3.2 中位数和众数 导学案(含答案)
3.2中位数与众数课件(五四制)数学八年级上册
据的中位数是2.
感悟新知
总结
求一组数据的众数的方法:找 一组数据的众数,可用观察法;当 不易观察时,可用列表的形式把各 数据出现的次数全部计算出来,即 可得出众数.
感悟新知
1 (中考·南宁)某校男子足球队的年龄分布如条形图所示, 则这些队员年龄的众数是( C ) A.12岁 B.13岁 C.14岁 D.15岁
月平均工资2 700元,指所有员工工资的平均数是2 700元,
说明公司每月将支付工资总计2 700×9=24 300 (元).
职员C的工资1 900元,恰好居于所有员工工资的“正
中间”(恰有4人 的工资比他高,有4人的工资比他低),
我们称它为中位数.
9个员工中有3个人的工资为1 800元,出现的次数最
A.2
B.4
C.6
D.8
2 (中考·泰安)某单位若干名职工参加普法知识竞赛,将成绩
制成如图所示的扇形统计图和条形统计图,根据图中提供
的信息,这些职工成绩的中位数和平均数分别是( D )
A.94分,96分 B.96分,96分
C.94分,96.4分 D.96分,96.4分
知识点 2 众 数
感悟新知
1.定义:一组数据中出现次数最多的那个数据叫做这组数 据的众数.
感悟新知
例2〈易错题〉如果四个整数数据中的三个数据分别是2, 4,6,且它们的中位数也是整数,那么它们的中位数是 ___3_或__4_或__5___.
感悟新知 导引:分4种情况考虑,设第4个数为x, 当x≤2时,中位数是(2+4)÷2=3. 当2<x≤4时,中位数为(x+4)÷2,要使中位数为整数, x可取4,则中位数为4. 当4<x≤6时,中位数为(4+x)÷2,要使中位数为整数, x可取6,则中位数为5. 当x>6时,中位数为(4+6)÷2=5.故中位数是3或4或5.
冀教版九年级数学 23.2 中位数和众数(学习、上课课件)
感悟新知
2. 求中位数-练
例1 近年来,随着环境治理的不断深入,成都已构建起 “青山绿道蓝网”生态格局.如今空气质量越来越好,
杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道
靓丽的风景.下面是成都市今年三月份某五天的空气质
量指数( AQI):33,27,34,40,26,则这组数据的
感悟新知
知3-练
3-1.某品牌汽车的销售公司有营销人员14 人,销售部 为制订营销人员的月销售汽车定额,统计了这
14 人某月的销售量如下(单位:辆):
销售量 20 17 13 8
进球个数 / 个 42 32 26 20 19 18 15 14 人数 / 名 1 1 1 1 2 1 2 1
感悟新知
知3-练
解题秘方:紧扣平均数、中位数和众数的定义及 特点进行解答 .
感悟新知
根据上面的信息,请解答下列问题:
知3-练
(1)求这 10 名队员进球个数的平均数、中位数和众数; 解:平均数为 110×(42+32+26+20+19× 2+18+15× 2+14) =22(个),中位数为 19 个,众数 为 15 个, 19 个 .
中位数是(
)
A.26
B.27
C.33
D.34
感悟新知
解题秘方:紧扣中位数的定义解答.
知1-练
解:将数据按从小到大的顺序排列为 26, 27, 33, 34, 40,处于中间位置的数据为 33,则中 位数是 33.
答案:C
感悟新知
知1-练
1-1. 4 月 23 日是世界读书日,学校举行“快乐阅读,
第二十三章 数据分析
23.2 中位数和众数
3.2中位数和众数
100
C
中位数=14 众数=12 平均数≈13.5
A.8位评委所打分数的平均分
B.8位评委所打分数的中位数
C.8位评委所打分数的众数
D.去掉最高分和最低分,取剩下分数的平均分 为什么这样做?请你说一说.
为了使平均数不受由评委个人偏见所产 生的极端值的影响。
小范的儿子数学考了85分,他想知道 自己的成绩是否在班中属于中上,那么 他需知道这次数学考试全班同学成绩的 ( )B A.平均分 B.中位数 C.众数 D.以上都不对
1000 0
6000
400 0
技术 员B
4000
技术 技术 技术 技术 见习技 员C 员D 员E 员F 术员G
3000 2800
2800
280 0
600
请大家帮小范算算该公司员工的月平均工资是 多少? 经理是否忽悠了他?
那问题又出在哪里呢?
由于平均数易受极端数据的影响,所以这里的月 平均工资不能客观地反映一般员工的实际收入 水平.
§3.2
招聘启事
本山工程咨询公司招聘 技术人员一名,工资待 遇从优。
☞小范去了本山公司……
请问赵经理, 您公司员工收 入到底怎样?我这里报酬不错, 月
平均工资是4000元, 你在这里好好干!
