专题01 多面体与球的切接问题 (第四篇)(原卷版)
多面体与球的接切问题ppt课件
P
H
C
•OB D
M
由RtΔ中的射影定理得: P 2 A PP HM ,即 1 23 2 R, R 3
3
2
V 球 3 4R 33 4( 2 3) 32 3
法二 由AH>PH知:球心O在正三棱锥的高PH的延长线上。在RtΔAHO,有:
(6)2 (R 3)2R 2 , R 3
.
结 论 : 1.边 长 为 a的 正 三 角 形 的 外 接 圆 半 径 r 3a
3 2 .斜 边 为 c 的 直 角 三 角 形 的 外 接 圆 半 径 r c
2
3 .长 为 a , 宽 为 b 的 矩 形 的 外 接 圆 半 径 ra 2 b 2 2
.
§正方体与球
正方体的内切球,外接球,棱切球
.
题目: 正三棱锥P---ABC的侧棱长为1,底面边长为 2 ,它
的四个顶点在同一个球面上,则球的体积为 ( A )
A . 3 B . 3 C .上的射影为H,则H为正ΔABC的中心. A
AH 2 3 2 6
32
3
PH P2A A2 H 1633 9 93
延长PH交球面于M,则PM为球的一直径,∴∠PAM=90°
那么它一定是 正方体
.
例:
.
例:如图,半球内有一内接正方体,正方体 的一个面在半球底面圆内。则这个半球的面 积与正方体表面积的比为 ( ) 将半球补成整球
l a2a2(2a)2 6a
.
分析2
设球心为O,则O亦为底面正方形的中心。
如图,连结OA、OB,则得RtΔOAB.
设正方体棱长为a,易知:
OA 2a , OBR , ABa 2
P
R
高三数学二轮复习:多面体与球的切、接问题
V柱体 V锥体 V台体 V球体
S圆柱侧 S圆锥侧 S圆台侧 S球
棱长为a的正四面体外接球半径: 棱长为a的正四面体内切球半径: 棱长为a的正四面体的高:
常见公式识记
V柱体 Sh
S圆柱侧 2rl
V锥体
1 3
Sh
S圆锥侧 rl
1 V台体 3 (S上 S下 S上S下 )h
边长为3的等边三角形,SA⊥平面ABC,则SA=
.
外接球
内切球
棱切球
外接球
P
C B
D
c
A
a
b
C B
D
2R a2 b2 c(2 体对角线)
练一练 1.(2023年乙卷文第16题)已知S,A,
B,C均在半径为2的球面上,⊿ABC 是边长为3的
等边三角形,SA⊥平面ABC,则SA=
.
2.已知三棱锥P ABC的四个顶点均在同一球面上,PC 平面ABC,PC BC 6, AB 2 6,且PA与平面ABC所成角的正弦值为 6 ,则该球的表面积为 .
6
思考:如何建立R, r, d, h的等量关系??
思考
在三棱锥P ABC中,PB PC,BAC 60,若BC 2, 则三棱锥P ABC外接球表面积的最小值为 .
小结
求空间多面体的外接球半径的常用方法 (1)补形法:侧面为直角三角形,或正四面体,或对棱均相等的模型,可 以还原到正方体或长方体中去求解; (2)定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性 底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶 点的距离也是半径,列关系式求解即可.
该球的体积为36Π,且 3 l 3 3 ,则该正四棱锥体积的取值范围是( )
球和几何体的切接问题
学习目的
1.认识球旳构造特征; 2.了解球旳表面积和体积旳计算公式; 3.掌握常见多面体旳外接球和内切球半径旳求法
考题重现
• 1 (23年广东)若棱长为3旳正方体旳顶点 都在同一球面上,则该球旳表面积为 .
• 2.(23年天津)一种长方体旳各顶点27均π 在同
一球面上,且一种顶点上旳三条棱长分别 为1,2,3,则此球旳表面积为 .
= 2
2
2
__________________.
__________________
V=S • R (a2 b2 c2) • R
3
3
例1.(1)如图,在直三棱柱ABC-A1B1C1中,ABC =900
AB= 3 ,BC=1,CC1=2 3 , 则它旳外接球旳表面积为
____,体积为_____
8
.o
解题措施
课堂小结
解题思想
谢谢指导 间 直
接接
化
法法
归
构公 造式
思 想
法法
正方体旳内切、外接球
.r
a
正方体旳外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
外接球旳直径等于正方体旳体对角线。
பைடு நூலகம்
B
C
A
直棱柱 2R=4
S=16π
B1
长方体 V=32π/3
C1
A1
例2.如图三棱锥P-ABC中,PA⊥底面
ABC,PA=1,AB= 2,AC=BC=1。
三棱锥
P
直棱柱
A
C
长方体
B
例2.如下图,棱锥P-ABC中,PA⊥底面ABC, PA=2,
多面体与球的接切问题
, 2 R 3a
A
O
S半球 S正方体
2 R2 3a 2 2 2 6a 6a 2
例. 已知球O的表面上有P、A、B、C 四点,且PA、PB、PC两两互相垂直, 若PA=PB=PC=a,求这个球的表面积 和体积。
变式:将上面的条件改为 “PA=a,PB=b,PC=c”
3V 内切球半径公式:r= ,其中V为几何体的体积, S表 S表为几何体的表面积
§正三棱锥与球
P P A
P H OB M D C
A
O
H
C
A
O H
CBM来自DBM
D
球心在高PH上, 即在锥体内部
球心与底面正Δ中 心H重合
球心在高 PH的延长 线上,即在 锥体外部
正三棱锥的外接球的球心在它的高所在直线上
度量关系:
设正三棱锥底面边长为b,侧棱长为a, 高为h,外接圆半径为R,
性质3: 球心到截面的距离d与球
的半径R及截面的半径r 有下面的关系:
A
r R d
2
2
一球的球面面积为 256π cm ,过此 球的一条半径中点,作垂直于这条半径 的截面,求截面圆的半径和面积.
