高中数学必修5)期末测试题
高中数学必修5测试题(中等程度)
《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为( )A .3πcm B .23πcm C .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4π B .3π,2,12π C .6π,2,12π D .6π,2,4π 4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( )A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=- 5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( ) A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-CD.11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1B.2C. 0D.2-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象。
(完整版)高中数学必修五综合测试题 含答案
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
高中数学必修五测试题 高二文科数学(必修五)
2014—2015学年度第一学期期中考试高二文科数学试题(A )(必修五)一、选择题(每题5分,共10小题)1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) A .a+c >b+dB .a-c >b-dC .ac >bdD .a d >b c211两数的等比中项是( ) A .2B .-2C .±2D .以上均不是3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) A .90°B .120°C .135°D .150°4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )A .103B .11088C .11038D .1085.若△ABC 的周长等于20,面积是BC 边的长是 ( ) A .5B .6C .7D .86.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) A .1516B .158C .34 D .387.在△ABC 中,角A ,B 均为锐角,且cosA >sinB ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) A .13B .26C .52D .1569.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n-B .211n+C .211(1)n ++ D .211(1)n -+ 10.已知不等式(x + y )(1x + ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8二、填空题(每题5分,共5小题) 11.数列{a n }的通项公式a n =1n n ++,则103-是此数列的第 项.12. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.13. 已知点(x,y )满足x 0y 0x y 1≥⎧⎪≥⎨⎪+≤⎩,则u=y-x 的取值范围是_______.14.如图,在四边形ABCD 中,已知AD⊥CD,AD =10,AB =14,∠BDA=60°,∠BCD=135°,则BC 的长为______. 15.在△ABC 中,给出下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc,则角A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3. 其中正确结论的序号为 . 三、解答题(共6小题,共75分)16.(12分)已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b}. (1)求a,b .(2)解不等式ax 2-(ac+b )x+bc<0.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.18.(12分)设数列{a n}的前n项和为S n=2a n-2n.(1)求a3,a4; (2)证明:{a n+1-2a n}是等比数列;(3)求{a n}的通项公式.19.(12分)设函数()cosfθθθ=+,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为12⎛⎝⎭,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:1,1,1x yxy+≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.20.(13分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (2)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .参考答案1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) (A )a+c >b+d (B )a-c >b-d (C )ac >bd (D )a d >b c1.【解析】选A .由不等式的可加性可知a+c >b+d, 而当a=2,b=1,c=-2,d=-3时,B 不一定成立, C ,D 中a 、b 、c 、d 符号不定,不一定成立. 2.11两数的等比中项是( )A .2B .-2C .±2D .以上均不是2.【解析】设等比中项为x ,则x 2=1)1)=4.所以x=±2.故应选C .答案:C3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A )90° (B )120° (C )135° (D )150°3.【解析】选B .设三边长为5x,7x,8x ,最大的角为C ,最小的角为A .由余弦定理得:()()()2225x 8x 7x 1cosB ,25x 8x2+-==⨯⨯所以B=60°,所以A+C=180°-60°=120°.4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )(A )103 (B )11088 (C )11038(D )108 4.【解析】选D .根据题意结合二次函数的性质可得:22n 229a 2n 29n 32(n n)322929292(n )3.48=-++=--+⨯=--++∴n=7时,a n =108为最大值.5.若△ABC 的周长等于20,面积是103,A=60°,则BC 边的长是 ( ) A .5B .6C .7D .85.解析:由1sin 2ABC S bc A ∆=得1103sin 602bc =︒,则bc=40.又a+b+c=20,所以b+c=20-a .由余弦定理得()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 所以()2220120a a =--,解得a=7.答案:C6.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) (A )1516 (B )158 (C )34 (D )386.【解析】选C .当n=2时,a 2·a 1=a 1+(-1)2,∴a 2=2; 当n=3时,a 3a 2=a 2+(-1)3,∴a 3=12; 当n=4时,a 4a 3=a 3+(-1)4,∴a 4=3;当n=5时,()5354455a 23a a a 1a .3a 4=+-∴=∴=,, 7.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 7.解析:cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>,选C .