应聘者小范
赵经理
☞几天后……
可赵经理说月平均工
我的工资是 3000元,在公司 算中等收入。
资有4000元呀,真晕!
∴这组数据中的中位数是9。
若没有“由大到小排列”,则情况又如何?
我校派出10名选手参加市中学生田径运 动会,参赛选手的年龄情况如下表:
年龄(岁)
1 2
13
14
15 16
中位数与众数 导学案
中位数与众数导学案姓名:一、定义1、众数的定义:书页2、中位数:书页3、求中位数的步骤:1、;2、当数据的数量为时,中位数是;3、当数据的数量为时,中位数是;例1:某男子篮球队在10场比赛中,投球所得分数分别为80、86、95、86、79、65、98、86、90、81,则该球队的10场比赛所得分数的众数为________,中位数为________.例2:某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?例3:在一次中学生田径运动会上,参加男子跳高的17名运动员成绩如下:那么运动员成绩的众数是________,中位数是________,平均数是________。
二、练习1、为了筹备班里的新年联欢会,班长以全班同学最爱吃的哪几种水果做民意调查,以决定最终买什么水果.该次调查最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定2、对于数据7,9,6,8,10,12,下列说法正确的是( ).(A)中位数等于平均数 (B)中位数大于平均数(C)中位数小于平均数(D)以上都不对3、如果数据20、30、50、90和x的众数是20,那么这组数据的中位数是________,平均数是________。
4、某班40个同学参加“支援灾区”捐款活动,情况如下表:若该班同学人均捐款4元,求:(1)x和y;(2)捐款的中位数和众数.5、某中学要召开运动会,决定从9年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近).现在抽测了10名女生的身高,结果如下(单位:厘米):166 154 151 167 162 158 158 160 162 162(1)依据数据估计,9年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?6、已知一组数据10、10、x和8的中位数和平均数相等,求这组数据的中位数.7、在一次环保知识竞赛中,某班50名同学得分情况如下:50分,2人;60分,3人;70分,6人;80分,14人;90分,15人;100分,5人;110分,4人;120分,1人。
§第2节 中位数与众数 导学案
子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期 姓名: 组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学§第2节 平均数(二)乔智一、【学习目标】1.能说出中位数、众数等数据代表的概念,能根据所给信息求出一组数据的中位数、众数等的数据代表。
2.能结合具体情境体会平均数、中位数、众数三者的差别;3.能从各类统计图中获取数据,能初步选择恰当的数据代表对数据作出自己的评判。
【学习过程】活动1:认识中位数和众数经理、职员C 、职员D 所说的三个数据分别表示什么?你怎样看待该公司员工的收入?你认为用哪个数据表示该公司员工收入的“平均水平”更合适?与同伴交流。
一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8,的中位数是)7.165.1(21,即1.675,众数是1.5和1.7。
运用•巩固2.自己写一组数据,试解释其中的中位数、众数。
3.2009-2010赛季广东东莞银行篮球队队员身高的平均数、中位数和众数分别是多少?活动2:感受三种代表数的特点作为数据的代表,一组数据的平均数、中位数、众数常常有偏差。
为什么会出现偏差,如何选择合适的数据代表呢?1.前面那个公司员工收入的平均数,明显比中位数、众数高得多,试解释其中的原因。
2.某班共30人,一次数学考试中,假设婷婷得了78分,全,其他同学的成绩是1个100分,4个90分,22个80分,以及1个10分和1个2分。
婷婷算出全班平均分是77分,她告诉妈妈说,“这次我的成绩超过班级均分了,在班上处于中上水平”。
婷婷的说法正确吗? 3.(1)你课前所调查的50名男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少? (2)你认为学校商店应多进哪种尺码的运动鞋?反思•交流4.平均数、中位数和众数有哪些特征?当堂训练1.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别是 .2.某校八年级(1)班50名学生参加数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94 人数1235453784332请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的平均分是__________,众数是 . (2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.*3.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)初一年级 80 86 88 80 88 99 80 74 91 89 初二年级 85 85 87 97 85 76 88 77 87 88 初三年级 82 80 78 78 81 96 97 88 89 86 (1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:① 从平均数和众数相结合看(分析哪个年级成绩好些); ② 从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.批改日期 月 日平均数众数 中位数 初一年级 85.587 初二年级 85.5 85 初三年级84别忘了可以使用计算器哟!。
3.2中位数和众数
某商场在一个月内销售某中品牌的冰箱共 58 台,具体 情况如下:
型号 200升 215升 185升 176升
销售数量
6台
38台
14台
8台
请问此商场的经理关注的是这组数据的平均数吗? 他关注的是什么?为什么?如果你是经理,你将如何 调整这种冰箱的进货数量呢?