2
解:设 O 为球心,O′为截面圆圆心,如右图,则 OO′ ⊥O′A,O′A 为截面圆半径,OA 为球的半径. 根据球的表面积公式,则有: 2 4π· AO =256π,得 AO=8 cm, 在 Rt△AO′O 中, 1 OO′= AO=4 cm. 2 所以 AO′= AO2-OO′2= 82-42=4 3(cm). S 截面圆=π· AO′2=π· (4 3)2=48π(cm2). 所以截面圆半径为 4 3 cm,面积为 48πcm .
多面体与球的接切问题
1、球与正四面体的外接问题
设棱长为a的正四面体的外接球的半径R.
6 R a 4
2.球与正四面体的棱切问题
设棱长为a的正四面体的棱切球的半径R.
2 R a 4
3.球与正四面体的内切问题
P
1 1 V S底面积 h S全面积 r 3 3
?
S底面积 h S全面积 r
O A K C
构造法
(2)正四面体的切接问题 例 3 、 一个四面体的所有棱长都为 2 , 四 个顶点在同一球面上, 则此球的表面积为 ( ) A. 3 B. 4 C. 3 3 D. 6
考点 2
构造法
(2)正四面体的切接问题 例 3 、 一个四面体的所有棱长都为 2 , 四 个顶点在同一球面上, 则此球的表面积为 ( ) A. 3 B. 4 C. 3 3 D. 6
的半径R及截面的半径r 有下面的关系:
r R d
2
2
考 点
互 动 探 究
核心突破 · 导与练
问题探究一 球心在正方体的中心,随着球的半径逐渐 增大,球与正方体有哪些特殊位置关系?
正方体的内切球
球的直径等于正方体棱长。
2R a
球与正方体的棱相切
2R 2 a
切点:各棱的中点。
球心:正方体的中心。
考点 3
利用几何性质求找球心的位置
变 式 5 、 在 直 三 棱 柱 ABC A1 B1C1 中 ,
AB 4, AC 6, A
3
, AA1 4
, 则 直 三 棱 柱
ABC A1 B1C1 的外接球的表面积_____________。
Байду номын сангаас
课堂小结
多面体与球的切接问题
(2013 哈九中三模) 已知矩形 ABCD 的面积为 8, 典例2: 当矩形周长最小时, 沿对角线 AC 把 ACD 折起, 则三棱锥 D-ABC 的外接球的表面积等于( )
A.4
B.8
C.16
D.24
变题:
1.(2013 期末理)四面体 ABCD 的四个顶点在同一个球面 上,AB=BC=CD=DA=3,AC= 2 3 ,BD= 6 则该球的表面积为 ( )
反馈训练2:
4.三棱锥 S-ABC 中,SAB SAC ,AB=AC,SA=SB=2,侧棱 AS
60 与底面 ABC 所成的角为 ,经过 S,A,B,C 四点的球的球心
在三棱锥内,求这个球的体积
【设计意图:巩固棱锥外接球半径的求法】
小结2 求棱锥外接球半径的方法: (1)补形法(适用特殊棱锥) (2)射影定理法(适用于侧棱相等即球心落 在高线上的的棱锥) (3)勾股定理法 (通法) 关键是找球心,画出截面图,构造与R有关 的直角三角形。
多面体与球的切接问题
基本知识回顾:
一、 球体的体积与表面积
二、球与多面体的接、切
4 3 ① V球 R 3
②
S球面 4 R
2
外接球球心到各顶点的距离相等 (R) 定义 1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。
(r) 定义内切球球心到各面的距离相等 2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球 。
反馈训练2:
2. 某几何体的三视图如图所示,若该几何体各顶点都在一 球面上,则这个球的表面积为___________
公开课课件:多面体的外接球问题
基本知识回顾:
一、 球体的体积与表面积
二、球与多面体的接、切
4 3 ① V球 R 3
②
S球面 4 R
2
外接球球心到各顶点的距离相等 (R) 定义 1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。
(r) 定义内切球球心到各面的距离相等 2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球 。
球与正方体的“切”“接”问题
一、直棱柱与球
若正方体的棱长为a,则
⑴正方体的内切球直径= ⑵正方体的外接球直径= ⑶与正方体所有棱相切的球直径=
D A B
C
中截面 O
D1
C1
A1
B1
球的外切正方体的棱长等于球直径。
D A B
C
中截面
O D1 C1
.
