类问题的解决方法(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有: ①截距型:例如z =ax +by ;②距离型:形如z =(x -a )2+(y -b )2;③斜率型:形如z =y -b x -a. (2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.【训练1】(1)(2021·昆明质检)设x ,y 满足约束条件⎩⎨⎧x -y -2≤0,2x -y +3≥0,x +y ≤0,则y +4x +6的取值范围是( )A.⎣⎢⎡⎦⎥⎤-13,1 B .[-3,1] C .(-∞,-3)∪(1,+∞) D .⎣⎢⎡⎦⎥⎤-37,1(2)若x ,y 满足条件⎩⎨⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0,当且仅当x =y =3时,z =ax +y 取最大值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-23,35 B .⎝ ⎛⎭⎪⎫-∞,-35∪⎝ ⎛⎭⎪⎫23,+∞C.⎝ ⎛⎭⎪⎫-35,23 D .⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫35,+∞答案 (1)B (2)C解析 (1)画出不等式组表示的平面区域如图阴影部分(含边界)所示,目标函数z =y +4x +6表示可行域内的点与点P (-6,-4)连线的斜率,数形结合可知目标函数在点A(-1,1)处取得最大值为1+4-1+6=1,目标函数在点B(-5,-7)处取得最小值为-7+4-5+6=-3,故目标函数的取值范围是[-3,1].故选B.(2)不等式组对应的平面区域如图,由图可知,当目标函数的斜率满足-23<-a<35,即-35<a<23时,z=ax+y仅在x=y=3时取得最大值,故选C.考点三实际生活中的线性规划问题【例4】(2022·安庆联考)某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植莴笋和西红柿的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价莴笋5吨1万元0.5万元西红柿 4.5吨0.5万元0.4万元________万元.答案43解析设莴笋和西红柿的种植面积分别为x,y亩,一年的种植总利润为z万元.由题意可得⎩⎨⎧x +y ≤30,x +0.5y ≤25,x ≥0,y ≥0,z =0.5×5x +0.4×4.5y -(x +0.5y )=1.5x +1.3y , 作出不等式组表示的可行域,如图阴影部分(含边界)所示,当直线z =1.5x +1.3y 经过点A 时,z 取得最大值, 又⎩⎨⎧x +y =30,x +0.5y =25,解得x =20,y =10,即A (20,10),代入z =1.5x +1.3y 可得z =43. 感悟升华 1.解线性规划应用题的步骤.(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件,写出目标函数,转化成线性规划问题.【训练2】 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A .31 200元 B .36 000元 C .36 800元 D .38 400元 答案 C解析 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为⎩⎨⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y . 画出可行域如图中阴影部分所示,可知目标函数过点N 时,取得最小值, 由⎩⎨⎧y -x =7,36x +60y =900,解得⎩⎨⎧x =5,y =12,故N (5,12),故z min =1 600×5+2 400×12=36 800(元).“隐性”的线性规划问题数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,用数学语言予以表征.近几年的高考及模拟考试中常出现一类隐性线性规划问题,即通过数量与数量的关系,抽象出线性规划问题,有时以解析几何、函数、数列为背景综合考查.【典例】 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,则mn 的最大值为( )A .16B .18C .25D .812答案 B解析 f ′(x )=(m -2)x +n -8.由已知得:对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以f ′⎝ ⎛⎭⎪⎫12≤0,f ′(2)≤0,所以⎩⎨⎧m ≥0,n ≥0,m +2n ≤18,2m +n ≤12.画出可行域,如图,令mn =t ,则当n =0时,t =0;当n ≠0时,m =t n.由线性规划的相关知识,只有当直线2m +n =12与曲线m =t n相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-12,6-12n =t n,解得n =6,t =18.所以(mn )max =18.素养升华 1.本例以函数为载体隐蔽“约束条件”,有效实现了知识模块的交汇,本例要求从题设中抓住本质条件,转化为关于“m ,n ”的约束条件.2.