1、某风景区在“五一”黄金周期间,每天接待的旅游 人数统计如下:
5、当5个整数从小到大排列,其 中位数是4,如果这个数集的唯一
众数是6,则这5个整数可能最大的
和是(
A
) B.22 C.23 D.24。
A.21
6、已知一组数据10,10,x,8的 中位数与平均数相等,求x值及
这组数据的中位数。
平均数、中位数和众数的异同点:
(1)平均数、众数和中位数都是描述一组数据
解答下列问题(直接填在横线上): 810 元; (1)餐厅所有员工的平均工资是______ (2)所有员工工资的中位数是 元; 450 (3)用平均数还是用中位数描述该餐厅员工工资的一般水平比 较恰当?答: 。 中位数 (4)去掉经理的工资后,其他员工的平均工资是 445 元, 是否也能反映该餐厅员工工资的一般水平? 答: 。 能
集中趋势的量;
(2)平均数、众数和中位数都有单位; (3)平均数反映一组数据的平均水平,与这组 数据中的每个数都有关系,所以最为重要, 应用最广;
(4)中位数不受个别偏大或偏小数据的影响 ;
(5)众数与各组数据出现的频数有关,不受个 别数据的影响,有时是我们最为关心的数据。
23.5 鞋 号 (cm) 3 人数
24 4
24.5
25 7
25.5
26 1
4
1
苏科版数学九年级上册3.2《中位数与众数》说课稿2
苏科版数学九年级上册3.2《中位数与众数》说课稿2一. 教材分析《苏科版数学九年级上册3.2《中位数与众数》》这一节的内容是在学生已经掌握了数据的收集、整理和描述的基础上进行学习的。
本节课的主要内容是让学生理解中位数和众数的概念,学会如何求一组数据的中位数和众数,并能够运用中位数和众数来解决实际问题。
在教材中,通过引入中位数和众数的概念,让学生了解它们在统计学中的作用,以及它们与平均数的区别。
通过实例的讲解和练习,让学生掌握求中位数和众数的方法,并能够运用这些方法来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数据的收集、整理和描述有一定的了解。
但是,对于中位数和众数的概念,学生可能比较陌生,需要通过实例来引导学生理解和掌握。
此外,学生的学习习惯和方法可能不够科学,需要教师进行引导和指导。
三. 说教学目标本节课的教学目标是让学生理解中位数和众数的概念,学会如何求一组数据的中位数和众数,并能够运用中位数和众数来解决实际问题。
具体来说,学生需要能够:1.理解中位数和众数的概念,并能够区分它们与平均数的区别。
2.学会求一组数据的中位数和众数的方法,并能够运用这些方法来解决实际问题。
3.培养学生的数据分析能力和解决问题的能力。
四. 说教学重难点本节课的重难点是让学生理解中位数和众数的概念,并能够运用这些概念来解决实际问题。
具体来说,学生需要能够:1.理解中位数和众数的概念,并能够区分它们与平均数的区别。
2.学会求一组数据的中位数和众数的方法,并能够运用这些方法来解决实际问题。
五. 说教学方法与手段本节课的教学方法主要是采用讲授法和实例教学法。
通过教师的讲解和实例的引导,让学生理解和掌握中位数和众数的概念和方法。
此外,还会采用小组讨论法和学生展示法,让学生在小组讨论中互相学习和交流,通过学生的展示来检验学生的学习效果。
六. 说教学过程1.导入:通过引入实际问题,让学生思考如何求解一组数据的中位数和众数,激发学生的学习兴趣。
3.2中位数和众数 新浙教版
一组数据的中位 数是唯一的
中位数
20 21 21
众数
20 20 20和22
将一组数据按大小依次排列,把处在最中间位置的一个 数据(当为偶数个数据时,为最中间两个数的平均数) 叫做这组数据的中位数。
(1)工资的平均数是多少?
(2)工资的中位数是多少? (3)工资的众数是多少?
布置作业
1、作业本 2、课后练习
义务教育课程标准实验教科书
浙教版《数学》八年级下册(2014版)
老师带着一群幼儿园小朋友在公园里玩游戏,他 们的年龄分别是:39,5,6,6,5,6,5,6,6,6(岁),能 用平均数表示这一群体的年龄特征吗?
老师带着一群幼儿园小朋友在公园里玩游戏,他 们的年龄分别是:39,5,6,6,5,6,5,6,6(岁),能用 平均数表示这一群体的年龄特征吗? 从小到大排列: 5,5,5,6,6,6,6,6,39
3860元 2900元 2800元
(4)平均数能反映一般员工的工资吗? (5)如果你找工作,你会怎样去了解工作报酬?
1. 元旦文娱演出中,10位评委给某节目打分如下(分) :
7.20,7.25,7.00,7.10,9.50, 7.30, 7.20,7.20,6.10,7.25 .