A1
B1 正方形的对角线等于球的直径。
D A O D1 A1
2. ( 2013 郑州质检)在三棱锥 A-BCD 中, AB=CD=6 , AC=BD=AD=BC=5.则三棱锥的外接球的表面积为________
总结 求棱锥外接球半径常见的补形有: 正四面体常补成正方体; 三条侧棱两两垂直的三棱锥常补成长方体; 三组对棱分别相等的三棱锥可补成长方体; 侧棱垂直底面的棱锥可补成直棱柱
法1.勾股定理法
P
P
O
O
A
M
D
A M B D
E
难点突破:如何求正四面体的外接球半径
法2.补成正方体
A B A B
O
多面体的内切球外接球问题求解策略(原卷版)
专题32 多面体的“内切球”、“外接球”问题求解策略【高考地位】球作为立体几何中重要的旋转体之一,成为考查的重点,基本属于必考题目.而且球相关的特殊距离,即球面距离是一个备考的重点,要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,更应特别加以关注的.题目一般属于中档难度,往往单独成题,或者在解答题中以小问的形式出现.类型一球的内切问题万能模板内容使用场景有关球的内切问题解题模板第一步首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.图1【变式演练1】阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( )A .12B .13C .23D .34【来源】2021年秋季高三数学开学摸底考试卷03(江苏专用)【变式演练2】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【变式演练3】【江西省乐平市第一中学2021届高三上学期联考理科】已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .BC D【变式演练4】【湖南省衡阳市第八中学2020-2021学年高三上学期10月月考】攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )A .3B .4C .2 D类型二 球的外接问题例2. 两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【来源】2021年天津高考数学试题例3、已知点M 是边长为3的等边三角形ABC 的边AC 上靠近点C 的三等分点,BC 的中点为F .现将ABF沿AF 翻折,使得点B 到达B '的位置,且平面AB F '⊥平面ACF ,则四面体AB FM '的外接球的表面积为( )A B C .372π D .374π 【来源】2021年高考最后一卷理科数学(第八模拟)【变式演练5】【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3π B .4π C .6π D .12π【变式演练6】【湖南省衡阳市第八中学2020-2021学年高三上学期11月第三次月考】在三棱锥A SBC -中,10AB ,4ASC BSC π∠=∠=,AC AS =,BC BS =,若该三棱锥的体积为3,则三棱锥S ABC -外接球的表面积为( )A .3πB .12πC .48πD .36π【变式演练6】【福建师范大学附属中学2021届高三上学期期中考试】在四面体ABCD 中,BD AC ==2AB BC AD ===,AD BC ⊥,则四面体ABCD 的外接球的体积为( )A .B .C .D .【高考再现】1.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12B .12C .4D .42.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.【2020年高考天津卷5】若棱长为 ) A .12π B .24π C .36π D .144π4.(2019•新课标⊙,理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D5.(2018•新课标⊙,理10文12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .6.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .7.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.【反馈练习】1.【浙江省台州市第一中学2020-2021学年高三上学期期中】设ABC 为等腰三角形,2AB AC ==,2π3A ∠=,AD 为BC 边上的高,将ADC 沿AD 翻折成ADC ',若四面体ABC D ',则线段BC '的长度为( )A .BC D2.【河南省九师联盟2021届高三第一学期11月质量检测理科】已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是O 的表面积是( )A .28π3B .14π3C .56π3D .7π 33.【陕西省安康市2020-2021学年高三上学期10月联考文科】四棱锥P ABCD -的顶点都在球O 的球面上,ABCD 是边长为P ABCD -体积的最大值为54,则球O 的表面积为( ) A .36π B .64π C .100π D .144π4.【广东省湛江市2021届高三上学期高中毕业班调研】鳖臑(biē nào )是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥A -BCD 是一个鳖臑,其中AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =6,BC =3,DC =2,则三棱锥A -BCD 的外接球的体积是( )A .493πB .3432πC .49πD .3436π 5.【湖北省鄂州高中2020-2021学年高三上学期10月质量检测】张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .366.【四川省成都市蓉城名校联盟2021届高三第一次联考文科】已知三棱锥P ABC -,PA ⊥平面ABC ,且PA =,在ABC 中,1AC =,2BC =,且满足sin 2sin 2A B =,则三棱锥P ABC -外接球的体积为( )A .3B .323πCD .83π 7.球O 的两个相互垂直的截面圆1O 与2O 的公共弦AB 的长度为2,若1O AB △是直角三角形,2O AB △是等边三角形,则球O 的表面积为( )A .9πB .12πC .16πD .20π【来源】辽宁省丹东市2021届高三二模数学试题8.