解题的关键是要准确无误地将已知条件转化为线性约束条件作出可行域,抓住可行域中所求点的相应几何意义.该题立意新颖,在注意基础知识的同时,提升了数学抽象核心素养,渗透了等价转化思想和数形结合思想,考查了学生的综合应用能力.【训练】 在等差数列{a n }中,已知首项a 1>0,公差d >0,a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________,取到最大值时d =________,a 1=________. 答案 200 20 20解析 由题意得点(a 1,d )满足⎩⎨⎧a 1>0,d >0,2a 1+d ≤60,2a 1+3d ≤100,画出可行域,又5a 1+a 5=6a 1+4d , 故经过B 点,即a 1=d =20时,5a 1+a 5取最大值200.A 级 基础巩固一、选择题1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(2021·合肥模拟)若实数x ,y 满足不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0,则2x +3y 的最小值为( )A .4B . 5C . 6D .7 答案 B解析 画出不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0表示的平面区域如图阴影部分(含边界)所示,令z =2x +3y ,则y =-23x +13z ,分析知,当x =1,y =1时,z 取得最小值, 且z min =2+3=5.故选B.3.设点(x ,y )满足约束条件⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0,且x ∈Z ,y ∈Z ,则这样的点共有( )A .12个B .11个C .10个D .9个 答案 A解析画出⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0表示的可行域如图阴影部分所示(含边界),由图可知,满足x ∈Z ,y ∈Z 的(x ,y )为(-4,-1),(-3,0),(-2,1),(-2,0),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(0,3),(1,0),共12个,故选A.4.设变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 由约束条件作出可行域如图中阴影部分(含边界)所示.∵z =-4x +y 可化为y =4x +z ,∴作直线l 0:y =4x ,并进行平移,显然当l 0过点A (-1,1)时,z 取得最大值,z max =-4×(-1)+1=5.故选C.5.(2021·哈师大附中模拟)已知实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =2-2x+y的最大值为( )A.132 B .14 C .12D .2 答案 C解析 由实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1作出可行域如图,则z =2-2x +y 的最大值就是u =-2x +y 的最大值时取得.联立⎩⎨⎧x -y =0,y =1,解得A (1,1),化目标函数u =-2x +y 为y =2x +u ,由图可知,当直线y =2x +u 过点A 时,直线在y 轴上的截距最大,此时z 有最大值2-2+1=12.故选C. 6.(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④ 答案 A解析 法一 画出可行域如图中阴影部分所示.目标函数z =2x +y 是一组平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.法二 取x =4,y =5,满足不等式组⎩⎨⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.7.(2019·北京卷)若x ,y 满足|x |≤1-y ,且y ≥-1,则3x +y 的最大值为( ) A .-7 B .1 C .5 D .7 答案 C解析由|x |≤1-y ,且y ≥-1,得⎩⎨⎧x -y +1≥0,x +y -1≤0,y ≥-1.作出可行域如图阴影部分所示.设z =3x +y ,则y =-3x +z . 作直线l 0:y =-3x ,并进行平移.显然当l 0过点A (2,-1)时,z 取最大值,z max =3×2-1=5.故选C.8.(2021·全国大联考)设不等式组⎩⎨⎧x -y ≤0,2x -y +2≥0,x ≥1表示的平面区域为M ,则( )A .M 的面积为92B .M 内的点到x 轴的距离有最大值C .点A (x ,y )在M 内时,y x +2<2D .若点P (x 0,y 0)∈M ,则x 0+y 0≠2 答案 C解析 作出可行域,如图中阴影部分所示,由图可知,可行域为开放区域,所以选项A 、B 错误;由图可知点(1,1)在可行域内,而此时x +y =1+1=2,故选项D 错误;yx +2表示区域M 内的点(x ,y )与N (-2,0)连线的斜率,由图知⎝⎛⎭⎪⎫y x +2min =k NB =13,∴yx +2∈⎣⎢⎡⎭⎪⎫13,2,故选项C 正确,故选C. 二、填空题9.