分类加法计数原理与分步乘法计数原理易错点最新衡水中学精品自用资料

合集下载

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理
分类加法计数原理和分步 乘法计数原理
在数学中,分类加法计数原理和分步乘法计数原理是两个重要的计数方法。 本演示将介绍它们的概念、应用和示例,并提供总结和应用建议。
分类加法计数原理
分类加法计数原理是一种计数方法,它将问题分解为不同的分类,并将每个分类的计数结果相加,从而得到问 题的解答。
1
概念理解
了解如何将问题分类以及如何对每个分
应用案例
2
类进行计数。
探索实际应用中分类加法计数原理的例
子,如组队问题和物品组合问题。
3
加法计数实践
自己动手解决一些分类加法计数问题, 提升技巧。
分步乘法计数原理
分步乘法计数原理是一种计数方法,它将问题分解为逐步计数的阶段,然后将每个阶段的计数结果相乘,从而 得到问题的解答。
概念介绍
了解如何将问题分解为多个 阶段以及如何对每个阶段进 行计数。
实际应用
探索分步乘法计数原理在实 际问题中的应用,问题 的练习,提高技能。
总结和应用建议
通过学习分类加法计数原理和分步乘法计数原理,我们能够更有效地解决各种计数问题。将这些方法应用于实 际生活和工作中,可以帮助我们更好地分析和解决问题。
灵活应用
理解如何根据具体问题选择合适 的计数原理,并将其灵活运用。
问题解决能力
培养分析和解决问题的能力,提 升数学思维。
成就感
获得解决问题的成就感,进一步 激发学习兴趣。

11.1 分类加法计数原理与分步乘法计数原理

11.1  分类加法计数原理与分步乘法计数原理

A.9种
B.18种 C.12种
D.36种
-22-
考点1
考点2
考点3
解析:(1)分两类:①当取1时,1只能为真数,此时对数值为0; ②不取1时,分两步:取底数,有5种不同的取法;取真数,有4种不同的
取法.
其中log23=log49,log32=log94,log24=log39,log42=log93,
相同点 用来计算完成一件事的方法种数
分类、相加
分步、相乘
不同点 每类方案中的每一 每步依次完成才算完成这件事情 种方法都能独立地 (每步中的每一种方法都不能独立
完成这件事
地完成这件事)
注意点 类类独立,不重不漏 步步相依,缺一不可
知识梳理 考点自诊
随堂巩固
-4-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(2)按区域 1 与 3 是否同色分类:
①区域 1 与 3 同色;先涂区域 1 与 3,有 4 种方法,再涂区域 2,4,5(还有
3 种颜色),有A33种方法. 所以区域 1 与 3 同色,共有 4A33=24 种涂色方法.
②区域 1 与 3 不同色:第一步,涂区域 1 与 3,有A24种涂色方法;第二步,
11.1 分类加法计数原固
-2-
1.两个计数原理
分类加法计数原理
分步乘法计数原理
条件
结论 依据
完成一件事,可以 有 n类不同的方案 .在第 1 类方案中有 m1 种不同的方 法,在第 2 类方案中有 m2 种不 同的方法,……在第 n 类方案 中有 mn 种不同的方法 完成这件事共有 N=m1+m2+…+mn 种不同的 方法
随堂巩固

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理首先,让我们介绍一下分类加法计数原理。

分类加法计数原理也被称为分情况计数原理,是指将问题分为几个不同的情况进行计数,然后将各个情况的计数结果相加,得到最终的可能性总数。

为了更好地理解分类加法计数原理,我们举一个例子。

假设我们有三个不同颜色的球,红色、蓝色和黄色,现在要从这三个球中选择两个球。

根据分类加法计数原理,我们可以将这个问题分为三种情况:选择两个红色球、选择一个红色球和一个蓝色球、选择一个红色球和一个黄色球。

然后分别计算出每种情况下的可能性总数,最后将这三种情况的可能性总数相加,即可得到最终的答案。

在这个例子中,我们可以计算出每种情况下的可能性总数。

选择两个红色球有C(3,2)=3种可能;选择一个红色球和一个蓝色球有C(3,1)*C(3,1)=9种可能;选择一个红色球和一个黄色球也有9种可能。

将这三种情况的可能性总数相加,即得到最终的答案,共21种可能的选择方式。

接下来,让我们来介绍一下分步乘法计数原理。

分步乘法计数原理是指将一个问题分为若干个步骤,然后计算每个步骤的可能性数目,最后将各个步骤的可能性数目相乘,得到最终的可能性总数。

同样以一个例子来说明分步乘法计数原理。

假设我们有一个4位数的密码锁,每一位的取值范围是0-9、根据分步乘法计数原理,我们将这个问题分为四个步骤:第一位数字的可能性数目、第二位数字的可能性数目、第三位数字的可能性数目以及第四位数字的可能性数目。

然后计算每个步骤的可能性数目,最后将它们相乘,得到最终的可能性总数。

综上所述,分类加法计数原理和分步乘法计数原理是解决排列组合问题中常用的两种方法。

分类加法计数原理适用于将问题分为不同情况进行计数,然后将各个情况的计数结果相加;分步乘法计数原理适用于将问题分为若干个步骤,然后计算每个步骤的可能性数目,最后将它们相乘。

通过掌握这两种计数原理,我们可以更好地解决各种排列组合问题。

(完整版)计数原理知识点、题型小结doc

(完整版)计数原理知识点、题型小结doc

第一章、计数原理知识点小结一、分类加法计数原理与分步乘法计数原理1.分类计数原理-加法原理:如果完成一件事有 不同的方案,由第1类方案中有1m 种方法,在第2类方案中有2m 种不同的方法,种方法类方案中有第n m n 那么,完成这件工作共有 种不同的方法.2.分步计数原理-乘法原理:完成一件事需要 步骤,完成第1步有1m 种不同的方法,完成第2步有2m 种不同的方法,,种方法步中有第n m n 那么,完成这件工作共有 种不同方法。

3.两种方法的区别与联系:4.用两个计数原理解决计数问题时,需要注意的问题有哪些?最重要的是在开始计算之前进行仔细分析,弄清楚是一件什么事,正确选择是先分类还是先分步.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用加法原理求和;分步要做到“步骤完整”,完成所有步骤,恰好完成任务. 分步后要计算每一步的方法数,把每一步的方法数相乘,得到总数。

5.常用的方法有:填空法,使用时注意:6.常见的题型:(1)有关数字排列问题例1:由数字4,5,6,7组成的所有的不重复的三位数的个数为?(可以重复的三位数字又有多少个呢?)变式1:由0,1,2,3,4,5,6,这七个数字可以组成多少个无重复数字的四位偶数?小结:(2)形如n m m n 和的问题。

例2:5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参赛方法?变式1:若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同的情况(没有并列冠军)小结:(3)涂色问题 4块(ABCD )涂色要求共边两块颜色互异,求有多少种不同的涂色方案?变式:将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不同,则有多少种不同的涂色方法?小结:1.排列的定义:一般地,从n 个 元素中取出m ( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列.2.排列问题有何特点?什么条件下是排列问题?3.排列数的定义:从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n个不同元素取出m 元素的排列数,用符合 表示.4.排列数公式:从n 个不同元素中取出m (n m ≤)个元素的排列数=m n A5.全排列:从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为=n n A6.n 的阶乘定义: 用 表示。