【河南省洛阳市汝阳县2020-2021学年高三上学期联考数学(文)】我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B .2C .30πD .45π9.【湖南师大附中2021届高三(上)月考】四棱锥P ABCD -的底面ABCD 是矩形,侧面PAD ⊥平面ABCD ,120APD ︒∠=,AB PA ==2PD =,则该四棱锥P ABCD -外接球的体积为( )A .323πB .3C .D .36π10.【内蒙古赤峰市中原金科2020-2021学年高三大联考】据《九章算术》记载,“鳖臑(biēnào)”为四个面都是直角三角形的三棱锥.如图所示,现有一个“鳖臑”,PA ⊥底面ABC ,AB BC ⊥,且2PA AB BC ===,三棱锥外接球表面积为( )A .4πB .8πC .12πD .16π11.【内蒙古赤峰市松山区2020-2021学年高三第一次统一模拟考试文科】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143π B .283π C .11π D .12π12.如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A .3πB .8πC .6πD .4π 13.(多选)【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】已知球O 是正三棱锥(底面为正三角形,点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆的面积可能是( )A .πB .2πC .3πD .4π14.(多选)设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+ 【来源】重庆市2021届高三高考数学第三次联合诊断检测试题15.【江苏省泰州市2020-2021学年高三上学期期中】已知直三棱柱ABC —A 1B 1C 1中,AB =BC =1,AC ,侧棱AA 1=2,则该三棱柱外接球的体积为_______.16.【江西省南昌市第十中学2021届高三上学期期中考试】如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.【福建省莆田第一中学2021届高三上学期期中考试】在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 为正方形11CDD C 对角线的交点,则三棱锥11M ACC -的外接球表面积为______.18.在一个棱长为3+方体和大球之间的空隙自由滑动,则小球的表面积最大值是___________.【来源】2021届高三数学临考冲刺原创卷(一)19.阿基米德在他的著作《论圆和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为________.【来源】福建省厦门第一中学2021届高三高考模拟考试数学试题20.在一次综合实践活动中,某手工制作小组利用硬纸板做了一个如图所示的几何模型,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .经研究发现,当点P 在半圆弧AD 上(不含A ,D 点)运动时,三棱锥P ABD -的外接球始终保持不变,则该外接球的表面积为______.【来源】山东省烟台市2021届高三二模数学试题21.一个封闭的正方体容器内盛有一半的水,以正方体的一个顶点为支撑点,将该正方体在水平桌面上任意旋转,当容器内的水面与桌面间距离最大时,水面截正方体各面所形成的图形周长为外接球的表面积为___________.【来源】湘豫联考2021届高三5月联考文数试题22.以三棱柱上底所在平面某一点为对称中心,将上底图形旋转180°后,再将上、下底顶点连接形成空间几何体称为“扭反三棱柱”.如图所示的“扭反三棱柱”上、下底为全等的等腰三角形,且顶点A ,B ,C ,A 1,B 1,C 1均在球O 的球面上,AB =AC =A 1B 1=A 1C 1=m ,截面BCB 1C 1是矩形,BC =2,B 1C =4.则该几何体的外接球表面积为__________,当该几何体体积最大时m =__________.【来源】重庆市第八中学2021届高三下学期适应性月考卷(七)数学试题23.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家,享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家.公元前212年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁.阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球(一个球与圆柱上下底面相切且与侧面相切)的图形,以纪念他在几何学上的卓越贡献,这个图形中的内切球的体积与圆柱体积之比为________,内切球的表面积与圆柱的表面积之比为_______.【来源】湖南省衡阳市第八中学2021届高三下学期考前预测(二)数学试题24.将三个边长为6的正方形分别沿相邻两边中点裁剪而成(1、2)部分,与正六边形组合后图形如图所示,将此图形折成封闭的空间几何体,则这个几何体的体积是___________,外接球表面积为___________.【来源】全国新高考2021届高三数学方向卷试题(B)25.天津滨海文化中心地天津滨海新区开发区,是天津乃至京津冀地区的标志性文化工程.其中滨海图书馆建筑独具特色,被称为“滨海之眼”,如图所示,中心球状建筑引起了小明的注意,为了测量球的半径,小明设计了两个方案,方案甲,构造正三棱柱侧面均与球相切如图所示,底面边长约为30米,估计此时球的完整表面积为 ________平方米;方案乙,测量球被地面截得的圆的周长约为16π米,地面到球顶部高度约为16米,估计此时球的完整体积为__________立方米,你认为哪种方案好呢?【来源】天津市河东区2021届高三下学期一模数学试题26.2020年底,中国科学家成功构建了76个光子的量子计算机“九章”,推动全球量子计算的前沿研究达到一个新高度.该量子计算机取名“九章”,是为了纪念中国古代著名的数学专著《九章算术》.在《九章算术》中,底面是直角三角形的直三棱柱被称为“堑堵”.如图,棱柱111ABC A B C -为一“堑堵”,P 是1BB 的中点,12AA AC BC ===,则在过点P 且与1AC 平行的截面中,当截面图形为等腰梯形时,该截面的面积等于___________,该“堑堵”的外接球的表面积为___________.【来源】全国100所名校2021年高考冲刺试卷(样卷一)文科数学试题。
球与多面体的接、切问题
一、球与多面体的接、切定义
定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.