29.8,30.0,30.0,30.0,30.2,44.0,30.0。
①.在这组数据中,中位数是 众数是 平均数是
。
②.凭经验,你觉得此大厦大概有多高?简要说明理由。
平均数、中位数、众数的关系
Байду номын сангаас
平均数、中位数、众数它们都刻画了一组数据的 “平均水平”。 计算平均数时,所有数据参加运算,能充分利用 数据所提供的信息,但易受极端值的影响 中位数的优点时计算简单,但不能充分利用所有 数据的信息 一组数据中某些数据多次重复出现时,众数是非 常重要的一个量,但各个数据的重复次数大致相 同时,众数往往没有意义。
初中中位数和众数教案
初中中位数和众数教案教学目标:1. 理解中位数和众数的意义,掌握求一组数据的中位数和众数的方法。
2. 能够运用中位数和众数解决实际问题,体会数学与生活的联系。
3. 培养学生的观察能力、分析能力和解决问题的能力。
教学重点:1. 中位数和众数的定义及求法。
2. 运用中位数和众数解决实际问题。
教学难点:1. 中位数和众数的求法。
2. 理解中位数和众数在实际问题中的应用。
教学准备:1. 教师准备一组数据,用于讲解和练习。
2. 学生准备笔记本,记录知识点和练习。
教学过程:一、导入(5分钟)1. 教师出示一组数据,让学生观察并找出其中的最大值和最小值。
2. 学生回答,教师总结。
二、中位数(15分钟)1. 教师讲解中位数的定义,通过示例让学生理解中位数的概念。
2. 教师引导学生思考如何求一组数据的中位数,学生讨论并回答。
3. 教师总结中位数的求法,并进行示范。
4. 学生练习求一组数据的中位数,教师指导。
三、众数(15分钟)1. 教师讲解众数的定义,通过示例让学生理解众数的概念。
2. 教师引导学生思考如何求一组数据的众数,学生讨论并回答。
3. 教师总结众数的求法,并进行示范。
4. 学生练习求一组数据的众数,教师指导。
四、实际问题(15分钟)1. 教师出示一组实际问题,让学生运用中位数和众数解决。
2. 学生独立思考,教师引导学生讨论并解答。
3. 教师总结解题方法,并进行讲解。
五、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,学生回答。
2. 教师总结并强调中位数和众数在实际问题中的应用。
六、作业布置(5分钟)1. 教师布置课后作业,要求学生独立完成,巩固所学知识。
教学反思:本节课通过讲解和练习,让学生掌握了中位数和众数的定义及求法,并能运用所学知识解决实际问题。
在教学过程中,教师应注重学生的观察和思考能力,引导学生积极参与讨论,提高课堂效果。
同时,通过实际问题的解决,让学生体会数学与生活的联系,培养学生的应用能力。
初中数学浙教版八年级下册第3章 数据分析初步3.2 中位数和众数-章节测试习题(8)
章节测试题1.【答题】某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A. 6,6B. 7,6C. 7,8D. 6,8【答案】B【分析】首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【解答】把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.选B.2.【答题】某篮球队员12名队员的年龄情况统计如下表:则这12名队员的众数和中位数分别是()A. 23岁,21岁B. 23岁,22岁C. 21岁,22岁D. 21岁,23岁【答案】C【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据、定义即可求解.【解答】21出现的次数最多,因而众数是:21岁;12个数,处于中间位置的是21和23,因而中位数是:22岁.选C.3.【答题】某班5位同学参加“改革开放30周年”系列活动的次数依次为:1、2、3、3、3,则这组数据的众数和中位数分别是()A. 2;2B. 2.4;3C. 3;2D. 3;3【答案】D【分析】众数是一组数据中出现次数最多的数,在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.【解答】在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.选D.4.【答题】某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:这组同学引体向上个数的众数与中位数依次是()A. 9和10B. 9.5和10C. 10和9D. 10和9.5【答案】D【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中10是出现次数最多的,故众数是10;处于这组数据中间位置的那个数是9、10,那么由中位数的定义可知,这组数据的中位数是(9+10)÷2=9.5.∴这组同学引体向上个数的众数与中位数依次是10和9.5.选D.5.【答题】已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a,中位数为b,则a______b.A. >B. <C. =【答案】C【分析】根据中位数和众数的定义分别求出a,b即可.【解答】在这一组数据中15是出现次数最多的,故a=15;而将这组数据从小到大的顺序排列(11,12,13,15,15,15,15,16),处于中间位置的数是15、15,那么由中位数的定义可知,这组数据的中位数是b=(15+15)÷2=15.∴a=b.故选C.6.【答题】某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A. 18,19B. 19,19C. 18,19.5D. 19,19.5【答案】A【分析】根据众数及平均数的概念求解.【解答】年龄为18岁的队员人数最多,众数是18;平均数==19.选A.7.【答题】在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为()A. 44、45B. 45、45C. 44、46D. 45、46【答案】B【分析】根据平均数的定义计算这组数据的平均数,由于数据中45出现了4次,出现次数最多,则可根据众数的定义得到这组数据的众数为45.【解答】解:数据的平均数=(45+44+45+42+45+46+48+45)=45,数据中45出现了4次,出现次数最多,∴这组数据的众数为45.选B.8.【答题】七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A. 0.4和0.34B. 0.4和0.3C. 0.25和0.34D. 0.25和0.3 【答案】A【分析】根据众数及平均数的定义,结合表格信息即可得出答案.