6.1.1分类加法计数原理与分步乘法计数原理(解析版)

6.1.1分类加法计数原理与分步乘法计数原理(解析版)

分类加法计数原理与分类乘法计数原理导学案【学习目标】1.理解分类加法计数原理与分类乘法计数原理2.会用这两个原理分析和解决一些简单的实际计数问题.【自主学习】知识点一分类加法计数原理1.完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.知识点二分步乘法计数原理1.完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.2.完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,则完成这件事共有N=m1×m2×…×m n种不同的方法.【合作探究】探究一分类加法计数原理的应用【例1】某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生任学生会主席,有多少种不同的选法?(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?解(1)从三个班中任选一名学生,可分三类:第1类,从高三(1)班任选一名学生,有50种不同选法;第2类,从高三(2)班任选一名学生,有60种不同选法;第3类,从高三(3)班任选一名学生,有55种不同选法.由分类加法计数原理知,不同的选法共有N=50+60+55=165(种).(2)由题设知共有三类:第1类,从(1)班男生中任选一名学生,有30种不同选法;第2类,从(2)班男生中任选一名学生,有30种不同选法;第3类,从(3)班女生中任选一名学生,有20种不同选法.由分类加法计数原理知,不同的选法共有N=30+30+20=80(种).归纳总结:【练习1】如图,小圆点表示网络的结点,结点之间的连线表示它们由网线相连,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可沿不同的路径同时传递.则单位时间内传递的最大信息量是________.【答案】19解析若以网线为标准,则完成“从结点A向结点B传递信息”这件事也可分为四类,从而分解为若干个简单的问题后再各个击破.分四类:第一类,网线为12→5→3,单位时间传递的最大信息量是3;第二类,网线为12→6→4,单位时间传递的最大信息量是4;第三类,网线为12→6→7,单位时间传递的最大信息量是6;第四类,网线为12→8→6,单位时间传递的最大信息量是6.根据分类加法计数原理,单位时间内传递最大信息量是N=3+4+6+6=19.探究二分步乘法计数原理的应用【例2】从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y=ax2+bx+c的系数a,b,c,则可以组成抛物线的条数为________.【答案】100解析由题意知a不能为0,故a的值有5种选法;b的值也有5种选法;c的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).归纳总结:1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路:(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.【练习2】从集合{0,1,2,3,5,7,11}中任取三个元素分别作为直线方程Ax+By+C=0中的A,B,C,所得直线经过坐标原点的有________条.【答案】30解析该题实质上就是给A,B,C赋值.但首先要搞清楚直线过原点所隐含的条件,即C=0,所以,下面只需安排A,B.从1,2,3,5,7,11这6个数中任取2个作为A,B的值,分为两步:第一步取一个数作为A,有6种;第二步从剩下的5个数中取一个数作为B,有5种.所以由分步乘法计数原理得:直线的条数为6×5=30.探究三两个计数原理的综合应用【例3】某校高中三年级一班有优秀团员8人,二班有优秀团员10人,三班有优秀团员6人,学校组织他们去参观某爱国主义教育基地.(1)推选1人为总负责人,有多少种不同的选法?(2)每班选1人为小组长,有多少种不同的选法?(3)从他们中选出2个人管理生活,要求这2个人不同班,有多少种不同的选法?解(1)分三类,第一类是从一班的8名优秀团员中产生,共有8种不同的选法;第二类是从二班的10名优秀团员中产生,共有10种不同的选法;第三类是从三班的6名优秀团员中产生,共6种不同的选法,由分类加法计数原理可得,共有N=8+10+6=24(种)不同的选法.(2)分三步,第一步从一班的8名优秀团员中选1名组长,共有8种不同的选法,第二步从二班的10名优秀团员中选1名组员,共10种不同的选法.第三步是从三班的6名优秀团员中产生,共6种不同的选法,由分步乘法计数原理可得:共有N=8×10×6=480(种)不同的选法.(3)分三类:每一类又分两步,第一类是从一班、二班的优秀团员中各选1人,有8×10种不同的选法;第二类是从二班、三班的优秀团员中各选1人,有10×6种不同的选法,第三类是从一班、三班的优秀团员中各选1人,有8×6种不同的选法,因此,共有N=8×10+10×6+8×6=188(种)不同的选法.归纳总结:【练习3】高艳有4件不同颜色的衬衣、3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”劳动节需选择一套服装参加歌舞演出,则高艳不同的穿衣服的方式有________种.【答案】14解析穿衣方式分两类:第一步:不选连衣裙有4×3=12(种)方法.第二步:选连衣裙有2种方法.由分类加法计数原理知,共有12+2=14(种)方法.课后作业A 组 基础题一、选择题1.某小组有8名男生,4名女生,要从中选取一名当组长,不同的选法有( ) A.32种 B.9种 C.12种 D.20种 【答案】 C解析 由分类加法计数原理知,不同的选法有N =8+4=12(种).2.现有A ,B 两种类型的车床各一台,甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从这三名工人中选两名分别去操作以上车床,不同的选派方法有( )A.6种B.5种C.4种D.3种 【答案】 C解析 若选甲、乙两人,包括甲操作A 车床,乙操作B 车床,或甲操作B 车床,乙操作A 车床,共有2种选派方法.若选甲、丙二人,则只有甲操作B 车床,丙操作A 车床这1种选派方法.若选乙、丙二人,则只有乙操作B 车床,丙操作A 车床这1种选派方法,故共有2+1+1=4(种)不同的选派方法.3.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A.56B.65C.5×6×5×4×3×22D.6×5×4×3×2【答案】 A解析 每位同学都有5种选择,共有5×5×5×5×5×5=56(种).4.从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同走法种数共有( ) A.2+4+3 B.2×4+3 C.2×3+4D.2×4×3解析分两类,一是从甲地经乙地到丙地,有2×4种,二是直接从甲地到丙地有3种,所以从甲地到丙地的不同走法种数共有2×4+3.5.某学生在书店发现3本好书,决定至少买其中的1本,则购买方法有()A.3种B.6种C.7种D.9种【答案】C解析分3类,买1本书,买2本书,买3本书,各类的方法依次为3种,3种,1种,故购买方法有3+3+1=7(种).6.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A.7B.12C.64D.81【答案】B解析要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12(种)不同的配法.二、填空题7.把5本书全部借给3名学生,有________种不同的借法.【答案】243解析依题意,知每本书应借给三个人中的一个,即每本书都有3种不同的借法,由分步乘法计数原理,得共有N=3×3×3×3×3=35=243(种)不同的借法.8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员参加团体比赛,则入选的3名队员中至少有一名老队员的选法有________种.(用数字作答)【答案】9解析分为两类:两名老队员,一名新队员时,有3种选法;两名新队员、一名老队员时,有2×3=6(种)选法,即共有9种不同选法.9.一个科技小组有3名男同学和5名女同学,从中任选一名同学参加科技竞赛,共有________种不同的选派方法.解析由分类加法计数原理有3+5=8(种)不同的选派方法.10.已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数是________.【答案】24解析圆的方程由三个量a、b、r确定,a、b、r分别有3种、4种、2种选法,由分步乘法计数原理得,可表示不同的圆的个数为3×4×2=24.11.集合A={x1,x2,…,x2 015}的子集个数为________.【答案】22 015解析因为集合A中含有2 015个元素,所以要得到集合A的一个子集A1分2 015步:第1步,考查元素x1是否在A1中,有2种可能(x1∈A1,x1∉A1).第2步,考查元素x2是否在A1中,有2种可能(x1∈A1,x2∉A1).……第2 015步,考查元素x2 015是否在A1中,有2种可能(x2 015∈A1,x2 015∉A1).根据分步乘法计数原理,对于有2 015个元素组成的集合,共有2×2×2×…×2=22 015(个)不同的子集.三、解答题12.现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?(4)要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法,根据分类加法计数原理,共有5+2十7=14(种)不同的选法.(2)分为三步:国画、油画、水彩画分别有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画.由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法,所以共有10+35+14=59(种)不同的选法.(4)从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.B组能力提升一、选择题1.已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A.18B.10C.16D.14【答案】D解析M中元素作为横坐标,N中元素作为纵坐标,则在第一、二象限内点的个数为3×2=6.M中元素作为纵坐标,N中元素作为横坐标,则在第一、二象限内点的个数为4×2=8.共有6+8=14(个).2.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10【答案】B解析对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,∴ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.∴(a,b)的个数为4+9=13.故选B.二、填空题3.若在如图1的电路中,只合上一只开关以接通电路,有________种不同的方法;在如图2的电路中,合上两只开关以接通电路,有________种不同的方法.【答案】56解析对于图1中,按要求接通电路,只要在A中的两个开关或B中的三个开关中合上一只即可,故有2+3=5(种)不同的方法.对于图2中,按要求接通电路必须分两步进行:第一步,合上A中的一只开关;第二步,合上B中的一只开关,故有2×3=6(种)不同的方法.4.如图所示的是某城市中M,N两地间整齐的道路网,若规定只能向东或向北两个方向沿图中矩形的边前进,则某人从M地经过A地到N地有________种不同的走法.【答案】18解析从M地经过A地到N地分两步.第一步,从M到A,有3种走法;第二步,从A到N,有6种走法.根据分步乘法计数原理可得从M地经过A地到N地共有3×6=18(种)不同的走法.5.如图所示,由连接正八边形的三个顶点而组成的三角形中与正八边形有公共边的三角形有________个.【答案】40解析满足条件的有两类:第一类:与正八边形有两条公共边的三角形有m1=8个;第二类:与正八边形有一条公共边的三角形有m2=8×4=32个,所以满足条件的三角形共有8+32=40个.6.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.【答案】60解析根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,当第一个选1号螺栓的时候,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60种方法,故【答案】是60.7.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n(n∈N*)位回文数有________个.【答案】(1)900(2)9×10n-1解析(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n-1种填法.。

