高中数学第二章随机变量及其分布2.2二项分布及其应用2.2.1课件新人教A版

合集下载

高中数学第二章随机变量及其分布全章素养整合课件新人教A版选修23

高中数学第二章随机变量及其分布全章素养整合课件新人教A版选修23

解析:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击 5 次只击 中一次或一次也没有击中,故该事件的概率为 P=C15×23×134+135, 所以所求的概率为 1-P=1-C15×23×134+135=223423.
(2)当 ξ=4 时,记事件为 A, P(A)=C13×23×132×23=247, 当 ξ=5 时,意味着前 4 次射击只击中一次或一次也未击中,记为事件 B. 则 P(B)=C14×23×133+134=19, 所以所求概率为 P(A∪B)=P(A)+P(B)=247+19=277.
解析:(1)记事件 A1 为“从甲箱中摸出的 1 个球是红球”, A2 为“从乙箱中摸出的 1 个球是红球”, B 为“顾客抽奖 1 次能获奖”, 则 B 表示“顾客抽奖 1 次没有获奖”. 由题意 A1 与 A2 相互独立,则 A 1 与 A 2 相互独立,且 B = A 1·A 2, 因为 P(A1)=140=25,P(A2)=150=12, 所以 P( B )=P( A 1·A 2)=1-25·1-12=130, 故所求事件的概率 P(B)=1-P( B )=1-130=170.
[例 2] 甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为 0.6. 本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影 响,求前三局比赛甲队领先的概率. [解析] 单局比赛甲队胜乙队的概率为 0.6,乙队胜甲队的概率为 1-0.6=0.4, 记“甲队胜三局”为事件 A,“甲队胜二局”为事件 B,则: P(A)=0.63=0.216; P(B)=C23×0.62×0.4=0.432, ∴前三局比赛甲队领先的概率为 P(A)+P(B)=0.648.
X1 5 6 7 8 P 0.4 a b 0.1 且 X1 的均值 E(X1)=6,求 a,b 的值;

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
( 互独事件 互独事件)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题二元一次不等式(组)与平面区域简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数word格式-可编辑-感谢下载支持 2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