二、切接问题举例
1.正(长)方体与球
(1)正(长)方体的外接球
①位置关系:正(长)方体的8个顶点在同一个球面上,正(长)方体的中心即为球心.
②度量关系:正(长)方体的体对角线等于球的直径.
(2)正方体的内切球
①位置关系:球与正方体的六个面都相切,各个面的中心即为切点,正方体的中心即为球心,相对两个面中心连线即为球的直径,
②度量关系:球的直径等于正方体的棱长.
2.正三棱锥与球
(1)正三棱锥的外接球
①位置关系:正三棱锥的外接球的球心在它的高所在的直线上.
②度量关系:设正三棱锥底面边长为b ,侧棱长为a ,高为h ,外接球半径为R ,则 2a - 2)
33(b =2h (2)正三棱锥的内切球
①位置关系:正三棱锥的内切球的球心在它的高上(与外接球的球心不一定重合).
②度量关系:设正三棱锥底面边长为b ,侧棱长为a , 高为h ,斜高为1h ,内
切球半径为r ,
则 2
a -2)33(
b =2h ,2h +2)63(b =21h (3)正四面体的棱切球
①位置关系:球心位于正方体的中心 A
B
D
O。
球与各种几何体切、接问题专题)资料讲解
球与各种几何体切、接问题近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见。
首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•一、球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题•1、球与正方体(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r a.(2)正方体的棱切球,如图2.位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r /2a.(3)正方体的外接球,如图与球心重合;棱长为1的正方体ABCD数据关系:设正方体的棱长为a,球的半径为r,这时有2r 3a.A|B1C1D1的8个顶点都在球0的表面上, E, F分别是棱3. 位置关系:正方体的八个顶点在同一个球面上;正方体中心AA,DD1的中点,则直线EF被球0截得的线段长为( )思路分析:由题意推出,球为正方体的外接球.平面AADD1截面所得圆面的半径R 一- ——,得知直线EF被球0截得的线段就是球的截面圆的直径.2 2【解析】由题意可知]球为正方体的外接琲尸面曲载面所得圆面的半径卫二警二f. •••ETu面九如D巩-直线廿杆止得的线段黄]球的截面厨的直径2—上点评*本题着査球与正方体唏”的间题「闻球的截面性囱转化虛为求球的截面13直径. _____________ 2、球与长方体例2自半径为R的球面上一点M,引球的三条两两垂直的弦MA,MB,MC,求MA2MB2MC2的值.4,体积为16,A. 16B.20 C.24 D.32思路分析:正四棱柱也是长方体 可得长方体的长、宽、高分别为【解析】以谢A/B . MC 为从一个顶点出发的三衆協 将三棱锥3/ -曲C 补应一个长方也 则另外四个 顶点逊在疎面上,故长方体是球的内接民右郎,围按方陳的对星线農是璘的貢径...3A? -M3'十」/C Z = (2A): =点评=此题突出构造法的使用,以反淆觀炜令割补形的方法解诀立体几何中体积计算…结论:长方体的外接球直径是长方体的对角线.例3 (全国卷I 高考题)已知各顶点都在一个球面上的正四棱柱高为球的表面积为()..由长方体的体积16及高4可以求出长方体的底面边长为 2,2, 2,4,长方体内接于球,它的体对角线正好为球的直径【解析】正四粧柱也是长再体.由廉方体的休积応斥高4可刃「出长為悴的底面边扶为2,因此,长肓体的长、宽、鬲分别为囚2, 4,因为长方体內捋于險 所以立药陳对角线正好为瑾能直径.松方体你对角钱故球的表面积沏24 故选G点评*年题考查球与扶帛体^接”的问题,巧勺伕市体■的性质,转化咸対求具体对角餵3、球与正棱柱(1)结论1 :正棱柱的外接球的球心是上下底面中心的连线的中点. (2)结论2 :直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.例1、个兀棱柱的底而足止木边形,面,已知该;;检柱的顶点都&间•个昧而上._!!浚7<检牡的体积为一 •底血周长为3,则这个球的体枳为3已知各厦点都在同一个球面上的正四棱柱的高为4. 休积沟1筋 则这牛嫌的k\ft!袒屋 _______ . 24用例3、 在M 三检柱」EU -蚣EC «P, AB 二 4.AC = 6,ri= !60?rU!H 也-;蛙柱ABC -舛坊G 的外接蟀的表血切二、球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或 者表面积等相关问题. 1、正四面体与球的切接问题(1) 正四面体的内切球,如图 4.位置关系:正四面体的四个面都与一个球相切,正四面体 的中心与球心重合;数据关系:设正四面体的棱长为 a ,高为h ;球的半径为 R ,这时有4R h —6 a ;3【解析】 如图正四面体 A — BCD 的中心为0,即内切球球心,内切球半径 R 即为0到1正四面体各面的距离AB = a,—正四面体的咼h= 丁a,又V A-BCD = 4V o-BCD, ()「. R=[h=12a.(2)正四面体的外接球,位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h ;球的半径为R,这时有4R 3h .6a ;(可用正四面体高h 减去内切球的半径得到) 例5求棱长为1的正四面体外接球的半径。
球的切和接问题以及特殊多面体的性质(4)
高考专题:球的切和接问题以及特殊多面体的性质一.球的截面的性质:用一个平面去截一个球,截面是圆面。
球的截面有以下性质: 1 .球心和截面圆圆心的连线垂直于截面。
2 .球心到截面圆的距离d 与球的半径R 及截面圆的半径r 有下面的关系:3. 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
4.球的关联问题的处理方法:找出或做出截面圆,构造出R ,r, d 的直角三角形求解。
如下图:其关键是球心和截面圆圆心的确定。
Ⅰ.球心的确定:(1) 正多面体都有外接球和内切球,它们都是同心球;球心是该正多面体的中心。
(2) 规则几何体若有外接球和内切球,则其球心都是该几何体的几何中心。
(3) 长方体的外接球直径是体对角线。
(4) 在空间中若干个公用斜边的直角三角形所组成的几何体,其外接球直径是该公共斜边。
(5) 存在内切球的几何体,其内切球半径的计算公式是:SV r 3=(其中V 是该几何体的体积,S 是该几何体的表面积)Ⅱ.截面圆圆心的确定:(1) 任意三角形都有外接圆和内切圆,其中外接圆半径由正弦定理法求解;内切圆半径的计算公式是CS r 2=(其中S 为该三角形面积,C 为该三角形面积周长)。
拓展:在平面几何中,存在内切圆的多边形,其内切圆半径的计算公式为C S r 2= (其中S 为该多边形的面积,C 为该多边形的周长)。
(2) 等边三角形的边长若为a ,则其外接圆半径为a 33,内切圆半径为a 63。
(3) 直角三角形的直角边a, b ; 斜边为c ;则其则其外接圆半径为2c ,内切圆半径为2a cb -+。
(4) 矩形的外接圆半径为对角线长的一半,无内切圆。