6.1分类加法计数原理与分步乘法计数原理课件(人教版)

6.1分类加法计数原理与分步乘法计数原理课件(人教版)
第六章 计数原理
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?

分类加法计数原理和分步乘法计数原理(学生版)

分类加法计数原理和分步乘法计数原理(学生版)

6.1 分类加法计数原理和分步乘法计数原理目 录☯知识清单☯1、分类计数原理(1)定义:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 那么完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。

(2)解题思路:2、分步计数原理(1)定义:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。

(2)解题思路:分类计数 结论 将完成这件事的方法分成若干类求出每一类的方法数将每一类的方法数相加得出结果分类 分类 分类将完成这件事的方法分成若干类将完成这件事的方法分成若干类将完成这件事的方法分成若干类(3)分步两个条件:①步骤互相独立,互不干扰②步与步确保连续,逐步完成3、两个计数原理的关系(1)两个计数原理的联系与区别分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加,关键是“分类”分步相乘,步步相乘,关键是“分步”分类完成一件事,每类办法中的每种方法都能独立完成这件事情,要注意“类”与“类”之间的独立性和并列性。

分类计数原理可利用“并联”电路来理解。

分步完成一件事,并且只有各个步骤都完成才算完成这件事,要注意“步”与“步”之间的连续性。

分步计数原理可利用“串联”电路来理解。

运用加法运算运用乘法运算注意点类类独立,不重不漏步步相依,步骤完整(2)利用两个计数原理解决应用问题的一般思路:①弄清完成一件事是做什么;②确定是先分类后分步,还是先分步后分类;③弄清分步、分类的标准是什么;④类要做到不重不漏。

☯典型例题☯母题1:分类计算原理1.设椭圆22xa+22yb=1的焦点在y轴上,其中a∈{1,2,3,4,5},b={1,2,3,4,5,6,7},则满足上述条件的椭圆个数为( )A.20 B.24 C.12 D.112.如图所示,由连接正八边形的三个顶点而组成的三角形中与正八边形有公共边的三角形有________个.3.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的三枚算珠,可以表示不同整数的个数为( )A.16B.15C.12D.10分类计数原理解题思路1.根据题目特点恰当选择一个分类标准。

分类加法计数原理与分步乘法计数原理1

分类加法计数原理与分步乘法计数原理1
课题
学习目标
1.考查分类加法计数原理和分步乘法计数原理的应用.2.多以选择题、填空题形式考查.
重点难点
1.考查分类加法计数原理和分步乘法计数原理的应用.2.多以选择题、填空题形式考查.
导学过程
备注
基础知识自测:
1.分类加法计数原理
完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有mn种不同的方法.那么完成这件事共有N=________________种不同的方法.
要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为
A.96B.84C.60D.48
10.一个乒乓球队里有男队员5名,女队员4名,从中选取男、女队员各一名组成混合双打,共有________种不同的选法.
11某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).
4.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析——需要分类还是需要分步.
(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
A.24B.26C.36D.37
8.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法种数为()