(2022·山西名校联考)设x ,y 满足约束条件⎩⎨⎧3x -2y -6≤0,x +y -2≥0,x -4y +8≥0,则z =x -2y 的最小值是________. 答案 -4解析 由约束条件画出可行域如图中阴影部分所示,将z =x -2y 化为y =12x -z2,可知z的最小值即为y =12x -z 2在y 轴上截距最大时z 的取值,由图可知,当y =12x -z2过点A 时,在y 轴上的截距最大,由⎩⎨⎧x +y -2=0,x -4y +8=0得A (0,2),∴z min =0-2×2=- 4.10.(2021·平顶山一模)已知O 为坐标原点,A (-1,-2),P 为平面区域M :⎩⎨⎧x +2y -2≤0,2x +y -2≤0,x ≥0,y ≥0内任意一点,则OA →·OP →的最小值为________.答案 -2解析 由题意可得,平面区域M (如图)是由点O (0,0),D (0,1),B (1,0),C ⎝ ⎛⎭⎪⎫23,23围成的四边形区域(包括边界),由数量积的坐标运算得OA →·OP →=-x -2y ,设z =-x -2y ,当直线z =-x -2y 平移到与DC 重合时,目标函数z =-x -2y 有最小值(此时点P 为线段DC 上任意一点),且最小值为-2.故OA →·OP →的最小值为-2.11.(2022·昆明诊断)已知x ,y 满足⎩⎨⎧x +3y ≤15,2x +y ≤12,x ∈N ,y ∈N ,则z =3x +2y 的最大值为________. 答案 19解析 根据条件画出可行域如图中阴影部分所表示的整点,由图可知z =3x +2y 在点M 处取得最大值,由⎩⎨⎧2x +y =12,x +3y =15得M ⎝ ⎛⎭⎪⎫215,185,但M 点的坐标不是整数,经过平移可知经过点(5,2)满足要求,且代入得z =19,故最大值为19.12.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________. 答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2), ∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2), ∴⎩⎨⎧x =1+2λ+μ,y =-1+λ+2μ⎩⎨⎧ 3μ=2y -x +3,3λ=2x -y -3,又1≤λ≤2,0≤μ≤1, ∴⎩⎨⎧0≤x -2y ≤3,6≤2x -y ≤9表示的可行域是平行四边形及内部.如图,点B (3,0)到直线x -2y =0的距离d =355.又|BN |= 5.∴区域D 的面积S =355×5=3. B 级 能力提升13.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C .32 D .2 答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎨⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示. 由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元 答案 B解析 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎨⎧x ,y ∈N ,2x +3y ≤480,z =2x +y ,6x +y ≤960,作出不等式组表示的可行域如图中阴影部分所示的整点,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N)时,z 取得最大值,为360.故该企业每月利润的最大值为360千元.15.(2021·西安模拟)已知实数x ,y 满足(x +y -2)(x -2y +3)≥0,则x 2+y 2的最小值为________. 答案95解析 由(x +y -2)(x -2y +3)≥0,得 ⎩⎨⎧x +y -2≥0,x -2y +3≥0或⎩⎨⎧x +y -2≤0,x -2y +3≤0,不等式组表示的平面区域如图阴影部分(含边界)所示.x 2+y 2=(x -0)2+(y -0)2,表示平面区域内取一点到原点的距离的平方, 因为原点到x +y -2=0的距离为d =|0+0-2|2=2,原点到x -2y +3=0的距离为d =|0-2×0+3|5=35=355<2,所以,x 2+y 2的最小值为⎝ ⎛⎭⎪⎫3552=95. 16.(2021·九江联考)若x ,y 满足约束条件⎩⎨⎧4x -3y -6≤0,2x -2y +1≥0,x +2y -1≥0,则z =|x -y +1|的最大值为________. 答案2811解析 根据约束条件画出可行域如图中阴影部分,z =|x -y +1|=2|x -y +1|2表示可行域内的点到直线x -y +1=0的距离的2倍.由图可知点A 到直线x -y +1=0的距离最大.由⎩⎨⎧x +2y -1=0,4x -3y -6=0,解得A ⎝ ⎛⎭⎪⎫1511,-211,所以z max =2811.。
简单的线性规划问题
三、新知建构,典例分析
某工厂用A,B两种配件生产甲,乙两种产品, 每生产一件甲种产品使用4个A配件耗时1h, 每生产一件乙种产品使用4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和 12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?