2019_2020学年高中数学第二章随机变量及其分布2.2.2事件的相互独立性练习含解析新人教a版选修2_3

2019_2020学年高中数学第二章随机变量及其分布2.2.2事件的相互独立性练习含解析新人教a版选修2_3

2.2.2 事件的相互独立性[A 基础达标]1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( )A .互斥事件B .相互独立事件C .对立事件D .不相互独立的事件解析:选D .因为P (A 1)=35,若A 1发生了,P (A 2)=24=12;若A 1不发生,P (A 2)=34,所以A 1发生的结果对A 2发生的结果有影响,所以A 1与A 2不是相互独立事件.2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为( )A .0.2B .0.8C .0.4D .0.3解析:选D .由相互独立事件同时发生的概率可知,问题由乙答对的概率为P =0.6×0.5=0.3,故选D .3.某种开关在电路中闭合的概率为p ,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为6581,则p =( )A .12B .13C .23D .34解析:选B .因为该电路为通路的概率为6581,所以该电路为不通路的概率为1-6581,只有当并联的4只开关同时不闭合时该电路不通路,所以1-6581=(1-p )4,解得p =13或p =53(舍去).故选B .4.(2019·重庆高二检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .13B .29C .49D .827解析:选A .由已知得逆时针跳一次的概率为23,顺时针跳一次的概率为13,则逆时针跳三次停在A 上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.5.有一道数学难题,学生A 解出的概率为12,学生B 解出的概率为13,学生C 解出的概率为14.若A ,B ,C 三人独立去解答此题,则恰有一人解出的概率为( ) A .1 B .624 C .1124D .1724解析:选C .一道数学难题,恰有一人解出,包括: ①A 解出,B ,C 解不出,概率为12×23×34=14;②B 解出,A ,C 解不出,概率为12×13×34=18;③C 解出,A ,B 解不出,概率为12×23×14=112.所以恰有1人解出的概率为14+18+112=1124.6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.解析:所求概率P =0.8×0.1+0.2×0.9=0.26. 答案:0.267.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是________.解析:设“开关a ,b ,c 闭合”分别为事件A ,B ,C ,则灯亮这一事件为ABC ∪AB C —∪A B —C ,且A ,B ,C 相互独立,ABC ,AB C —,A B —C 相互独立, ABC ,AB C —,A B — C 互斥,所以 P =P (ABC )+P (AB C —)+P (A B —C )=P (A )P (B )P (C )+P (A )P (B )P (C —)+P (A )P (B —)P (C ) =12×12×12+12×12×⎝ ⎛⎭⎪⎫1-12+12×⎝ ⎛⎭⎪⎫1-12×12=38.答案:388.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________. 解析:分别设汽车在甲、乙、丙三处通行的事件为A ,B ,C , 则P (A )=13,P (B )=12,P (C )=23,停车一次为事件(A —BC )∪(A B —C )∪(AB C —),故其概率P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.答案:7189.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,求在一次考试中:(1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少?解:分别记该学生语、数、英考试成绩排名全班第一的事件为A ,B ,C ,则A ,B ,C 两两互相独立,且P (A )=0.9,P (B )=0.8,P (C )=0.85.(1)“三科成绩均未获得第一名”可以用A — B — C —表示,P (A — B — C —)=P (A —)P (B —)P (C —)=[1-P (A )][1-P (B )][1-P (C )] =(1-0.9)(1-0.8)(1-0.85) =0.003,即三科成绩均未获得第一名的概率是0.003. (2)“恰有一科成绩未获得第一名”可以用 (A —BC )∪(A B —C )∪(AB C —)表示. 由于事件A —BC ,A B —C 和AB C —两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P (A —BC )+P (A B —C )+P (AB C —) =P (A —)P (B )P (C )+P (A )P (B —)P (C )+P (A )P (B )P (C —)=[1-P (A )]P (B )P (C )+P (A )[1-P (B )]P (C )+P (A )P (B )[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329, 即恰有一科成绩未获得第一名的概率是0.329.10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m 跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100 m 跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3), (1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110.(2)三人都不合格的概率:P 0=P (A — B — C —)=P (A —)·P (B —)·P (C —)=35×14×23=110.(3)恰有两人合格的概率:P 2=P (AB C —)+P (A B —C )+P (A —BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合(1)(2)(3)可知P 1最大. 所以出现恰有1人合格的概率最大.[B 能力提升]11.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,则灯亮的概率为( )A .316B .34C .1316D .14解析:选C .记“A ,B ,C ,D 四个开关闭合”分别为事件A ,B ,C ,D ,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P (C —)P (D —)[1-P (AB )]=12×12×⎝ ⎛⎭⎪⎫1-12×12=316.所以灯亮的概率为1-316=1316.12.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任意取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥,又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:3413.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为45×56×(1-23)=29,只有农产品加工和水果种植两个项目成功的概率为45×(1-56)×23=445,只有绿色蔬菜种植和水果种植两个项目成功的概率为(1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为(1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.14.(选做题)某公司为了了解用户对其产品的满意度,从A ,B 两个地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两个地区用户满意度评分的茎叶图,并通过茎叶图比较两个地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C 用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解:(1)两个地区用户的满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件“A 地区用户的满意度等级为满意或非常满意”,C A 2表示事件“A 地区用户的满意度等级为非常满意”,C B 1表示事件“B 地区用户的满意度等级为不满意”,C B 2表示事件“B 地区用户的满意度等级为满意”,则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2,P (C )=P (C B 1C A 1∪C B 2C A 2)=P (C B 1C A 1)+P (C B 2C A 2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据,得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,P (C )=1020×1620+820×420=0.48.。