分类加法计数原理与分步乘法计数原理考点与题型归纳

分类加法计数原理与分步乘法计数原理考点与题型归纳

分类加法计数原理与分步乘法计数原理考点与题型归纳两个计数原理完成一件事的策略完成这件事共有的方法分类加法计数原理有两类不同方案❶,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法N=m+n种不同的方法分步乘法计数原理需要两个步骤❷,做第1步有m种不同的方法,做第2步有n种不同的方法N=m×n种不同的方法(11 每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.12 各类方法之间是互斥的、并列的、独立的.11 每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.12 各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法1不重复过一点 .解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O (2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O (2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数1如120,343,275等 ,那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=61个 .若a 2=4,满足条件的“凸数”有3×4=121个 ,…,若a 2=9,满足条件的“凸数”有8×9=721个 .所以所有凸数有2+6+12+20+30+42+56+72=2401个 .答案:240考点二 分步乘法计数原理[典例精析]11 已知集合M ={-3,-2,-1,0,1,2},P 1a ,b 1a ,b ∈M 表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为1A.6B.12C.24D.3612 有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析]11 确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.12 每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=1201种 .[答案]11 A12 120[解题技法]利用分步乘法计数原理解决问题的策略11 利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.12 分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f1x=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个1用数字作答 .解析:一个二次函数对应着a,b,c1a≠0 的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=181个二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=61个偶函数.答案:186考点三两个计数原理的综合应用[典例精析]11 如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为1A.24B.48C.72D.9612 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是1A.48B.18C.24D.3613 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是1A.60B.48C.36D.24[解析]11 分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.12 第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=241个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=361个 .13 长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面1非表面构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案]11 C12 D13 B[解题技法]1.利用两个计数原理解决应用问题的一般思路11 弄清完成一件事是做什么.12 确定是先分类后分步,还是先分步后分类.13 弄清分步、分类的标准是什么.14 利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键11 关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.12 关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=241种涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=241种,D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=721种 .答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个1用数字作答 .解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=321个 .第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=401个 .答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对1x,y作为一个点的坐标,则这样的点的个数是1A.9B.14C.15D.21解析:选B 当x =2时,x ≠y ,点的个数为1×7=7.当x ≠2时,∵P ⊆Q ,∴x =y .∴x 可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=141个 .2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为1A.504B.210C.336D.120解析:选A 分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a ,b 上分别有5个点和8个点,则这13个点可以确定不同的平面个数为1A.40B.16C.13D.10解析:选C 分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有1A.32个B.34个C.36个D.38个 解析:选A 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C 12=21种 .共有2×2×2×2×2=321个 子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为1A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为1A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.12019·郴州模拟 用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有1A.4(320种B.2(880种C.1(440种D.720种 解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4(3201种 不同的涂色方法.8.12019·惠州调研 我们把各位数字之和为6的四位数称为“六合数”1如2(013是“六合数” ,则“六合数”中首位为2的“六合数”共有1A.18个B.15个C.12个D.9个解析:选B 由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=151个 .9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2= 3 4 12 D 34 A CB 9第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=1201种 .故安排这8人的方式共有24×120=2(8801种 .答案:2(88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种1用数字作答 .解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有1A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40(000大的偶数共有1A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=1201个 .3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有1A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→(C―→D顺序涂色,下面分两种情况:11 A,C不同色1注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色:有4×3×2×2=48种不同的涂法.12 A,C同色1注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色:有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.12018·湖南十二校联考若m,n均为非负整数,在做m+n的加法时各位均不进位1例如:134+3(802=3(936 ,则称1m,n为“简单的”有序对,而m+n称为有序对1m,n的值,那么值为1(942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1(942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}11 y=ax2+bx+c可以表示多少个不同的二次函数;12 y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:11 a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.12 y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。

3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。

从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。

要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。

要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。

3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。

要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。

专题56分类加法计数原理与分步乘法计数原理-高考数学复习资料(解析版)

专题56分类加法计数原理与分步乘法计数原理-高考数学复习资料(解析版)