若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
x2y 8
44
x y
16 12
象这样关于x,y一次不等 式组的约束条件称为 线性约束条件
x
0
Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又
y 0
称为线性目标函数
在线性约束下求线性目标函数 的最值问题,统称为线性规划,
满足线性约束的解(x,y)叫做可行解, 所有可行解组成的集合叫做可行域 使目标函数取得最值的可行解叫做这个 问题的最优解
y4x z 3 28
z 28 是直线在y轴上
的截距,当截距最
5/7 M
小时,z的值最小。 3/7
3、移
如图可见,当直线z= 28x+21y 经过可行 域上的点M时,纵截距 最小,即z最小。
o
3/7
y4x 3
/ 57 6/7 x
4、求 M点是两条直线的交点,解方程组
7 x 7 y 5
14x 7 y 6
二、新课引入,任务驱动
1、二元一次不等式表示哪个平面区域的判断方法:
“直线定界、特殊点定域”
2、二元一次不等式组表示的平面区域
各个不等式所表示的平面区域的公共部分
二、新课引入,任务驱动
通过本节的学习你能掌握简单的线性规 划问题的解法及步骤吗?
三、新知建构,典例分析
简单的线性规划问题(附答案)
简单的线性规划问题[学习目标]1。
了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b〉0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b〈0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1已知变量x,y满足约束条件错误!则z=3x+y的最大值为()A.12 B.11C.3 D.-1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z经过点A时,z取得最大值.由错误!⇒错误!此时z=3x+y=11。
线性规划问题的标准型
线性规划问题的标准型线性规划是运筹学中的一种数学优化方法,用于在给定约束条件下寻找一个线性目标函数的最大值或最小值。
线性规划问题通常可以表示为标准型,即包含一组线性不等式约束条件和一个线性目标函数的数学模型。
首先,我们来定义线性规划问题的标准型。
一个线性规划问题的标准型可以表示为:\[\max_{x} c^Tx\]\[s.t. Ax \leq b\]\[x \geq 0\]其中,\(x\) 是一个 \(n\) 维向量,表示问题的决策变量;\(c\) 是一个 \(n\) 维向量,表示目标函数的系数;\(A\) 是一个 \(m \times n\) 的矩阵,表示约束条件的系数;\(b\) 是一个 \(m\) 维向量,表示约束条件的右端常数。
在这个模型中,我们的目标是找到一个 \(x\) 的取值,使得目标函数 \(c^Tx\) 的值最大,同时满足约束条件 \(Ax \leq b\) 和 \(x \geq 0\)。
接下来,我们来详细讨论线性规划问题的标准型中的各个要素。
首先是目标函数 \(c^Tx\)。
目标函数通常表示了我们希望最大化或最小化的目标。
在线性规划中,目标函数是一个线性函数,由决策变量\(x\) 的线性组合构成。
我们希望通过调整 \(x\) 的取值,使得目标函数的值达到最大或最小。
其次是约束条件 \(Ax \leq b\)。
约束条件表示了问题的限制条件,限制了决策变量 \(x\) 的取值范围。
在标准型中,约束条件通常表示为一组线性不等式。
这些不等式可以用矩阵 \(A\) 和向量 \(b\) 来表示,它们限制了决策变量 \(x\) 的取值范围。
最后是非负约束 \(x \geq 0\)。
非负约束表示了决策变量 \(x\) 的取值必须大于等于零。
这个约束条件在很多实际问题中是合理的,因为很多决策变量都有非负的物理意义。
总结一下,线性规划问题的标准型包括一个线性目标函数和一组线性不等式约束条件,以及决策变量的非负约束条件。
线性规划求最值的常见题型
y
x+y=1 x-y=0
1
C
0ቤተ መጻሕፍቲ ባይዱ
x
1
y=-1
B(-1,-1)
������0(2,-1)A
[类题通法] 解线性规划问题的关键是准确地作出可行域,正确理 解z的几何意义,对一个封闭图形而言,最优解一般在可 行域的边界上取得.在解题中也可由此快速找到最大值点 或最小值点.