【解答】解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.选A.9.【答题】某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为()A. 13,14B. 14,13.5C. 14,13D. 14,13.6【分析】观察这组数据发现14出现的次数最多,进而得到这组数据的众数为14,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了2次,15出现了1次,∴这组数据的众数为14,∵这组数据分别为:12、13、14、15、14,∴这组数据的平均数x==13.6.选D.10.【答题】某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A. 454,454B. 455,454C. 454,459D. 455,0【答案】B【分析】首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.【解答】解:平均数是:454+(-10+5+0+5+0+0-5+0+5+10)=454+1=455克,-10,+5,0,+5,0,0,-5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.11.【答题】某课外学习小组有5人,在一次数学测验中的成绩分别是:120,100,135,100,125,则他们的成绩的平均数和众数分别是()A. 116和100B. 116和125C. 106和120D. 106和135【答案】A【分析】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.【解答】在这一组数据中100是出现次数最多的,故众数是100;他们的成绩的平均数为:(120+100+135+100+125)÷5=116.选A.12.【答题】某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周大约花钱数额进行了统计,如下表:根据这个统计可知,该班学生一周花钱数额的众数、平均数是()A. 15,14B. 18,14C. 25,12D. 15,12【答案】A【分析】根据众数、平均数的概念求得结果,判定正确选项.【解答】∵众数是数据中出现次数最多的数,∴该班学生一周花钱数额的众数为15;∵平均数是指在一组数据中所有数据之和再除以数据的个数,∴该班学生一周花钱数额的平均数=(5×7+10×12+15×18+20×10+25×3)÷50=14.选A.13.【答题】某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9.这组数据的平均数和众数分别是()A. 7,7B. 6,8C. 6,7D. 7,2【答案】A【分析】根据平均数和众数的概念直接求解,再判定正确选项.【解答】平均数=(7+5+6+8+7+9)÷6=7;数据7出现了2次,次数最多,∴众数是7.选A.14.【答题】王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是()A. 2.4,2.5B. 2.4,2C. 2.5,2.5D. 2.5,2【答案】A【分析】根据平均数的定义,以及众数的定义就可以解决.【解答】解:∵这10名学生每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5,则根据平均数的计算公式可得:=2.4.这组数据中,2.5出现了4次,是出现次数最多的,即这组数据的众数是2.5.选A.15.【答题】益阳市某年6月上旬的最高气温如下表所示:日期 1 2 3 4 5 6 7 8 9 10最高气温30 28 30 32 34 32 26 30 33 35(℃)那么这10天的最高气温的平均数和众数分别是()A. 32,30B. 31,30C. 32,32D. 30,30【答案】B【分析】根据众数,平均数的定义就可以解答.【解答】平均数是:(30+28+30+32+34+32+26+30+33+35)÷10=31;30出现3次是最多的数,∴众数为30.选B.16.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.17.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13 【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.18.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.19.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.20.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.。
新苏科版九年级上册初中数学 3-2 课时2 平均数、中位数和众数的综合应用 教学课件
人数/名
2 6 14 12 8 3 45
求所用时间的平均数、中位数和众数.
新课讲解
解:45个数据的平均数为
x 1 5 2 10 6 1514 2012 25 8 30 3
45
=18(min). 将这45个数据由小到大排序,第23个数据是20 min, 所以中位数是20 min. 所用时间出现最多的是15 min,所以众数是15 min.
新课讲解
练一练
某中学由6名师生组成一个排球队,他们的年龄(单位:岁)如下: 15 16 17 17 17 40
122
(1)这组数据的平均数为___6___,中位数为___1_7__,众 数为___1_7__.
(2)用哪个值作为他们年龄的代表值较好?
众数
课堂小结
选择能代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数 作为这组数据的代表值;当有极端值时,用 中位数或众数作为这组数据的代表值.
第三章 数据的集中趋势和离散程度
3.2 中位数与众数
课时2 平均数、中位数和众数的综合应用
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.理解众数、中位数、平均数的区别与联系.(重点) 2.运用众数、中位数、平均数的区别与联系判别实际 问题.(重难点)
当堂小练
1.(1)数据 3,5,3,5,3,6,5,7中,众数是 ___3___和 ___5___.
(2)数据3,4,6,5,7,8,9,2中,存在众数吗?为 什么? 不存在. 因为每一个数据都只出现了一次,没有哪个数据出现的 次数最多,所以不存在众数.