2021高考领跑一轮复习资料·数学篇专题56分类加法计数原理与分步乘法计数原理一、【知识精讲】1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.【注意点】分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立,分步完成”.二、【典例精练】考点一分类加法计数原理的应用【例1】(1)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.【答案】(1)12(2)13【解析】(1)分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法.(2)当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a =2,则b 的值可以是-1,0,(a ,b )的个数为2.由分类加法计数原理可知,(a ,b )的个数为4+4+3+2=13.【解法小结】分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a =0这一类.考点二分步乘法计数原理的应用【例2】(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.(2)(2018·合肥质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.【答案】(1)100(2)4554【解析】(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为5×5×4=100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.【解法小结】 1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.考点三两个计数原理的综合应用角度1与数字有关的问题【例3-1】(2012山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,并且红色卡片至多1张,不同取法的种数是A.232B.252C.472D.484【答案】C【解析】若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有14C ⨯14C ⨯14C =64,若2张同色,则有21213244144C C C C ⨯⨯⨯=,若红色1张,其余2张不同色,则有12114344192C C C C ⨯⨯⨯=,其余2张同色则有11243472C C C ⨯⨯=,所以共有64+144+192+72=472.另解1:472885607216614151641122434316=-=--⨯⨯=--C C C C ,答案应选C.另解2:472122642202111241261011123212143431204=-+=⨯⨯+-⨯⨯=+-C C C C C .角度2与几何有关的问题【例3-2】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36【答案】D【解析】在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.角度3涂色、种植问题【例3-3】(一题多解)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.【解析】解法一按所用颜色种数分类.第一类:5种颜色全用,共有A 55种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A 与C ,或B 与D ),共有2×A 45种不同的方法;第三类:只用3种颜色,则A 与C ,B 与D 必定同色,共有A 35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A 55+2×A 45+A 35=420(种).法二以S ,A ,B ,C ,D 顺序分步染色.第一步:S 点染色,有5种方法;第二步:A 点染色,与S 在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).【解法小结】 1.在综合应用两个原理解决问题时应注意:(1)一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.例题中,相邻顶点不同色,要按A,C和B,D是否同色分类处理.三、【名校新题】1.(2019·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.25种C.52种D.24种【答案】D【解析】每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.2.(2018·九江模拟)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10【答案】C【解析】分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.3.(2018·北京朝阳区二模)现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为()A.12B.24C.36D.48【答案】D【解析】甲、乙分得的电影票连号有4×2=8种情况,其余三人有A33种分法,所以共有8A33=48种,选D.4.(2019·长沙模拟)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【答案】A=6(种),再排第二列,当第一列确定时,【解析】第一步先排第一列,有A33第二列有两种方法,如图所示,所以不同的排列方法共有6×2=12(种).5.(2019·山东模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279【答案】B【解析】由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252.故选B.6.(2019·福州模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种【答案】B【解析】设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9种.7.(2019·四川泸州模拟)如图,将一环形花坛分成A,B,C,D四块,现有3种不同的花供选种,要求在同一块中种一种花,且相邻的2块种不同的花,则不同的种法总数为()A.12B.24C.18D.6【答案】C【解析】四块地种2种不同的花共有C 23A 22=6种不同的种植方法,四块地种3种不同的花共有2A 33=12种不同的种植方法,所以共有6+12=18种不同的种植方法,故选C.8.(2019·广西桂林模拟)如图,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能取其中一堆最上面的一个集装箱,则在装运的过程中不同取法的种数是()A.6B.10C.12D.24【答案】B【解析】将图中左边的集装箱从上往下分别记为1,2,3,右边的集装箱从上往下分别记为4,5.分两种情况讨论:若先取1,则有12345,12453,12435,14523,14235,14253,共6种取法;若先取4,则有45123,41235,41523,41253,共4种取法,故共有6+4=10种取法.9.(2019·广西南宁模拟)用4种颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所有涂法共有()A.24种B.48种C.64种D.72种【答案】D【解析】设该正四棱锥为S -ABCD ,顶点S 有4种不同的涂法,用三种不同的颜色涂底面ABCD 的四个顶点.①当A ,C 同色时,有3×2×2=12种不同的涂法;②当A ,C 不同色时,有3×2×1×1=6种不同的涂法,故符合条件的所有涂法共有4×(12+6)=72种.故选D.10.(2019·河北保定模拟)甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为()A.8B.7C.6D.5【答案】B【解析】根据题意,分两种情况讨论:①乙和甲一起去A 社区,此时将丙、丁二人安排到B ,C 社区即可,有A 22=2种情况,②乙不去A 社区,则乙必须去C 社区,若丙、丁都去B 社区,有1种情况,若丙、丁中有1人去B 社区,则先在丙、丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,则不同的安排方法种数有2+1+4=7种.故选B.11.(2019·驻马店质检)将一个四面体ABCD 的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有()A.1种B.3种C.6种D.9种【答案】C【解析】因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色,故有3×2×1=6(种)涂色方案.12.(2019·苏州模拟)从2,3,4,5,6,7,8,9这8个数字中任取2个不同的数字分别作为一个对数的底数和真数,则所产生的不同对数值的个数为()A.56B.54C.53D.52【答案】D【解析】在8个数字中任取2个不同的数字共可产生8×7=56个对数值,在这56个对数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,则满足条件的对数值共有56-4=52个.13.(2019·江西新余模拟)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120B.240C.360D.480【答案】C 【解析】第一步,从甲、乙、丙三人中选一个加到前排,有3种方法;第二步,前排3人形成了4个空,任选一个空加一人,有4种方法;第三步,后排4人形成了5个空,任选一个空加一人,有5种方法,此时形成了6个空,任选一个空加一人,有6种方法;根据分步乘法计数原理可得不同的加入方法种数为3×4×5×6=360.故选C.14.(2019·武汉模拟)在一块并排10垄的田地中,选择2垄分别种植A ,B 两种作物,每种作物种植一垄.为有利于作物生长,要求A ,B 两种作物的间隔不小于6垄,则不同的选垄方法有()A.2种B.6种C.12种D.14种【答案】C【解析】分两步:第一步,先选垄,如图所示,共有6种选法;第二步,种植A ,B 两种作物,有2种方法.所以根据分步计数原理,不同的选垄方法有6×2=12(种).15.(2019·定州模拟)将“福”“禄”“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有()A.288种B.144种C.576种D.96种【答案】C【解析】依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法.根据分步乘法计数原理可得不同的填写方法有16×9×4=576(种).16.(2019·宁波模拟)如图,矩形的对角线把矩形分成A ,B ,C ,D 四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.【答案】260【解析】区域A 有5种涂色方法;区域B 有4种涂色方法;区域C 的涂色方法可分2类:若C 与A 涂同色,区域D 有4种涂色方法;若C 与A 涂不同色,此时区域C 有3种涂色方法,区域D 也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.17.(2019·南通模拟)从1到9的正整数中任意抽取2个数相加,所得的和为奇数的不同情形种数是________.【答案】20【解析】根据题意,从1到9的正整数中任意抽取2个数相加,若所得的和为奇数,则取出的2个数必为1个奇数、1个偶数.分两步:先在1,3,5,7,9中取出1个奇数,有5种取法,再在2,4,6,8中取出1个偶数,有4种取法.则1个奇数、1个偶数的取法有5×4=20(种),即所得的和为奇数的不同情形种数是20.18.(2019·菏泽六校联考)椭圆x 2m +y 2n=1的焦点在x 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.【答案】10【解析】因为焦点在x轴上,所以m>n,以m的值为标准分类,分为四类:第一类:m=5时,使m>n,n 有4种选择;第二类:m=4时,使m>n,n有3种选择;第三类:m=3时,使m>n,n有2种选择;第四类:m=2时,使m>n,n有1种选择.由分类加法计数原理,符合条件的椭圆共有10个.19.(2018·沈阳模拟)现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数为________.【答案】12×3=6种方法;若第一【解析】若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C12门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,不同的考试安排方案共有6+6=12种.20.(2019·河北衡水中学模拟)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有________种.【答案】18【解析】先种植A,B,C三个区域,有3×2×1=6种方法.①A,E相同时:D有1种种法,此时共有6×1×1=6种方法;②A,E不同时:D有2种种法,此时共有6×1×2=12种方法.由分类加法计数原理知共有6+12=18种不同的种法.。