(5) 正方形的边长若为a ,则其外接圆半径为a 22,内切圆半径为a 21。
【考点训练】1.一个球的外切正方体的表面积的等于6cm 2,则此球的体积为( )A .334cm πB .386cm πC .361cm π D .366cm π2.已知球O 是棱长为1的正方体ABCD —A 1B l C l D 1的内切球,则平面ACD 1截球O 所得截面面积为: .3.已知三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,若该三棱柱的外接球体积为332π,则该三棱柱的体积为: 。
专题01 多面体与球的切接问题 (第四篇)
2020高考数学压轴题命题区间探究与突破专题 第四篇 立 体 几 何专题01 多面体与球的切接问题一.方法综述多面体与球接、切问题的求解方法:(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,,PA a PB b PC c ===一般把有关元素“补形”成为一个球内接长方体,根据22224R a b c =++求解.下面通过例题说明应对这类问题的方法与技巧. 二.解题策略类型一 球与柱体的切接问题【例1】【2020·河南濮阳期末】已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( )A .116πB .106πC .56πD .53π【例2】【2020·全国高三专题练习】已知正四棱柱1111ABCD A B C D -的每个顶点都在球O 的球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为________.【例3】【河南省2018年高考一模】已知三棱柱的底面是正三角形,侧棱底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______. 【指点迷津】1.如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心. 常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==;三是球为正方体的外接球,截面图为长方形11A ACC和其外接圆,则23'1a RO A ==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 .2.长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.2l a b c R ++==3.球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法.设正三棱柱111C B A ABC -的高为h ,底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R .【举一反三】1.【2020湖北省荆州市荆州中学模拟】在直三棱柱中,,,,,则其外接球与内切球的表面积之比为A .B .C .D . 2.【2020·陕西省铜川期末】已知正四棱柱1111ABCD A B C D -的每个顶点都在球的O 球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为( )A .2B .182C .16D .18类型二 球与锥体的切接问题【例4】【2020·四川绵阳期末】已知三棱锥P-ABC 中,PA=4,3,BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为( )A .16πB .32πC .64πD .128π【例5】【2020·江西九江一中月考】已知三棱锥A BCD -中,5AB CD ==2==AC BD ,3AD BC == )A .32πB .24πC 6πD .6π【例6】【2020云南师大附中月考】四边形ABDC 是菱形,60BAC ∠=o ,3AB =BC 翻折后,二面角A BC D --的余弦值为13-,则三棱锥D ABC -的外接球的体积为( )A 5πB 6πC 7πD .22π 【指点迷津】1.球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体ABC S -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接SE SD CD ,,为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,33,32,,a CE a SE r OE R OS CO =====则有2222233a R r a R r CE +=-=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2 .球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111D AB A -的外接球的球心和正方体1111D C B A ABCD -的外接球的球心重合,设a AA =1,则a R 23=. 二是如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,4422222l c b a R =++=(l 为长方体的体对角线长).3 .球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.4.球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解.【举一反三】1.已知正四面体A -BCD 的棱长为12,则其内切球的表面积为( )A .12πB .16πC .20πD .24π2.【2020·天津中学月考】在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( )A .272πB .283πC .263πD .252π 3.【2020·安徽省六安一中月考】已知四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,且//AB CD ,12AB CD =,PA PB AD ==,43PA AD CD +==,若平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为_____________.三.强化训练1.【2020·黑龙江哈尔滨三中月考】已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -3O 的表面积为( ) A .323π B .16π C .52π D .64π2.【2020·河北邯郸一中月考】圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )A .9:32B .8:27C .9:22D .9:283.【2020·四川泸县四中月考】三棱锥D ABC -的四个顶点都在球O 的球面上,ABC ∆是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D ABC -体积的最大值为( )A B C .D .4.【2020·广东深圳中学期末】在三棱锥P ABC -中,PA PB PC ===AB AC BC ===则三棱锥P ABC -外接球的体积是( )A .36πB .125π6C .32π3D .50π5.