3.2中位数与众数(2)
课题:3.2中位数与众数(2)班级姓名评价教学目标:1、进一步理解众数和中位数的概念,能根据所给信息合理地运用相应的数据代表分析问题。
2、体会平均数、中位数和众数三者的之间的差别,能选择恰当的数据代表对数据作出自己的判断。
3、感受统计在生活中的应用,增强统计意识,发展统计观念。
教学重、难点:体会平均数、中位数和众数三者之间的联系和区别,能选择恰当的数据代表对数据作出自己的判断。
教学过程:一、自主尝试1、平均数、中位数和众数都有哪些自己的特点?2、为了了解某区2万名学生参加中考的情况,有关部门从中抽取了500名学生的成绩进行统计分析,在这个问题中()A.2万名考生是总体B.每名考生是个体C.500名考生是总体的一个样本D.样本容量是5003、某班4个课外兴趣小组的人数如下:x,8,10,10。
如果这组数据的中位数与平均数相等,求这组数据的中位数。
二、互动探究问题1、某同学一次考试成绩78分,高于班级的均分72分,因此他告诉家长,自己属于班级中等偏上水平,你认为对吗?数中的哪一个?说说你的理由。
问题3、某商店三、四月份出售同一品牌各种规格的空调销售数据如下表,根据表中数据回答:(2)商店出售的各种规格的空调中,众数是;(3)在研究六月份进货时,商店经理决定匹的空调要多进,匹的空调要少进。
三、例题讲解例1 :某班的教室里,三位同学正在为谁的数学成绩最好而争论,他们的五次数学成绩分别是小玲:62、94、95、98、98、小明:62、62、98、99、100 小丽:40、62、85、99、99,他们都认为自己的成绩比另两位同学的好,请你结合各组数据的三个代表,谈谈你的观平均数、中位数与众数都有哪些自己的特点?归纳:平均数:充分利用数据所提供的信息,应用最为广泛,但中位数:计算简单,受极端值影响较小,但众数:当一组数据中有些数据多次重复出现时,众数往往是人们尤为关心的一个量。
四、反馈检测1、在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数是众数是2、某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据。
苏科版九年级数学上册教案《3.2众数与中位数》
《3.1众数和中位数》《中位数与众数》是苏科版教材初中数学教材九级上册第三单元第二课时的教学内容。
在此之前,我们已经学习了抽样调查的概念,平均数的计算;对数据的处理有了一定的了解和能力,这位这节课的学习起到了重要的过渡作用。
《中位数与众数》在统计与概率中占据非常重要的位置,通过学习本节课,了解平均数、中位数、众数的特点与不同,为今后数据分析打下结实的基础。
【知识与能力目标】掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判. 【过程与方法目标】通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力. 【情感态度价值观目标】通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.【教学重点】求出一组数据的中位数、众数.【教学难点】利用平均数、中位数、众数解决问题.教师准备课件、多媒体;学生准备练习本一、导入新课内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。
下面请看一例:某次数学考试,小英得了78分。
全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。
小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的。
原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。
怎样说明这个问题呢?我们需要学习新的数据代表—中位数与众数.二、新课学习内容:问题:某公司员工的月工资如下:1100 500 元600经理说:我公司员工收入很高,月平均工资为2000元。
九年级数学苏科版上册 第三单元《3.2中位数与众数》教学设计 教案
3.2中位数与众数教案教学目标:1、掌握中位数、众数等数据代表的概念,能根据所给的信息求出一组数据的中位数和众数。
2、能结合具体的情境理解中位数和众数的区别和联系。
教学重点:求一组数据的中位数和众数教学难点:求一组数据的中位数教学过程一、创设情境问题1:奥运会男子50m 步枪3×40决赛.甲、乙两位运动员10次射击的成绩如(2)你认为甲、乙两名运动员这10次射击的平均成绩能反映他们的实际水平吗?说说你的理由分析:我们知道用平均数可以表示一组数据的集中趋势,计算出甲、乙两名远动员的平均成绩。
发现此时平均数就不能较好地反映这组数据的集中趋势。
从而发现是由极端值引起的。
问题2:某次数学考试,婷婷得到78分。
全班共29人, 其他同学的成绩为4个90分, 22个80分,以及一个2分和一个4分。
婷婷计算出全班的平均分为76分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”。
(1)你认同婷婷的说法吗?(2)我们可以怎样评价婷婷的这次成绩呢?分析:你认为婷婷的成绩属于什么水平呢?实际上中等以上还是中等以下,我们可以关注中等成绩的分数。
你知道婷婷在班级的具体名次吗?实质上就需要对成绩进行排序。
二、探究新知问题3:在“献爱心”的捐款活动中,我校九年级(4)班第3小组11名同学的捐款数如下(单位:元):4,4,2,3,3,5,7,6,8,10,80(1)这组数据的平均数能客观地反映全组同学捐款数的集中程度吗?(2)拓展:若再增加一个数据6,怎样确定中间位置的数呢?分析:引导学生发现大多数同学的捐款数集中在5元左右,那么5元在这组数据中位于怎样的位置呢?(3)1个2分,1个4分,1个78分,22个80分,4个90分,归纳:当一组数据有个别数据与其他数据的大小差异很大,那么平均数就不能较好地反映这组数据的集中趋势。
我们就需要用其他数据来表示。