答案:C8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) (A )13 (B )26 (C )52 (D )1568.【解析】选B .∵2(a 1+a 4+a 7)+3(a 9+a 11)=6a 4+6a 10=24,∴a 4+a 10=4.()()1134101313a a 13a a S 26.22++∴===9.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n -B . 211n +C . 211(1)n ++D . 211(1)n -+9.解析:因为22222111,(1)(1)n n a n n n n +==-++所以数列的前n项和2222222221111111111.1223(1)1(1)(1)n S n n n n =-+-+⋅⋅⋅+-=-=-+++ 答案:D10.已知不等式(x + y )(1x + ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .810.解析:不等式(x +y )(1ax y+)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥24(舍去),所以正实数a 的最小值为4,选B . 答案:B11.数列{a n }的通项公式a n是此数列的第 项.解析:因为a n ,所以n=9. 答案:91 4,则sin B=________12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=.12.15 4[解析] 由余弦定理,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,所以b=c,B=C,所以sin B=sin C=1-cos2C=154.13.已知点(x,y)满足x0y0x+y1≥⎧⎪≥⎨⎪≤⎩,则u=y-x的取值范围是_______.13.【解析】作出可行域如图,作出y-x=0,由A(1,0),B (0,1),故过B时u最大,u max=1,过A点时u最小,u min=-1.答案:[-1,1]14.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.14.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理得BC BDsin CDB sin BCD ∠∠=,∴BC=16sin135︒·sin30°=.答案:15.在△ABC中,给出下列结论:①若a2>b2+c2,则△ABC为钝角三角形;②若a2=b2+c2+bc,则角A为60°;③若a2+b2>c2,则△ABC为锐角三角形;④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.其中正确结论的序号为.解析:在①中,cos A=2222b c abc+-<0,所以A为钝角,所以△ABC为钝角三角形,故①正确;在②中,b2+c2-a2=-bc,所以cos A=2222b c abc+-=-2bcbc=-12,所以A=120°,故②不正确;在③中,cos C=2222a b cab+->0,故C为锐角,但△ABC不一定是锐角三角形,故③不正确;在④中A∶B∶C=1∶2∶3,故A=30°,B=60°,C=90°,所以确.答案:①16.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b.(2)解不等式ax2-(ac+b)x+bc<0.【解】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系得31,21,b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得1,2.a b =⎧⎨=⎩ (2)解不等式ax 2-(ac+b )x+bc<0,即x 2-(2+c )x+2c<0,即(x-2)(x-c )<0,所以①当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c )<0的解集为∅.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.17.解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B,得 sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,将c =2a 代入得, a =3,c =23.18.(12分)设数列{a n }的前n 项和为S n =2a n -2n.(1)求a 3,a 4;(2)证明:{a n+1-2a n }是等比数列;(3)求{a n }的通项公式.(1)解:因为a 1=S 1,2a 1=S 1+2,所以a 1=2,S 1=2,由2a n =S n +2n 知:2a n+1=S n+1+2n+1=a n+1+S n +2n+1,得a n+1=S n+2n+1, ①所以a 2=S 1+22=2+22=6,S 2=8,a 3=S 2+23=8+23=16,S 3=24,a 4=S 3+24=40.(2)证明:由题设和①式得:a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,所以{a n+1-2a n }是首项为a 2-2a 1=2,公比为2的等比数列.(3)解:a n =(a n -2a n-1)+2(a n-1-2a n-2)+…+2n-2(a 2-2a 1)+2n-1a 1=(n+1)·2n-1.19. (12分)设函数()3sin cos f θθθ=+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0≤θ≤π.(1)若点P 的坐标为13,22⎛⎫⎪ ⎪⎝⎭,求f (θ)的值;(2)若点P (x,y )为平面区域Ω: 1,1,1x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得3sin ,21cos ,2θθ⎧=⎪⎪⎨⎪=⎪⎩所以31()3sin cos 3 2.2f θθθ=+=⨯+= (2)作出平面区域(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1),则0≤θ≤2π.又()cos 2sin .6f πθθθθ⎛⎫=+=+⎪⎝⎭. 故当62ππθ+=,即3πθ=时, max ()2f θ=; 当66ππθ+=,即θ=0时, min ()1f θ=.20.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元?(2)每套丛书定价为多少元时,单套丛书的利润最大?20. 【解析】(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32) =340(万元). (2)每套丛书售价定为x 元时,由150.1x 0x 0-⎧⎨⎩>>,得0<x <150. 依题意,单套丛书利润 P=x-(30+10150.1x -)=x-100150x--30, ∴P=-[(150-x )+100150x -]+120, ∵0<x <150,∴150-x >0,由(150-x )+100150x-≥)150x -=2×10=20, 当且仅当150-x =100150x-,即x=140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元;(2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值;(Ⅱ)设122111n n n n T S S S ++=++⋅⋅⋅+,求n T . 20.(本小题满分12分)解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯= …………………………………………………………………………2分 设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===……………………4分 1+2+3+…+9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=……………………………………………………………………7分 (Ⅱ)12n S =++…(1),2n n n ++=…………………………………………………………8分 1211n n n T S S ++∴=++…21n S + 22(1)(2)(2)(3)n n n n =++++++…22(21)n n ++ 11112(1223n n n n =-+-+++++…11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