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

2.1.2 离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求某些简单的离散型随机变量的分布列.3.理解两点分布和超几何分布及其推导过程,并能简单的运用.,1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即X 0 1 … mPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.(1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( ) (2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( ) (4)超几何分布的模型是放回抽样.( ) 答案:(1)× (2)× (3)√ (4)×下列表中能成为随机变量ξ的分布列的是( ) A.ξ -1 0 1 P0.30.40.4B.ξ 1 2 3 P0.40.7-0.1C.ξ -1 0 1 P0.30.40.3D.ξ 1 2 3 P0.30.10.4答案:C若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y 为整数,则ξ=0;若x y为小于1的分数,则ξ=-1;若x y为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使x y为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 离散型随机变量的分布列的性质设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=ck (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为X 0 1 2 3 P120920920 1201.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为η 0 1 P12122.[变条件]将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为X 0 1 2 3 P18383818求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.(2018·昆明质检)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220 B.2755C.27220D.2125解析:选C.X =4表示取出的3个球为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.3.随机变量η的分布列如下η 1 23 4 5 6 P0.2x0.350.10.150.2则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2). 解:由题意可知,ξ的可能取值为0,1,2,3. 则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为ξ 0 1 2 3 P13512351835435P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.知识结构深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义., [A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14C.16D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C.3.设随机变量X 的概率分布列为则P (|X -3|=1)=A.712 B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B.4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )287C.1556 D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.68.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, 所以m =0.3. 列表为:(1)2X +1的分布列为:(2)|X -1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (2)记所取出的非空子集的元素个数为X ,求X 的分布列. 解:(1)记“所取出的非空子集满足性质r ”为事件A . 基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A 包含的基本事件数m =3.所以P (A )=m n =331.(2)依题意,X 的所有可能值为1,2,3,4,5. 又P (X =1)=C 1531=531,P (X =2)=C 2531=1031,P (X =3)=C 3531=1031,P (X =4)=C 4531=531,P (X =5)=C 5531=131.故X 的分布列为11.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13 B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3]D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列. 解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为Y 0 1 2 P6313028651113014.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为则P (C )=P (X =3)+P (X =4)=215+310=1330.。

高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案

高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
高中数学选修2-3(人教A版)知识点总结含同步练习题及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为

2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3

2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3

解:记“甲射击 1 次,击中目标”为事件 A,“乙射击 1 次, 击中目标”为事件 B,则 A 与 B,A 与 B,A 与 B ,A 与 B 为相互 独立事件,
(1)2 人都射中目标的概率为: P(AB)=P(A)·P(B)=0.8×0.9=0.72.
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况: 一种是甲射中、乙未射中(事件 A B 发生),另一种是甲未射中、乙 射中(事件 A B 发生).根据题意,事件 A B 与 A B 互斥,根据互斥 事件的概率加法公式和相互独立事件的概率乘法公式,所求的概 率为:
(2)D= C ,P(D)=1-P(C)=1-0.8=0.2, P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
11.某项选拔共有四轮考核,每轮设有一个问题,能正确回 答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回 答第一、二、三、四轮问题的概率分别为45、35、25、15,且各轮问 题能否正确回答互不影响:
(3)分别抛掷 2 枚相同的硬币,事件 M:“第 1 枚为正面”,
事件 N:“两枚结果相同”.
这 3 个问题中,M,N 是相互独立事件的有( )
A.3 个
B.2 个
C.1 个
D.0 个
解析:(1)中,M,N 是互斥事件;(2)中,P(M)=35,P(N)=12.
即事件 M 的结果对事件 N 的结果有影响,所以 M,N 不是相互
P(A B )+P( A B)=P(A)·P( B )+P( A )·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性 新人教A

高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性 新人教A

解析:根据相互独立事件的概念知,这三个说法都是 正确的.
答案:(1)√ (2)√ (3)√
2.袋内有 3 个白球和 2 个黑球,从中不放回地摸球, 用 A 表示“第一次摸得白球”,用 B 表示“第二次摸得白 球”,则 A 与 B 是( )
A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立事件 解析:根据互斥事件、对立事件和相互独立事件的定
(3)条件概率法:当 P(A)>0 时,可用 P(B|A)=P(B) 判断.
[变式训练] 下面所给出的两个事件 A 与 B 相互独立
吗? ①抛掷一枚骰子,事件 A=“出现 1 点”,事件 B=
“出现 2 点”; ②先后抛掷两枚均匀硬币,事件 A=“第一枚出现正
面”,事件 B=“第二枚出现反面”;
③在含有 2 红 1 绿三个大小相同的小球的口袋中,任 取一个小球,观察颜色后放回袋中,事件 A=“第一次取 到绿球”,B=“第二次取到绿球”.
解:①事件 A 与 B 是互斥事件,故 A 与 B 不是相互
独立事件.
②第一枚出现正面还是反面,对第二枚出现反面没有
影响,所以 A 与 B 相互独立.
③由于每次取球观察颜色后放回,故事件 A 的发生 对事件 B 发生的概率没有影响,所以 A 与 B 相互独立.
义可知,A 与 B 不是相互独立事件.
答案:D
3.国庆节放假,甲去北京旅游的概率为13,乙、丙去
北京旅游的概率分别为14,15.假定三人的行动相互之间没
有影响,那么这段时间内至少有 1 人去北京旅游的概率为
()
A.5690
B.35
1
1
C.2
D.60
解析:因甲、乙、丙去北京旅游的概率分别为13,14, 15.因此,他们不去北京旅游的概率分别为23,34,45,所以, 至少有 1 人去北京旅游的概率为 P=1-23×34×45=35.