(2)������ = ������������++31的最值.
从目标函数的 几何意义思考
非线性目标函 数
(1)������ = (������ + 3)2+(������ + 1)2的最大值和最小值
可求得������可���目���9���行标���,���域8函���������中数.=的���的������点几������������到������何���������P2意=点义=的���可���距2���表���离22示的5=为平654
线性规划求最值的常见题型
龙海一中 徐艺凤
线性规划求最值常见的题型有
一、求线性目标函数的最值问题 二、求非线性目标函数的最值问题 三、实际问题中的最值问题
题型一、求线性目标函数的最值
x-y≥0 例1.设x,y满足约束条件: x+y-1 ≤ 0
y ≥ -1
线性目标函 数
求z=2x+y最大值与最小值。
在这里甲、乙两个电视 台的广告时间为主要变 量,公司的收益为两个 电视台获得的收益总和, 故可设两个电视台的广 告时间,列出不等式组
和建立目标函数。
间,才能使公司的收益最大,最大收益是多少万元? [解] 设公司在甲电视台和乙电视台做广告的时间分别
求线性规划问题中目标函数最值专题
.
• 3. 线性目标函数的最值一般在可行域的顶点或边界 上取得,特别地对最优整数解可视情况而定.
利用线性规划求最值(名师,考点二)
x+2y≥2, 例 1 设变量 x,y 满足约束条件2x+y≤4,
• 2项必须防范
• 1. 画出平面区域,避免失误的重要方法就是 首先使二元不等式标准化.
• 2. 注意不等式中不等号有无等号,含等号时, 直线画为实线;不含等号时,画为虚线.
• 3点必知关键 • 1. 线性规划问题中,正确画出不等式组表示的平面
区域是解题的基础. • 2. 目标函数的意义,有的可以用直线在y轴上的截距
离最小.又即ຫໍສະໝຸດ OM 13, ON 9 ,
2
∴z的9最大x值2 为y12 3,最13小,值9为 x2 y2 13.
2
2
9
.
2
(3)由图可得,原点与可行域内的点A的连线的斜率值最大,与点B
的连线的斜率值最小,
又
k OA
2, kOB
1 , 1 22
y 2. x
∴z的最大值为2,最小值为 1 .
(1)形如 z=ax+by 的截距型; (2)形如 z=yx- -ab的斜率型; (3)形如 z=(x-a)2+(y-b)2 的距离型.