【2020·甘肃省甘南期末】已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径之比为( )A .7:4B .2:1C .3:1D .5:36.【2020·全国高三专题练习】在正方体1111ABCD A B C D -中,E 为棱11A B 上一点,且2AB =,若二面角11B BC E --为45︒,则四面体11BB C E 的外接球的表面积为( )A .172πB .12πC .9πD .10π7.【2020·湖南株洲一中月考】SC 是球O 的直径,A 、B 是该球面上两点,AB =30ASC BSC ∠=∠=o ,棱锥S ABC -O 的表面积为( )A .4πB .8πC .16πD .32π8.【2020·河南南阳中学月考】平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为_____.9.【2020河北石家庄一中月考】一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为10.【2020关系北海一中期中】已知正方形ABCD 的边长为将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B ACD -,若O 为AC 边的中点,M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,设BN x =,则三棱锥N AMC -的体积取得最大值时,三棱锥N ADC -的内切球的半径为 .。
球与各种几何体切、接问题专题(一))
球与各种几何体切、接问题近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见。
首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2 :若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•一、球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题•1、球与正方体(1 )正方体的内切球,如图 1.位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r a.(2 )正方体的棱切球,如图 2.位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r 2a •(3 )正方体的外接球,如图 3.位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;a,球的半径为r,这时有2r ■-J3a.例1 棱长为1的正方体ABCDAA,DD,的中点,则直线2A.2思路分析:AD.R ―L2EF被球0截得的线段长为(A1B1C1D1的8个顶点都在球由题意推出,球为正方体的外接球•平面AADD1截面所得圆面的半径彳,得知直线EF被球0截得的线段就是球的截面圆的直径【解析】由题意可知]球为正方体的浚關该尸面汕4八“截面所得圜面的半径渥二警二芈¥二面地D巩呈芦被化』曲得的纯段黄]球的截面厨的直径二上点评,本题考査球与正方体"尉的间题「低球的截面性応转化成为求球的截面圆直径. _________2、球与长方体例2自半径为R的球面上一点M,引球的三条两两垂直的弦MA,MB,MC,求MA2MB2MC2的值.|【解析】以AU 临■賦?垢从一个顶点出发的三条棱,将三棱锥阳-A2C补咸一个长対札则另外四个顶点总在球面上,故长方悴是球的内捋长方库,刚长方陣的对角线长是球的直径./. ^Li- -MS' +J/C2-(2^): = 4J!<点评:此题突出构造法的使曲以反渗窗帰分割补形的方法解決立体几何中悴积计算…结论:长方体的外接球直径是长方体的对角线.例3 (全国卷I高考题)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为()•A. 16B. 20C. 24D. 32思路分析:正四棱柱也是长方体•由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为 2 , 2 , 4,长方体内接于球,它的体对角线正好为球的直径【解析】正四棱柱也是长知也由长丽的休积薔艮京亍可应匸出长菇的底面族为凸SHt,婆另体的怡宽、高分^为内2, 4,因为长牙体內捲于球,所以戸「勺体对角线正好为球的直径•长方体体■对角线师漳,故球的耒面积为事厂故选C.点评;年题考葩与长方悴“接”的问题,巧勺长方体的性质,转化成为求其惟对角绕.3、球与正棱柱(1)结论1 :正棱柱的外接球的球心是上下底面中心的连线的中点.(2)结论2 :直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.例仁亠个次愎柱的底面足止夫边陆•英侧棱亚U『底丽,已却喙側IMfIM同f球帼」,11 i做越*1的阳碍底面周稳为3,剜这牛球的体积为______ ・¥供氛匚郑各欣点那在同-个球亦上的[E Iffl棱柱的冏为L体积为16,则这牛越的U mi袒屋______ . 24^例3、在山三楼柱ABC-4耳q中・AB M%AC= d,4-y,^-4,M网■■.棱社ABC - A}坊G的外接煉的表血腰____ . 罟二、球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.1、正四面体与球的切接问题(1 )正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h ;球的半径为R,这时有4R【解析】如图正四面体A —BCD的中心为0,即内切球球心,内切球半径R即为0到-''6a12(2)正四面体的外接球,位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h ;球的半径为R,这时有4R 3h 、6a ;(可用正四面体高h减去内切球的半径得到)例5求棱长为1的正四面体外接球的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学压轴题命题区间探究与突破专题 第四篇 立 体 几 何专题01 多面体与球的切接问题一.方法综述多面体与球接、切问题的求解方法:(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,,PA a PB b PC c ===一般把有关元素“补形”成为一个球内接长方体,根据22224R a b c =++求解.下面通过例题说明应对这类问题的方法与技巧. 二.解题策略类型一 球与柱体的切接问题【例1】【2020·河南濮阳期末】已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( )A .116πB .106πC .56πD .53π【例2】【2020·全国高三专题练习】已知正四棱柱1111ABCD A B C D -的每个顶点都在球O 的球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为________.