分类加法计数原理与分步乘法计数原理知识点与习题

分类加法计数原理与分步乘法计数原理知识点与习题

理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.知识聚焦不简单罗列1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有叫种不同的方法,在第二类方案中有吗种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =种不同的方法.2.分步乘法计数原理完成一件事情需要n个不同的步骤,完成第一步有1^种不同的方法,完成第二步有1^ 种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N = 种不同的方法.3.两个计数原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.正本清源不单纯记忆■链接教材1.[教材改编]现有高一年级的学生3名,高二年级的学生5名,从中任选1人参加接待外宾的活动,有种不同的选法.2.[教材改编]5位同学站成一排准备照相的时候,有2位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么2位老师与同学们站成一排照相的站法总数为.3.[教材改编]如图9551所示,使电路接通,开关不同的开闭方式有种.图9551■易错问题4.分类加法计数原理:每一种方法都能完成这件事情;类与类之间是独立的.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.5.分步乘法计数原理:所有步骤完成才算完成;步与步之间是相关联的.将甲、乙、丙等6人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为.■通性通法6.分类计数原理:分类时标准要明确.如果把个位数是1,且恰有三个数字相同的四位数叫作“好数”,那么在由1, 2, 3, 4 四个数字组成的有重复数字的四位数中,“好数”共有.7.分步计数原理:步骤互相独立,互不干扰;步与步确保连续,逐步完成.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B, C, D中选择,其他四个号码可以从0〜9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3, 5, 6, 8, 9中选择,其他号码只想在1, 3, 6, 9中选择,则他的车牌号码可选的所有可能情况有种.探究点一分类加法计数原理1某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A. 3种B. 6种C. 9 种D. 18 种(2)现有5种不同的颜色可供使用,将一个五棱锥的各个侧面涂色,5个侧面分别编号为1, 2, 3, 4, 5,而有公共边的两个面不能涂同一种颜色,则不同的涂色方法有______________ 种.[总结反思]分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词、关键元素或关键位置.首先,根据题目特点恰当选择一个分类标准;其次,分类时应注意完成这件事情的任何一种方法必须属于某一类.应用分类加法计数原理时,应先明确分类标准,确保计数不重复,不遗漏.式题(1)某班班会准备从甲、乙等7名学生中选4名学生发言,要求甲、乙2人至少有1人参加,则不同的发言顺序的种数为()A. 840B. 720C. 600D. 30(2)如图9552所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为()图9552A. 15B. 16C. 17D. 18探究点二分步乘法计数原理2(1)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有种.(2)将A, B, C, D, E, F六个字母排成一排,且A, B均在C的同侧,则不同的排法共有种.(用数字作答)[总结反思]利用分步乘法计数原理解决问题时应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的,以元素(或位置)为主体的计数问题,通常先满足特殊元素(或位置),再考虑其他元素(或位置);(2)对完成每一步的不同方法种数要根据条件准确确定.式题(1)某节目制作组选取了6户家庭到4个村庄体验农村生活,要求将6户家庭分成4组,其中2组各有2户家庭,另外2组各有1户家庭,则不同的分配方案的种数是()A. 216B. 420C. 720D. 1080(2)用5种不同的颜色为如图9553所示的广告牌着色,要求在①②③④四个不同区域中相邻的区域不用同一种颜色,则不同的着色方法种数为()图9553A. 320B. 240C. 180D. 135探究点三两个计数原理的综合3 (1)设集合A={(xj x2, x3, x4, xj|x产{—1, 0, 1), i = 1, 2, 3, 4, 5},那么集合A中满足条件“1WI XJ + I XJ + I X3I + I XJ + I X5IW3”的元素个数为()A. 60B. 90C. 120D. 130(2)用红、黄、蓝三种颜色去涂图中标号为1, 2,…,9的9个小正方形(如图9554), 使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1, 5, 9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.图9554[总结反思](1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,只有完成每一步,整件事才算完成.(3)若综合利用两个计数原理,一般先分类再分步.式题设集合1={1,2, 3, 4, 5},选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A. 50 种B. 49 种C. 48 种D. 47 种学科能力自主阅读型误区警示21.分类与分步不当致误【典例】若从1, 2, 3,…,9这9个整数中取4个不同的数,其和为偶数,则不同的取法共有()A. 60 种B. 63 种C. 65 种D. 66 种解析D先找出|①和为偶数的各种情况,]再利用分类加法计数原理求解.满足题设的取法可分为三类:一是4个都是奇数,在奇数1, 3,5,7,9中,任意取4个,有C4 = 5(种);二是2个奇数2 5个偶数,在5个奇数中任取2个,再在偶数2, 4, 6, 8中任取2个,有②C,-C 2 = 60 (种)--- 5 --4--------三是4个都是偶数,取法有1种.所以满足条件的取法共有5 + 60+1 = 66(种).【踉踪练习】(1)[2015 •唐山二模]一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分.已知甲球队已赛4场,积4分,则在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A. 7 种B. 13 种C. 18 种D. 19 种(2)给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有种.。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理
[答案] 因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出 (种)不同的号码.
情境设置
合作探究·提素养
LONGCHENG NO.1 MIDDLE SCHOOL
问题2:在 , , , 四个数字中任取两个及以上的数(不重复取)作和,则取出这些数的不同的和有多少种?
[答案] 第一类:取两个数,则 , , , (舍去), , ,共5种.第二类:取三个数,则 (舍去), (舍去), , ,共2种.第三类:取四个数,则 ,共1种.故取出这些数得到不同的和有 (种).
方法总结 利用分步乘法计数原理解题的一般思路
(1)将完成这件事的过程分成若干步;
(2)求出每一步中的方法数;
(3)将每一步中的方法数相乘得最终结果.
已知某种新产品的编号由1个英文字母和1个数字组合而成,且英文字母在前.其中英文字母可以是 , , , , , 这6个字母中的1个,数字可以是1, , , 这9个数字中的1个,那么共有多少种不同的编号?
方法总结 利用两个计数原理解题时的三个注意点:
(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法; 类时标准要明确,做到不重不漏,有时要恰当画出示意图或树形图,使问题的分析更直观、清楚,便于探索规律; 混合型问题一般是先分类再分步.
1.判断下列结论是否正确.(正确的打“√”,错误的打“×”)
(1)在加法原理中,两类办法中的某两种方法可以相同. ( )
×
(2)在加法原理中,任何一类办法中的任何一种方成这个步骤的方法是各不相同的. ( )

(4)在乘法原理中,如果事情是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成. ( )

考点47分类加法计数原理与分步乘法计数原理排列与组合

考点47分类加法计数原理与分步乘法计数原理排列与组合

考点47分类加法计数原理与分步乘法计数原理排列与组合分类加法计数原理和分步乘法计数原理是组合数学中常用的计数方法。

它们在解决问题时,能够将问题分解为若干个子问题,从而简化计数的过程。

一、分类加法计数原理分类加法计数原理是指当一个问题可以分解为几个相关的子问题时,通过计算每个子问题的解的个数,再将它们相加得到原问题的解的个数。

例如,假设有一个班级有30个学生,其中10个学生喜欢足球,15个学生喜欢篮球,5个学生两项都喜欢。

现在要计算喜欢足球或篮球的学生的人数。

根据分类加法计数原理,我们可以将该问题分解为两个子问题:喜欢足球的学生人数和喜欢篮球的学生人数。

然后计算每个子问题的解的个数,最后将它们相加得到原问题的解的个数。

根据给出的数据,喜欢足球的学生人数为10,喜欢篮球的学生人数为15,所以喜欢足球或篮球的学生人数为10+15-5=20。

二、分步乘法计数原理分步乘法计数原理是指当一个问题可以分解为若干个独立的子问题时,通过计算每个子问题的解的个数,再将它们相乘得到原问题的解的个数。

例如,假设家餐厅有5种主菜和3种甜点,需要从这些选项中选择一种主菜和一种甜点。

现在要计算所有可能的餐点的组合数。

根据分步乘法计数原理,我们可以将该问题分解为两个子问题:选择一种主菜的可能数和选择一种甜点的可能数。

然后计算每个子问题的解的个数,最后将它们相乘得到原两个子问题的解的个数。

根据给出的数据,选择一种主菜的可能数为5种,选择一种甜点的可能数为3种,所以所有可能的餐点的组合数为5×3=15总结:分类加法计数原理和分步乘法计数原理是两种常用的计数方法。

分类加法计数原理适用于将问题分解为几个相关的子问题的情况,通过计算每个子问题的解的个数,再将它们相加得到原问题的解的个数。

而分步乘法计数原理适用于将问题分解为若干个独立的子问题的情况,通过计算每个子问题的解的个数,再将它们相乘得到原问题的解的个数。

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

n m ++种不2种不同的方n m ⨯⨯种不同例题4.(2022·江苏连云港·高二期中)用0,1,2,3,…,9十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?同类题型归类练1.(2022·吉林油田第十一中学高二期末)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .288个B .240个C .144个D .126个2.(2022·全国·高三专题练习)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个3.(2022·全国·高二课时练习)设集合A ={0,1,2,3,4,5,6,7},如果方程x 2-mx -n =0 (m ,n ∈A )至少有一个根x 0∈A ,就称方程为合格方程,则合格方程的个数为( )A .13B .15C .17D .194.(2022·全国·高二课时练习)已知集合{}2,4,6,8A =,{}1,3,5,7,9B =,从A 中取一个数作为十位数字,从B 中取一个数作为个位数字,能组成______个不同的两位数,能组成______个十位数字小于个位数字的两位数.角度2:与几何有关的问题典型例题例题1.(2022·全国·高三专题练习)已知60C 分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,60C 是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为( )个.A.10 B.12C.16 D.20例题2.(2022·全国·高二期末)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有().A.105种B.225种C.315种D.420种同类题型归类练1.(2022·全国·高三专题练习)若一个正方体绕着某直线l旋转不到一周后能与自身重合,那么这样的直线l的条数为()A.3B.4C.6D.13 2.(2022·全国·高三专题练习)一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则()A.至多能剪成19块“L”形骨牌B.至多能剪成20块“L”形骨牌C.最多能剪成21块“L”形骨牌D.前三个答案都不对3.(2022·上海交大附中高二期中)正方体的8个顶点中,选取4个共面的顶点,有______种不同选法角度3:涂色问题典型例题例题1.(2022·吉林·长春吉大附中实验学校高二阶段练习)用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,不同的涂色方法共有()A.24种B.36种C.48种D.72种例题2.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)用5种不同颜色给右图所示的五个圆环涂色,要求相交的两个圆环不能涂相同的颜色,共有()种不同的涂色方案.A.1140 B.1520 C.1400 D.1280例题3.(2022·内蒙古·赤峰二中高二阶段练习(理))如图,一花坛分成1,2,3,4,5五个区域,现有4种不同的花供选种,要求在每个1区域里面种1种花,且相邻的两个区域种不同的花,则不同的种法总数为_______.例题4.(2022·全国·高二课时练习)现有4种不同颜色要对如图的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有______种.同类题型归类练1.(2022·全国·高二课时练习)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是A.12 B.24 C.30 D.36 2.(2022·全国·高二课时练习)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就的能使具有共同边界的国家着上不同的颜色”.某校数学兴趣小组在研究给四棱锥P ABCD各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的面)不得使用同一颜色,现有4种颜色可供选择,则不同的涂法有()A.36种B.72种C.48种D.24种3.(2022·全国·高三专题练习)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)4.(2022·广东·罗定邦中学高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为______.。