x≥0
[变式探究] 设变量 x,y 满足约束条件y≥0
,
4x+3y≤12
则 z=yx+ +11的取值范围是(
)
A.[0,4]
B.[14,5]
C.[54,6]
• 答案:B
x y 3 0
三类线性规划问题及其解法
方法集锦线性规划问题是指在线性约束条件下求线性目标函数的最大值或最小值问题,重点考查同学们的建模、运算、分析能力.本文主要探讨三种不同类型目标函数的线性规划问题及其解法.一、z =ax +by 型若目标函数为z =ax +by 型(直线型),我们一般需先将目标函数变形为:y =-a b x +zb,通过求直线的截距的最值间接求出z 的最值,这样便将求目标函数最值问题转化为求直线的截距的最值.①若b >0,当y =-a b x +z b截距最大时z 最小,当截距最小时z 最大;若b <0,当y =-a b x +zb截距最大时z 最大,当截距最小时z 最小.例1.已知x ,y 满足约束条件ìíîïïïï2x +y ≤40,x +2y ≤50,x ≥0,y ≥0,则z =3x +2y 的最大值为_____.解:将z =3x +2y 变形为y =-32x +z2.作出如图1所示的可行域,由图可知当y =-32x +z 2过点A 时,直线的截距最大,则{2x +y =40,x +2y =50,解得ìíîx =10,y =20,此时z max =70.在画出可行域后,我们通过观察图形便能很快确定当直线经过A 点时y =-32x +z2的截距最大,此时z 最大,解方程组便可求得z 的最值.图1图2图3二、z =y -bx -a型对于目标函数为z =y -bx -a (斜率型)的线性规划问题,我们一般要依据y -bx -a的几何意义来求解.首先,根据线性约束条件画出可行域,将z 看作是可行域内的动点P (x ,y )与定点A (a ,b )连线的斜率,求得斜率的最值便可求出z 的最值.例2.已知x ,y 满足约束条件ìíîïïx -y +1≤0,x >0,x ≤1,求z =yx的最大值.解析:该目标函数为斜率型,可将z 看作是可行域内的动点P (x ,y )与原点连线的斜率,求出斜率的最值即可.解:作出如图2所示的可行域,将z =yx变形为z =y -0x -0,可将z 看作可行域内任意一点P (x ,y )与原点的连线的斜率.由图2可知当直线过交点A 时,PO 的斜率最大,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z max =2.三、z =(x -a )2+(y -b )2型当遇到目标函数为z =(x -a )2+(y -b )2(距离型)的线性规划问题时,我们可以把z 看作可行域内动点P (x ,y )与定点A (a ,b )的距离的平方,结合可行域找到最值点,利用两点间的距离公式便能求出z 的最值.例3.已知x ,y 满足约束条件ìíîïïx -y +1≤0,2x -y -2≤0,x ≥1,则z =x 2+y 2的最小值为_____.解析:该目标函数为距离型,可将z 看作是可行域内任意一点P (x ,y )到原点的距离的平方,求得PO 两点间距离的最小值,便可求得z 的最小值.解:将z =x 2+y 2变形为z =(x -0)2+(y -0)2,作出如图3所示的可行域,由图可知点A 到原点的距离最小,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z min =5.可见,解答线性规划类问题的基本思路是,(1)根据线性约束条件画出可行域;(2)将目标函数变形为直线型、斜率型、距离型;(3)在可行域内移动直线、点,找出最值点;(4)联立交点处的直线方程,求出最值点的坐标;(5)将点的坐标代入目标函数中求得最值.(作者单位:中国烟台赫尔曼·格迈纳尔中学)44。
线性目标函数最优解的求解方法
线性目标函数最优解的求解方法线性规划中寻求最优解是解析几何的重点,也是难点。
现就如何利用可行域寻求最优解的常见方法作些探讨.一、 平移直线法平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等.例1变量x 、y 满足下列条件:⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+≥+0,0............2432...........3692..............122y x ③y x ②y x ①y x 则使z=3x+2y 的值最小的(x ,y )是( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 ) 解析:作出约束条件的可行域(如图),由z=3x+2y 知223zx y +-=,于是作一系列与直线x y 23-=平行的直线,当直线223zx y +-=过图中的B 点时,2z取得最小值。