【例3】【河南省2018年高考一模】已知三棱柱的底面是正三角形,侧棱底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______. 【指点迷津】1.如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心. 常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==;三是球为正方体的外接球,截面图为长方形11A ACC和其外接圆,则23'1a RO A ==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 .2.长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.2l a b c R ++==3.球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法.设正三棱柱111C B A ABC -的高为h ,底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R .【举一反三】1.【2020湖北省荆州市荆州中学模拟】在直三棱柱中,,,,,则其外接球与内切球的表面积之比为A .B .C .D . 2.【2020·陕西省铜川期末】已知正四棱柱1111ABCD A B C D -的每个顶点都在球的O 球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为( )A .122B .182C .16D .18类型二 球与锥体的切接问题【例4】【2020·四川绵阳期末】已知三棱锥P-ABC 中,PA=4,3BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为( )A .16πB .32πC .64πD .128π【例5】【2020·江西九江一中月考】已知三棱锥A BCD -中,5AB CD ==,2==AC BD ,3AD BC == )A .32πB .24πC 6πD .6π【例6】【2020云南师大附中月考】四边形ABDC 是菱形,60BAC ∠=,3AB =BC 翻折后,二面角A BC D --的余弦值为13-,则三棱锥D ABC -的外接球的体积为( ) A 5πB 6πC 7πD .22π 【指点迷津】1.球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体ABC S -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接SE SD CD ,,为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,33,32,,a CE a SE r OE R OS CO =====则有2222233a R r a R r CE +=-=,=,解得:66,.R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2 .球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111D AB A -的外接球的球心和正方体1111D C B A ABCD -的外接球的球心重合,设a AA =1,则a R 23=. 二是如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,4422222l c b a R =++=(l 为长方体的体对角线长).3 .球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.4.球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解.【举一反三】1.已知正四面体A -BCD 的棱长为12,则其内切球的表面积为( )A .12πB .16πC .20πD .24π2.【2020·天津中学月考】在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( )A .272πB .283πC .263πD .252π 3.【2020·安徽省六安一中月考】已知四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,且//AB CD ,12AB CD =,PA PB AD ==,43PA AD CD +==,若平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为_____________.三.强化训练1.【2020·黑龙江哈尔滨三中月考】已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -O 的表面积为( ) A .323π B .16π C .52π D .64π2.【2020·河北邯郸一中月考】圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )A .9:32B .8:27C .9:22D .9:283.【2020·四川泸县四中月考】三棱锥D ABC -的四个顶点都在球O 的球面上,ABC ∆是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D ABC -体积的最大值为( )A B C .D .4.【2020·广东深圳中学期末】在三棱锥P ABC -中,PA PB PC ===AB AC BC ===,则三棱锥P ABC -外接球的体积是( )A .36πB .125π6C .32π3D .50π5.【2020·甘肃省甘南期末】已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径之比为( )A .7:4B .2:1C .3:1D .5:36.【2020·全国高三专题练习】在正方体1111ABCD A B C D -中,E 为棱11A B 上一点,且2AB =,若二面角11B BC E --为45︒,则四面体11BB C E 的外接球的表面积为( )A .172πB .12πC .9πD .10π7.【2020·湖南株洲一中月考】SC 是球O 的直径,A 、B 是该球面上两点,AB =30ASC BSC ∠=∠=,棱锥S ABC -O 的表面积为( )A .4πB .8πC .16πD .32π8.【2020·河南南阳中学月考】平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为_____. 9.【2020河北石家庄一中月考】一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为 10.【2020关系北海一中期中】已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B ACD -,若O 为AC 边的中点,M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,设BN x =,则三棱锥N AMC -的体积取得最大值时,三棱锥N ADC -的内切球的半径为 .。