人教版高中数学第二章2.2-2.2.1条件概率

人教版高中数学第二章2.2-2.2.1条件概率

类型 3 条件概率的性质及其应用
[典例 3] 在一个袋子中装有 10 个球,设有 1 个红球, 2 个黄球,3 个黑球,4 个白球,从中依次摸 2 个球,求 在第一个球是红球的条件下,第二个球是黄球或黑球的 概率.
解:法一 设“摸出第一个球为红球”为事件 A,“摸 出第二个球为黄球”为事件 B,“摸出第三个球为黑球” 为事件 C,则 P(A)=110,P(AB)=110××29=415,P(AC)= 110××39=310.
答案:甲抽到的数大于 4 的情形有(5,1),(5,2), (5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),共 12 个,其中甲、乙抽到的两 数之和等于 7 的情形有(5,2),(6,1),共 2 个.所以 P(B|A) =122=16.
第二章 随机变量及其分布
2.2 二项分布及其应用 2.2.1 条件概率
[学习目标] 1.通过对具体情景的分析,了解条件概 率的定义(重点). 2.掌握求条件概率的两种方法(难 点). 3.利用条件概率公式解决一些简单的问题(重点、 难点).
[知识提炼·梳理]
1.条件概率
条件 设 A,B 为两个事件,且 P(A)>0
解析:由题意可知,n(B)=C1322=12,n(AB)=A33=6.
所以 P(A|B)=nn((ABB))=162=12.
答案:12
5.在 5 道题中有 3 道数学题和 2 道物理题.如果不 放回地依次抽取 2 道题,则在第 1 次抽到数学题的条件下, 第 2 次抽到数学题的概率是________.
生的条件下,事件 B 不会发生.
(2)对,因为事件 A 等于事件 B,所以事件 A 发生, 事件 B 必然发生.

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

创作编号:BG7531400019813488897SX 创作者: 别如克*必修1第一章 集合与函数概念 1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数 2.3 幂函数第三章 函数的应用 3.1 函数与方程3.2 函数模型及其应用必修2第一章 空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章 直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式 必修3第一章 算法初步1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例阅读与思考 割圆术第二章 统计 2.1 随机抽样阅读与思考 一个著名的案例阅读与思考 广告中数据的可靠性阅读与思考 如何得到敏感性问题的诚实反应2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图2.3 变量间的相关关系 阅读与思考 相关关系的强与弱第三章 概率3.1 随机事件的概率阅读与思考 天气变化的认识过程3.2 古典概型 3.3 几何概型必修4第一章 三角函数 1.1 任意角和弧度制创作编号:BG7531400019813488897SX 创作者: 别如克*1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章 解三角形1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业第二章 数列2.1数列的概念与简单表示法 2.2等差数列2.3等差数列的前n 项和 2.4等比数列2.5等比数列的前n 项和第三章 不等式3.1不等关系与不等式3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简单的线性规划问题 3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题 3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念创作编号:BG7531400019813488897SX创作者:别如克*3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形作编号:BG7531400019813488897SX作者:别如克*第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步作编号:BG7531400019813488897SX创作者: 别如克*1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章 统计 2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性第三章 概率 3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章 基本初等函(Ⅱ) 1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章 平面向量 2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积 2.4 向量的应用第三章 三角恒等变换 3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理1.2 应用举例第二章 数列 2.1 数列2.2 等差数列 2.3 等比数列第三章 不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用 3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章 常用逻辑用语 1.1 命题与量词1.2 基本逻辑联结词 1.3 充分条件、必要条件与命题的四种形式第二章 圆锥曲线与方程 2.1 椭圆2.2 双曲线 2.3 抛物线第三章 导数及其应用3.1 导数3.2 导数的运算 3.3 导数的应用选修1-2第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图选修4-5第一章 不等式的基本性质和证明的基本方法 1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章 柯西不等式与排序不等式及其应用 2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章 数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式作编号:BG7531400019813488897SX作编号:BG7531400019813488897SX 作者: 别如克*作者: 别如克*。