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理学生

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理学生

课题:分类加法计数原理与分步乘法计数原理知识点1.分类加法计数原理(加法原理)的概念一般形式:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,……,在第n 类方案中有n m 种不同的方法,那么完成这件事共有N=1m +2m +……+n m 种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N=12n m m m ⨯⨯⨯…种不同的方法.3.两个原理的区别:(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【注1】1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6.分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8.涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【注2】(1)用两个计数原理解决计数问题时,关键是在开始之前要进行仔细分析——需要分类还是需要分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.(2)两个原理的区别:①“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.②“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.(3)本题定义了新概念“回文数”,然后以此为出发点设置了求五位“回文数”的个数问题.求解时充分依据题设条件与“回文数”的定义,运用分步、分类计数原理,逐一分析探求“回文数”的形成过程,从而确定其个数使得问题获解.典型例题例1图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120 B.16 C.64 D.39例2只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个例3如图所示,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9例4某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种例5用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个例6图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120 B.16 C.64 D.39例7只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个例8某通讯公司推出一组卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“5”或“8”的一律作为“金马卡”,享受一定优惠政策,则这组号码中“金马卡”的个数为()A.2000 B.4096 C.5904 D.8320例9某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有()A.33种B.24种C.27种D.36种例10从1,2,…,9这九个数字中,任意抽取两个相加所得的和为奇数的不同代数式的种数是()A.6 B.9 C.20 D.25例11按ABO血型系统学说,每个人的血型为A,B,O,AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型的O型,则父母血型的所有可能情况有()A.12种B.6种C.10种D.9种例12有5列火车停在某车站并列的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有()A.96种B.24种C.120种D.12种例13把5名师范大学的毕业生分配到A、B、C三所学校,每所学校至少一人。

专题2.1分类加法计数原理与分步乘法计数原理(六个重难点突破)(原卷版)-2023-2024学年高二

专题2.1分类加法计数原理与分步乘法计数原理(六个重难点突破)(原卷版)-2023-2024学年高二

专题2.1分类加法计数原理与分步乘法计数原理知识点1分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N m n =+种不同的方法.拓展:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法,那么完成这件事共有12n N m m m ⋯=+++种不同的方法知识点2分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N m n =⨯种不同的方法.拓展:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⋯⨯种不同的方法注意:区分“完成一件事”是分类还是分步,关键看一步能否完成这件事,若能完成,则是分类,否则,是分步.重难点1分类加法计数原理1.从1至7这7个整数中随机取出3个不同的数,则它们的积与和都是3的倍数的不同取法有( ) A .9种B .12种C .20种D .30种2.一个三层书架,分别放置语文类读物7本,政治类读物9本,英语类读物8本,每本图书各不相同,从中取出1本,则不同的取法共有 种.3.已知{},1,0,2,3a b ∈-,则关于x 的方程220ax x b ++=有实数解的有序数对(),a b 的个数为 .4.已知直线方程0Ax By C ++=,若0,2,4这三个数作为,,A B C 的值,且,,A B C 的值互不相同,则0Ax By C ++=可表示 条不同的直线.5.某校高中三年级一班有优秀团员8人,二班有优秀团员10人,三班有优秀团员6人,学校组织他们去参观某爱国主义教育基地.推选1名优秀团员为总负责人,有 种不同的选法.重难点2分步乘法计数原理6.已知集合{1,2,3},{4,5,6,7}M N =-=--,从集合M 中选一个元素作为点的横坐标,从集合N 中选一个元素作为点的纵坐标,则落在第三、第四象限内点的个数是( )A .6B .8C .10D .127.阅读课上,5名同学分别从3种不同的书中选择一种进行阅读,不同的选法种数是( ) A .50B .60C .125D .2438.已知任何大于1的整数总可以分解成素因数乘积的形式,且如果不计分解式中素因数的次序,这种分解式是唯一的.如21223=⨯,则2000的不同正因数个数为( )A .25B .20C .15D .129.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有 种.10.现有某类病毒记作m n X Y ,其中正整数m ,(8,7)n m n ≤≤可以任意选取,则不同的选取种数为 .重难点3计数原理综合——占位模型11.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲乙丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )A .90种B .80种C .60种D .50种12.甲、乙、丙、丁四位同学决定去黄鹤楼、东湖、汉口江滩游玩,每人只能去一个地方,汉口江滩一定要有人去,则不同游览方案的种数为( )A .65B .73C .70D .60.13.某高中为高一学生提供四门课外选修课:数学史、物理模型化思维、英语经典阅读、《红楼梦》人物角色分析.要求每个学生选且只能选一门课程.若甲只选英语经典阅读,乙只选数学史或物理模型化思维,学生丙、丁任意选,这四名学生选择后,恰好选了其中三门课程,则他们选课方式的可能情况有 种.14.某公司招牌5名员工,分给下属的甲乙两个部门,其中2名英语翻译人员不能分给同一部门,另3名电脑编程人员不能都分给同一部门,则不同的分配方案种数是 .15.某社区年终活动设置抽奖环节,方案如下:准备足够多的写有“和谐”、“和睦”、“复兴”的卡片,参与者随机逐一抽取四张,若集齐三种卡片就获奖.王大爷按规定参与抽奖,则他直到第四次抽取出卡片才确定获奖的不同情况种数为 .重难点4计数原理综合——数字排列16.已知集合{}0,1,2,3,4A =,且,,a b c A ∈,用,,a b c 组成一个三位数,这个三位数满足“十位上的数字比其它两个数位上的数字都大”,则这样的三位数的个数为( )A .14B .17C .20D .2317.用01234、、、、这五个数字,可以组成没有重复数字的三位数的个数为( ) A .18B .24C .30D .4818.在所有的两位数中,个位数字大于十位数字的两位数的个数是( )A .18B .36C .72D .4819.“莺啼岸柳弄春晴,柳弄春晴夜月明:明月夜晴春弄柳,晴春弄柳岸啼莺.”这是清代女诗人吴绛雪的一首回文诗,“回文”是汉语特有的一种使用语序回环往复的修辞手法,而数学上也有类似这样特征的一类“回文数”,如232,251152等,那么在所有五位正整数中,有且仅有两位数字是偶数的“回文数”共有 个.20.将数字1,2,3,4填入标号1,2,3,4的四个方格内,每格填1个,则每个方格的标号与所填数字均不相同的概率是 .(用最简分数表示)重难点5计数原理综合——几何问题21.若三角形三边均为正整数,其中一边长为4,另外两边长分别为b ,c ,且满足b ≤4≤c ,则这样的三角形有( )A .10个B .14个C .15个D .21个22.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48B.18C.24D.3623.过三棱柱中任意两个顶点连线作直线,在所有这些直线连线中构成异面直线的对数为()A.18B.30C.36D.5424.如图所示,由连接正八边形的三个顶点而组成的三角形中与正八边形有公共边的三角形有个.重难点6计数原理综合——涂色问题25.中国是世界上最早发明雨伞的国家,伞是中国劳动人民一个重要的创造.如图所示的雨伞,其伞面被伞骨分成8个区域,每个区域分别印有数字1,2,3, ,8.现准备给该伞面的每个区域涂色,要求每个区域涂一种颜色,相邻两个区域所涂颜色不能相同,对称的两个区域(如区域1与区域5)所涂颜色相同.若有6种不同颜色的颜料可供选择,则不同的涂色方案有()A.550种B.630种C.720种D.840种26.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择,要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .84B .72C .64D .5627.如图所示的,,,A B C D 按照下列要求涂色,若恰好用3种不同颜色给,,,A B C D 个区域涂色,且相邻区域不同色,共有 种不同的涂色方案?28.用黑白两种颜色(都要使用)给正方体的6个面涂色,每个面只涂一种颜色。