于是由⎩⎨⎧==⇒⎩⎨⎧=+=+6336922432y x y x y x ,从而知当⎩⎨⎧==63y x 时,z=3x+2y 取得最小值。
故选B 。
评析:解决线性规划中的最值问题的关键是:作出可行域,找出最优解。
二、代入检验法通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在有关选择题的线性规划中的最值问题,可采用求解方程组代入检验的方法求解。
例2,已知x 、y 满足约束条件:⎩⎨⎧≤+≤+3623242y x y x ,则Z=10x+15y 的最大值为()A 195B 200C 210D 220解:解程组⎩⎨⎧==⇒⎩⎨⎧=+=+963623242y x y x y x 从而代入Z=10x+15y 可得Z max =195,故选A 。
评析:代入检验法在涉及最优解为近似解或整格解的问题时,是一种行之有效的方法,具有其它方法不可替代的作用.三、 比较斜率法 平移法的缺陷在于,当可行域的顶点数较多时,不易直观地判断出哪个或哪几个顶点的坐标是最优解.这时若进一步考虑直线斜率的大小,则可以确定出最优解.例3 某工厂生产甲、乙两种产品.已知生产甲种产品1t 需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品1t 需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300t 、B 种矿石不超过200t 、煤不超过360t .甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt 、yt ,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+0,0360942004515025y x y x y x y x 且Z=600x+1000y 作出约束条件所表示的平面区域(如左图),即可行域. 作直线l :600x+1000y=0,即直线l :3x+5y=0.因为94534525-<-<-<-,即k EN <k MN <k l <k FN ,所以把直线l 向上方移至m 的位置,直线经过可行域上的点M ,此时Z=600x+1000y 取最大值.解方程组⎩⎨⎧=+=+3609420045x x y x 得M 的坐标x=29360=12.3,y=291000=34.5,代入计算得Z max =291216000. 答:应生产甲产品约12.3t,乙产品34.5t ,能使利润总额达到最大.评析:这是高中新教材第二册上册第七章,“简单的线性规划”一节中的例3(P62~63),确定了直线斜率的大小,实质是确定了直线在向上平移的过程中,在经过可行域X 围内时,即可确定最优解。
线性规划求最值问题
x 0 1. x , y满足 x 2 y 3 2 x y 3
求z=x-y的最值
解:z x y化为y x z, 与直线y x平行,纵截距为-z
直线过点 A 时z值最大; 过点 B 时z值最小.
最优解
x-4y+3=0
A(5,2)
o
B(1,1) 3x+5y-25=0
1
x
目标函数的常见类型
A z 1.z=Ax+By(A,B为常数)可化为 y B x B 表示 A z y x 平行的一组平行线,其中 为截距。 与 B B
y y0 2. z 表示定点P(x0,y0) 与可行域内的动点M(x,y) x x0 连线的斜率
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
y
(1)若z=2x+y,求z的最值.
Zmax 2 5 2 12, Zmin 2 1 1 3.
5
C
x-4y+3=0
A B
O
1 x=1 5
3x+5y-25=0
2 2 2 2 z ( x x ) ( y y ) 或 z ( x x ) ( y y ) 0 0 0 0 3.
表示定点Q (x0,y0)到可行域内的动点N(x,y)的距离 或距离平方。
一、最值模型
A 1 z Ax By即y x z表示一组平行线, B B A 1 其中 为斜率, z为纵截距, B B 当B>0时, 当直线向上平移时,所对应的截距随之增大;z 增大. ---------向下----------------------------------减小. Z 减小 . 当B<0时, 当直线向上平移时,所对应的截距随之增大,但z 减小 . ---------向下----------------------------------减小,但z 增大.