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN

CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


PB PD

C620 12 180

C620 12 180

13 . 58
C620
C620
故所求的概率为 13 .
58
2.甲袋中有2个白球和4个红球,乙袋中有1个白球和2个 红球,现在随机地从甲袋中取出一球放入乙袋,然后从 乙袋中随机地取出一球,问从乙袋中取出的是白球的概 率是多少?
【解析】设A表示事件“从甲袋中移入乙袋中的球是白 球”,B表示事件“最后从乙袋中取出的是白球”.所以
提示:P(A)= 2 ,P(AB)= 1 ,P(B|A)= 1 ,
3
3
所以P(B|A)= PAB .
2
PA
结论:
条件概率的概念
设A,B为两个事件,且P(A)>0,称P(B|A)= PAB 为在事 件A发生的条件下,事件B发生的条件概率.P A
P(B|A)读作__发生的条件下__发生的概率.
钞”,B表示“抽到的两张都是假钞”,则所求概率为
P(B|A).
因为P(AB)=P(B)= ,P(A)=
,
所以P(B|A)=
C52 C220
C52 C15C115 C220
PAB PA

C52
C52 C15C115

10 85

2. 17
类型二 条件概率性质及应用
【典例2】(1)若B,C是互斥事件且P(B|A)= 1 ,P(C|A)
PA
1 3= 3 . 2 5 10
3.把一枚硬币任意抛掷三次,事件A=“至少一次出现正 面”,事件B=“恰有一次出现正面”,则P(B|A)=( )
A. 3 B.3
C. 7
D. 1
7
8
8
8
【解析】选A.由题意, P

AB
所以P(B|A)= PAB 3

3 23

3,PA
8
1
1 23

7 8
,
.
PA 7
4.抛掷红、白两枚骰子,事件A=“红骰子出现3点”,事 件B=“白骰子出现的点数是奇数”,则P(A|B)=_______.
【解析】利用条件概率的定义求解.P(A|B)= PAB PB

1 6
3
3 6

1. 6
答案6:
1
6
5.将一颗骰子先后抛掷两次,在朝上的一面数字之和为
于是P(B|A)= P(AB) P(B) 0.4 =0.5, P(A) P(A) 0.8
所以一只20岁的这种动物能活到25岁的概率是0.5.
【补偿训练】从混有5张假钞的20张百元钞票中任意抽 取两张,将其中一张放到验钞机上检验发现是假钞,求 两张都是假钞的概率.
【解析】若A表示“抽到的两张中至少有一张为假
PPA(B=)=62P,(AP)AP(=B|64A,)+PB
|
A

2,P 4
B|A
=1. 4
P A P B | A =2 2 4 1=1. 6464 3
【误区警示】解答本题易出现如下两点错误:
一是不能分清事件A、事件B、事件AB以及事件B|A与事
Ai|B)= n

i1
i1
P(Ai|B).
【预习自测】 1.下列式子成立的是 ( A.P(A|B)=P(B|A) C.P(AB)=P(B|A)·P(A)
) B.0<P(B|A)<1 D.P(AB|A)=P(B)
【解析】选C.由P(B|A)= PAB 得P(AB)=P(B|A)P(A), PA
n AB ,这里n(A)和n(AB)的计数是基于缩小的基本事件 nA
范围的.
【巩固训练】设某种动物能活到20岁的概率为0.8,能 活到25岁的概率为0.4,现有一只20岁的这种动物,问它 能活到25岁的概率是多少?
【解析】设事件A为“能活到20岁”,事件B为“能活到 25岁”, 则P(A)=0.8,P(B)=0.4, 而所求概率为P(B|A), 由于B⊆A,故AB=B,
(1)从6个节目中不放回地依次抽取2个事件数为n(Ω)=
=30.
A
2 6
根据分步乘法计数原理n(A)=
=20,
得P(A)=
A14A15
nA
(2)因为nn((AB))=
20 30
=1322. ,
所以P(AB)=
A
2 4
n AB 12 2 .
n() 30 5
(3)方法一:由(1)(2),得在第1次抽到舞蹈节目的条件
(2)(2017·福州高二检测)如图,EFGH是以O为圆心,半径 为1的圆的内接正方形.将一颗豆子随机地扔到该圆内, 用A表示事件“豆子落在正方形EFGH内”,B表示事件 “豆子落在扇形OHE(阴影部分)内”,则P(B|A)=____.
由古典概型的概率公式及加法公式可知 PP((DA)D=)P=(PA(∪A)B,∪P(CB)D=)P=(PA()B+)P,(PB()E+|PD()C=)P=(ACC∪162600B|CDC1)50=C620P110(A|CDC140)C620+120 , P(B|D)
210 2 520

PA PD
(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节 目的概率.
【解题指南】先设第1次抽到舞蹈节目为事件A,第2次 抽到舞蹈节目为事件B,再求P(A),P(AB),再由条件概率 的计算公式求P(B|A).
【解析】设第1次抽到舞蹈节目为事件A,第2次抽到舞 蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事 件AB.