中位数的定义试一试:求下列各组数据的中位数①18、19、20、21、21②3、5、2、9、8、4、7③2、2、6、3、8、6、2、6思考:若一组数据中有3个2,10个3,25个6,9个8,求这组数据的中位数自主归纳:求一组数据中位数的一般方法1、____________________2、______________ ①若数据为______个,______________②若数据为______个,______________(2)求鞋码的中位数。
八年级数学《中位数和众数(第二课时)》导学案
八年级数学《中位数和众数(第二课时)》导学案【学习目标】1.认识众数,并会求出一组数据的众数。
2.理解众数的意义和作用。
3.会利用众数分析数据信息做出决策。
【学习重难】1、重点:认识众数这种数据代表。
2、难点:利用众数分析数据信息做出决策。
【导学流程】(一)学习准备:(1)数据3、6、3、8、3、8、3的中位数是.其中出现次数最多..的数是。
(2)有14个数据:23、15、27、22出现的次数依次为2、5、3、4次,则这组数据的中位数是,其中出现次数最多..的数是。
(3)在一组数据中,对于出现次数最多的数据往往也是人们比较关注的数据。
(二)解读教材活动1 问题再探,感受新知问题2 下表是某公司员工月收入的资料:(1)计算这个公司员工月收入的平均数;(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?我们已经知道该公司员工月收入的平均数高于中位数,用中位数来反映公司全体员工月收入水平比用平均数反映公司全体员工月收入水平更合适,但实际上有11名员工(人数最多的群体)的月收入是3000元,低于中位数、平均数。
那么3000元更能反映公司多数员工的月收入水平,更受人们的关注,更具有普遍意义。
感受新知:1、一组数据中出现次数最多的数据称为。
如:(1)数据8、9、9、8、8、8、9、9、8、10、7、9、9中,7出现次,8出现次,9出现次,10出现次,其中数据出现的次数最多,所以这组数据的众数是。
(2)数据12、9、12、10、10、10、9、12中,9出现次,10出现次,12出现次,其中数据和出现的次数都是次且出现次数最多,所以这组数据的众数有两个,分别是和。
2、一组数据的众数可以是唯一的,例如(1);也可以是不唯一的,例如(2)。
当一组数据中多个数据出现的次数一样最多时,这几个数据都是这组数据的众数。
3、众数一定存在于原数据之中。
4、众数也常作为一组数据的代表,用来描述数据的集中趋势。
当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量。
中位数和众数同步练习(原卷解析卷)
3.2 中位数和众数同步练习一.选择题(共8小题)1.一组6个数:15,16,18,20,22,22,则这组数据的中位数是()A.22B.20C.19D.182.一组数据﹣1,﹣3,2,4,0,2的众数是()A.0B.1C.2D.33.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天用水量的中位数是()A.30吨B.36吨C.32吨D.34吨4.为了了解阳光居民小区“全民健身”活动的开展情况,某志愿者随机调查了该小区50名成年居民一周的体育锻炼时间,并将数据进行整理后绘制成如图所示的统计图,则这50人一周体育锻炼时间的众数是()A.6小时B.20人C.10小时D.3人5.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.6B.8C.9D.106.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是()A.39B.40C.41D.427.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85B.85.5和85C.85和82.5D.85.5和808.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2B.3C.4D.8二.填空题(共6小题)9.已知一组数据是3,4,7,a,中位数为4,则a=.10.一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为.11.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:尺码/cm23.52424.52525.52626.5销量/双376161882由此你能给这家鞋店提供的进货建议是.12.在振华中学书香文化节中,参加绘画作品评选20名同学所交作品份数如下表,则这20名同学所交作品份数的中位数是份.13.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.14.若一组数据1,3,4,5,x中,有唯一的众数是1,这组数据的中位数是.三.解答题(共4小题)15.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?16.某品牌汽车的销售公司有营销人员14人,销售部为制定营销人员的月销售汽车定额,统计了这14人在某月的销售量如下表:销售辆数201713854人数112532(1)这14位销售员该月销售某品牌汽车的平均数、众数和中位数各是多少辆?(2)销售部经理把每位销售员每月销售汽车定额为9辆,你认为是否合理?为什么?如果不合理,请你设计一个比较合理的销售定额,并说明理由.17.某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:人数1374年销售额(万元)10853根据以上信息,回答下列问题:(1)年销售额在万元的人数最多,年销售额的中位数是万元,平均年销售额是万元;(2)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由;(3)如果想确定一个较高的奖励目标,你认为年销售额定位多少比较合适?说明理由.18.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如图的统计图.(1)求m的值;(2)该射击队运动员年龄是众数是.(3)求该射击队运动员的平均年龄;(4)若该射击队有13岁运动员2人,则该射击队中14岁运动员有几人?。