分类加法计数原理与分步乘法计数原理易错点最新衡水中学精品自用

分类加法计数原理与分步乘法计数原理易错点最新衡水中学精品自用

分类加法计数原理与分步乘法计数原理易错点最新衡水中学精品自用以下是为大家整理的分类加法计数原理与分步乘法计数原理易错点最新衡水中学精品自用的相关范文,本文关键词为分类,加法,计数,原理,分步,乘法,易错,最新,衡水,中学,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在高考高中中查看更多范文。

分类加法计数原理与分步乘法计数原理易错点主标题:分类加法计数原理与分步乘法计数原理易错点副标题:从考点分析分类加法计数原理与分步乘法计数原理易错点,为学生备考提供简洁有效的备考策略。

关键词:分类计数,分步计数,易错点难度:2重要程度:4内容:【易错点】1.两个计数原理的理解(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)2.两个计数原理的应用(5)(教材习题改编)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有10种.(√)(6)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14个.(√)[剖析]1.两点区别一是分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”,如(1)、(2).二是分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这个步骤的一种方法,简单的说步与步之间的方法“相互独立,分步完成”,如(3)、(4).2.两点提醒一是分类时,标准要明确,应做到不重不漏;可借助几何直观,探索规律,如(5).二是分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取,如(6)中2,3可重复但至少各出现一次.最后,小编希望文章对您有所帮助,如果有不周到的地方请多谅解,更多相关的文章正在创作中,希望您定期关注。

22版:分类加法计数原理与分步乘法计数原理(步步高)

22版:分类加法计数原理与分步乘法计数原理(步步高)

§10.1分类加法计数原理与分步乘法计数原理考试要求 1.理解分类加法计数原理和分步乘法计数原理.2.会用两个计数原理解决一些简单的实际问题.基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成这件事的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?提示①明白要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12 B.8 C.6 D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、第二象限内不同点的个数是3×2=6,故选C.3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16 B.13C.12 D.10答案 C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).4.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同的取法种数为________.答案9解析分三类:第一类,从第1层取一本书有4种取法,第二类,从第2层取一本书有3种取法,第三类,从第3层取一本书有2种取法.共有4+3+2=9(种)取法.题组三易错自纠5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.6.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有_______种.答案243解析因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).题型一分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.10答案 B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12(个)实数对,故a≠0时满足条件的实数对有12-3=9(个).所以满足题意的有序数对共有4+9=13(个).2.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9 B.14 C.15 D.21答案 B解析当x=2时,x≠y,点的个数为1×7=7.当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).3.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.题型二分步乘法计数原理例1 (1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9答案 B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有____种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步之间确保连续,逐步完成.跟踪训练1 (1)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是()A.30 B.42 C.36 D.35答案 C解析因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.(2)已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为() A.7 B.9 C.12 D.16答案 C解析得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步乘法计数原理知,共有3×4=12(个).题型三两个计数原理的综合应用例2 (1)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120 B.140C.240 D.260答案 D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,然后涂C处,若C处与A 处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.24答案 B解析一个长方体的面可以和它相对的面上的4条棱和两条对角线组成6个“平行线面组”,一共有6个面,共有6×6=36(个).长方体的每个对角面有2个“平行线面组”,共有6个对角面,一共有6×2=12(个).根据分类加法计数原理知:共有36+12=48(个).(3)用0,1,2,3,4,5,6这7个数字可以组成_______个无重复数字的四位偶数.(用数字作答)答案420解析要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.①第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步乘法计数原理,有3×4×5×4=240(种)取法.②第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步乘法计数原理,有3×3×5×4=180(种)取法.③根据分类加法计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2 (1)(2021·郑州质检)将数字“124467”重新排列后得到不同的偶数的个数为() A.72 B.120 C.192 D.240答案 D解析将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数.(1)若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;(2)若末位数字为6,同理有60种情况;(3)若末位数字为4,因为有两个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是()A.8 B.12 C.16 D.18答案 C解析根据正六边形的性质,则D1-A1ABB1,D1-A1AFF1满足题意,而C1,E1,C,D,E和D1一样,有2×4=8(个),当A1ACC1为底面矩形时,有4个满足题意,当A1AEE1为底面矩形时,有4个满足题意,故共有8+4+4=16(个).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类加法计数原理与分步乘法计数原理易错点
主标题:分类加法计数原理与分步乘法计数原理易错点
副标题:从考点分析分类加法计数原理与分步乘法计数原理易错点,为学生备考提供简洁有效的备考策略。

关键词:分类计数,分步计数,易错点
难度:2
重要程度:4
内容:
【易错点】
1.两个计数原理的理解
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)
2.两个计数原理的应用
(5)(教材习题改编)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有10种.(√)
(6)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14个.(√)
[剖析]
1.两点区别
一是分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”,如(1)、(2).
二是分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这个步骤的一种方法,简单的说步与步之间的方法“相互独立,分步完成”,如(3)、(4).
2.两点提醒
一是分类时,标准要明确,应做到不重不漏;可借助几何直观,探索规律,如(5).
二是分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取,如(6)中2,3可重复但至少各出现一次.。

相关文档
最新文档