使用Pythonscipylinprog线性规划求最大值或最小值(使用Python学习数学
使用Pythonscipylinprog线性规划求最大值或最小值(使用Python学习数学Python的scipy库中的linprog函数可以用于求解线性规划问题。
线性规划是一种数学优化问题,旨在找到使得线性目标函数在一组线性约束条件下最大或最小的变量值。
首先,我们需要导入必要的库和函数:```pythonfrom scipy.optimize import linprog```linprog函数的基本语法如下:```pythonlinprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None) ```其中,参数c是目标函数的系数,说明了我们希望最大化或最小化的变量。
系数向量的长度就是变量的个数。
参数A_ub和b_ub是不等式约束条件,表示一个或多个线性不等式约束条件。
A_ub是一个矩阵,每一行表示一个不等式约束,而b_ub是一个向量,表示不等式约束的右边界。
参数A_eq和b_eq是等式约束条件,用于表示一个或多个线性等式约束条件。
A_eq是一个矩阵,每一行表示一个等式约束条件,而b_eq是一个向量,表示等式约束的右边界。
参数bounds用于指定变量的上下界限制。
参数method指定求解器的类型,默认为simplex,还可以选择revised simplex(改进型单纯形法)、interior-point(内点法)等。
让我们来看一个简单的线性规划问题结局具体的使用方法。
假设我们想要最大化目标函数z=3x+4y,同时满足以下两个不等式约束条件:x>=0、y>=2,以及以下两个等式约束条件:x+y=4、2x+y<=9:```pythonc=[-3,-4]A_ub = [[-1, 0], [0, -1], [-2, -1]]b_ub = [0, -2, -9]A_eq = [[1, 1]]b_eq = [4]bounds = [(None, None), (2, None)]```然后,我们调用linprog函数来求解问题:```pythonresult = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)```最后,我们可以打印结果:```pythonprint(result)```完整代码如下:```pythonfrom scipy.optimize import linprogc=[-3,-4]A_ub = [[-1, 0], [0, -1], [-2, -1]]b_ub = [0, -2, -9]A_eq = [[1, 1]]b_eq = [4]bounds = [(None, None), (2, None)]result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)print(result)```运行这段代码,我们将得到以下输出:```con: array([0.])fun: -10.0message: 'Optimization terminated successfully.'nit: 4slack: array([2., 0., 5.])status: 0success: Truex: array([2., 2.])```结果中包含了最优解、目标函数的最优值、限制条件的松弛变量等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求线性目标函数的最值
1.设x ,y 满足约束条件⎩⎪⎨⎪⎧ 2x -y +1≥0,x -2y -1≤0,
x ≤1,则z =2x +3y -5的最小值为________.
解析:画出不等式组表示的平面区域如图中阴影部分所示.由题
意可知,当直线y =-23x +53+z 3
过点A 时,z 取得最小值,联立⎩⎪⎨⎪⎧
2x -y +1=0,x -2y -1=0,解得A (-1,-1),即z min =2×(-1)+3×(-1)-5=-10.
答案:-10
求非线性目标函数的最值
2.已知实数x ,y 满足⎩⎪⎨⎪⎧ x -2y +4≥0,2x +y -2≥0,
3x -y -3≤0,则x 2+y 2的取值范围是________.
解析:根据已知的不等式组画出可行域,如图阴影部分所示,则
(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行
域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d
的最小值是点O 到直线2x +y -2=0的距离.由⎩⎪⎨⎪⎧
x -2y +4=0,3x -y -3=0可得A (2,3),
所以d max =22+32=13,d min =|-2|22+12=25
. 所以d 2的最小值为45
,最大值为13. 所以x 2+y 2的取值范围是⎣⎡⎦
⎤45,13. 答案:⎣⎡⎦
⎤45,13
线性规划中的参数问题
3.已知x ,y 满足⎩⎪⎨⎪⎧ x ≥2,x +y ≤4,
2x -y -m ≤0.
若目标函数z =3x +y 的最大值为10,则z 的最小
值为________.
解析:画出不等式组表示的区域,如图中阴影部分所示,作
直线l :3x +y =0,平移l ,从而可知经过C 点时z 取到最大值,
由⎩⎪⎨⎪⎧ 3x +y =10,x +y =4,解得⎩⎪⎨⎪⎧
x =3,y =1, ∴2×3-1-m =0,m =5.
由图知,平移l 经过B 点时,z 最小,
∴当x =2,y =2×2-5=-1时,z 最小,z min =3×2-1=5.
答案:5
[通法在握]
1.求目标函数的最值3步骤
(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;
(2)平移——将l 平行移动,以确定最优解的对应点的位置;
(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.
2.常见的3类目标函数
(1)截距型:形如z =ax +by .
求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b
,在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距z b 取最小值时,z 取最大值.
(2)距离型:形如z =(x -a )2+(y -b )2.
(3)斜率型:形如z =y -b x -a
. [提醒] 注意转化的等价性及几何意义.。