冀教版数学九年级上册《中位数和众数》导学案
23.2中位数和众数(1)学习目标1.理解中位数、众数的概念,会求一组数据的中位数与众数.2.结合具体问题理解平均数、中位数和众数的实际意义.3.了解平均数、中位数、众数在描述数据时的差异,在实际问题中,能选择恰当的数据代表值描述一组数据的特征.一、课前检测1、小明记录了今年一月份某五天的最低温度(单位:℃):1,2,0,-1,-2,估计这个月的最低温度的平均值是 ( )A.1 ℃B.2 ℃C.0 ℃D.-1 ℃2.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小明和小丽的成绩如下表所示,则小明的总平均分是 ,小丽的总平均分是 .二、合作探究问题1小琴的英语听力成绩一直很好,在六次测试中,前五次的得分(满分30分)分别为:28分,25分,27分,28分,30分.第六次测试时,因耳机出现故障只得了6分.如何评价小琴英语听力的实际水平呢?(1)用6个分数的平均数评价小琴英语听力的实际水平合理吗?(2)如果不合理,那么应该用哪个数作为评价结果呢?一般地,将n 个数据按大小顺序排列,如果n 为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n 为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数.如何求一组数据的中位数?(当数据的个数为n ,n 为奇数时,中位数是从小到大(或从大到小)排列的第21 n 个数;当n 为偶数时,中位数是从小到大(或从大到小)排列的第2n 个数与第2n +1个数的平均数.)问题2某班用无记名投票的方式选班长,5名候选人分别编为1号,2号,3号,4号,5号.投票结果如下表: 候选人 1号 2号 3号 4号 5号 合计计票 正 正正正 正正 正 正 50票数 7 18 10 9 6 50在这个问题中,我们最关注的是什么?一般地,把一组数据中出现次数最多的那个数据叫做众数.【思考】 中位数和众数是不是都是唯一的?学生 作业 测验 期中考试 期末考试 小明 80 75 71 88 小丽 76 80 68 90三、典例分析统计全班45名学生每天上学路上所用的时间.如果时间取最接近5的倍数的整数,那么整理后的数据如下表:所用时间/min51015202530合计人数/名2614128345求所用时间的平均数、中位数和众数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2中位数和众数
【课前预习导学】
1.数据1,2,3,2,4的众数是.
2. 数据1,2,3,2,3,4的众数是.
3. 数据1,2,3,4,4的中位数是.
4. 数据1,2,3,4,5,6的中位数是.
5.数据1,3,2,4,2,4的平均数是,众数是,中位数是.6.据调查,某班30名同学所穿鞋子的尺码如下表所示:
码号/ 码33 34 35 36 37 人数7 7 14 1 1 则这组数据的平均数是,众数是,中位数是.鞋厂最感兴趣的是(填平均数、众数或者中位数).
【课外资料导学】
平均数、中位数和众数都是数据代表,它们刻画了一组数据的平均水平。
1.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大.
2.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点.
3.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势.
【课中生成导学】
1.求中位数的步骤:
(1)将数据由小到(或由大到)排列,
(2)数清数据个数是奇数还是数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的值作为中位数.
2.求众数的方法:
找出出现次数最的那个数据,若几个数据出现次数都是最多且相同,此时众数就是这多个数据.因此一组数据的众数可能没有,可能只要一个,甚至有可能多个.
3.一组数据的平均数、中位数不一定在这组数据中,而一组数据如果有众数,那众数肯定是这组数据中的数.
4.平均数、中位数和众数都是有单位的,和原数据的单位一致.
【课堂测评导学】(10分)
1. 数据8,9,9,8,10,8,10,7,6,9,8的中位数是,众数是.
2. 已知数据1,3,2,x,2的平均数是3,则这组数据的众数是.
3.一组数据按从小到大顺序排列为:13,14,19,x,23,27,28,31,其中位数是22,则x为.
4.在一次数学测验(满分100分)中,甲、乙、丙、丁四位同学的分数分别是80,x,80,70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A.100 B.90 C.80 D.70
5.判断
(1)给定一组数据,那么描述这组数据的平均数一定只有一个;()
(2)给定一组数据,那么描述这组数据的中位数一定只有一个;()
(3)给定一组数据,那么描述这组数据的众数一定只有一个;()
(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与最小值之间;()(5)给定一组数据,如果找不到众数,那么众数一定就是0.()
【课后拓展导学】
5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是( )
A.20 B.21 C.22 D.23
参考答案【课前预习导学】
1.2 2.2,3 3.3 4.3.5 5.8
3
2,4 2.5 6.34.4 35 35 众数
【课中生成导学】
大小偶平均多
【课堂测评导学】
1.8 8 2. 2 3.21 4.C5.√√×√×【课后拓展导学】
A。