4 10

3 9

2 8
4
4 10

6 9

3 8

2
15 4

1. 3
10
10
【方法总结】复杂条件概率问题的处理策略 对于比较复杂的事件,可以先分解为两个(或若干
个)较简单的互斥事件的并,求出这些简单事件的概率, 再利用加法公式P(B∪C|A)=P(B|A)+P(C|A)即得所求的 复杂事件的概率.
【解析】在碰到(1)班同学时,正好碰到一名女同学的
概率即为A发生的条件下,B发生的概率,由题意可知n(A)
=70,n(AB)=30.由条件概率公式求得
PB|
A

n AB nA

30 3 . 70 7
类型一 条件概率的计算 【典例1】现有6个节目准备参加比赛,其中4个舞蹈节 目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率. (2)第1次和第2次都抽到舞蹈节目的概率.
A
B
【微思考】
1.若事件A,B互斥,则P(B|A)是多少?
提示:A与B互斥,即A,B不同时发生,
所以P(AB)=0,所以P(B|A)=0.
2.若P(A)≠0,则P(AB)=P(B|A)·P(A),这种说法正确吗?
提示:正确,由P(B|A)=
得P(AB)=P(B|A)·P(A).
PAB PA
10
10
【延伸探究】 1.典例(2)中条件“不放回”改为“放回”,则结论如 何? 【解析】有放回,则第三次取球不受第一次取球影响, 记第三次取到黑球为事件D,则P(D)=
6 3. 10 5
2.典例(2)中条件不变,改为求第三次取出白球的概率.
【解析】由例题知P(C|A)= PAC PA
主题2 条件概率的性质
1.依据条件概率的定义以及概率的范围,试写出条件概
率的范围?
提示:因为P(B|A)=
(P(A)>0),且每个事件的概率
PAB
都大于或等于0且小于P 或A 等于1.所以0≤P(B|A)≤1.
2.如果B和C是两个互斥事件,试写出求P(B∪C|A)的公 式? 提示:由于B与C是互斥事件,所以P(B∪C|A)=P(B|A)+ P(C|A).
件B| ;二是将P(B)=P(A)P(B|A)+
误认为
P(B)=AP(A)P(B|A).
PAPB | A
类型三 几何概型中的条件概率 【典例3】(1)如图所示的正方形被平均分成 9个部分,向大正方形区域随机地投掷一个点 (每次都能投中),设投中最左侧3个小正方形区域的事 件为A,投中最上面3个小正方形或中间1个小正方形区 域的事件记为B,则P(A|B)=________.
下,第2次抽到舞蹈节目的概率为
P(B|A)=
2
方法二:因PP为AAnB(AB)52=1253,. n(A)=20,
3
所以P(B|A)=
n AB nA

12 20

3 5
.
【方法总结】利用缩小基本事件范围计算条件概率的 方法
将原来的基本事件全体Ω 缩小为已知的条件事件A, 原来的事件B缩小为AB.而A中仅包含有限个基本事件, 每个基本事件发生的概率相等,从而可以在缩小的事件 空间上利用古典概型公式计算条件概率,即P(B|A)=
YYY, YYY.
抽到中奖奖券”包含的基本事件仍是
.由古典概
型计算概率的公式可知,最后一名同学Y抽Y到Y中奖奖券的
概率为 .
1 2
3.设A表示事件“第一名同学没有抽到中奖奖券”,AB 表示事件“第一名同学没有抽到中奖奖券,而最后一名 同学抽到中奖奖券”,B|A表示事件“已知第一名同学 没有抽到中奖奖券的条件下,最后一名同学抽到中奖奖 券”,试求P(A),P(AB),P(B|A)三者间的关系?
结论: 条件概率的性质 (1)P(B|A)∈______.
[0,1] (2)如果B与C是两个互斥事件,则 P(B∪C|A)=______________.
P(B|A)+P(C|A)
相关文档
最新文档