高中数学必修5复习题及答案(A组)免费范文
篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
最新高中数学必修五试卷(含答案)
必修五阶段测试四(本册综合测试)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2C.⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x ≤34 D .{x |x <2} 2.(2017·存瑞中学质检)△ABC 中,a =1,B =45°,S △ABC =2,则△ABC 外接圆的直径为( ) A .4 3 B .5 C .5 2 D .6 2 3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解为( )A .x >5a 或x <-aB .x >-a 或x <5aC .-a <x <5aD .5a <x <-a 4.若a >0,b >0,且lg(a +b )=-1,则1a +1b 的最小值是( )A.52B .10C .40D .80 5.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5 6.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB.1a 2>1b 2C.a c 2+1>bc 2+1D .a |c |>b |c | 7.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( ) A .12 B .8 C .6 D .4 8.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a —b 的值是( )A .48B .30C .24D .169.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和,记T n =17S n -S 2na n +1(n ∈N *),设Tn 0为数列{T n }的最大项,则n 0=( )A .2B .3C .4D .5 10.设全集U =R ,A ={x |2(x -1)2<2},B ={x |log 12(x 2+x +1)>-log 2(x 2+2)},则图中阴影部分表示的集合为( )A .{x |1≤x <2}B .{x |x ≥1}C .{x |0<x ≤1}D .{x |x ≤1} 11.在等比数列{a n }中,已知a 2=1,则其前三项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0]∪[1,+∞) C .[3,+∞) D .(-∞,-1]∪[3,+∞)12.(2017·山西朔州期末)在数列{a n }中,a 1=1,a n +1=a n +n +1,设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S n <m对一切正整数n 恒成立,则实数m 的取值范围为( )A .(3,+∞)B .[3,+∞)C .(2,+∞)D .[2,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.(2017·福建莆田二十四中期末)已知数列{a n }为等比数列,前n 项的和为S n ,且a 5=4S 4+3,a 6=4S 5+3,则此数列的公比q =________.14.(2017·唐山一中期末)若x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.15.如右图,已知两座灯塔A 和B 与海洋观察站C 的距离都等于3a km ,灯塔A 在观察站C 的北偏东20°.灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________.16.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.三、解答题(本大题共6小题,共70分)17.(10分)(2017·山西太原期末)若关于x 的不等式ax 2+3x -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <1. (1)求a 的值;(2)求不等式ax 2-3x +a 2+1>0的解集.18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.19.(12分)(2017·辽宁沈阳二中月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13.(1)求sin 2B +C2+cos2A 的值;(2)若a =3,求bc 的最大值.20.(12分)(2017·长春十一高中期末)设数列{a n }的各项都是正数,且对于n ∈N *,都有a 31+a 32+a 33+…+a 3n =S 2n ,其中S n 为数列{a n }的前n 项和.(1)求a 2;(2)求数列{a n }的通项公式.21.(12分)已知点(x ,y )是区域⎩⎪⎨⎪⎧x +2y ≤2n ,x ≥0,y ≥0(n ∈N +)内的点,目标函数z =x +y ,z 的最大值记作z n .若数列{a n }的前n 项和为S n ,a 1=1,且点(S n ,a n )在直线z n =x +y 上.(1)证明:数列{a n -2}为等比数列; (2)求数列{S n }的前n 项和T n .22.(12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f (n )表示前n 年的纯利润总和(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)该厂从第几年起开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?答案与解析1.B 由3x -12-x ≥1,可得3x -12-x -1≥0,所以3x -1-(2-x )2-x ≥0,即4x -32-x ≥0,所以⎩⎪⎨⎪⎧(4x -3)(x -2)≤0,x -2≠0,解得34≤x <2.故选B.2.C ∵S △ABC =12ac sin B =2,∴12×1×22c =2,∴c =42, ∴b 2=c 2+a 2-2ac cos B =32+1-2×1×42×22=25, ∴b =5,∴外接圆的直径为b sin B =522=52,故选C. 3.B (x +a )(x -5a )>0. ∵a <0, ∴-a >5a . ∴x >-a 或x <5a ,故选B.4.C 若lg(a +b )=-1,则a +b =110,∴1a +1b =10⎝⎛⎭⎫1a +1b (a +b )=10⎝⎛⎭⎫2+b a +ab ≥10(2+2)=40. 当a =b =120时,“=”成立,故选C.5.A ∵a 1=1,a 3=5,∴公差d =5-12=2,∴a n =1+2(n -1)=2n -1,S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,∴k =8,故选A. 6.C ∵a >b ,1c 2+1>0,∴a c 2+1>bc 2+1,故选C.7.B 由等差数列的性质知,a 3+a 6+a 10+a 13=4a 8=32, ∴a 8=8.又a m =8,∴m =8.8.C如图所示,当直线z =5y -x 经过A 点时z 最大,即a =16,经过C 点时z 最小,即b =-8,∴a -b =24,故选C.9.A S n =a 1(2n -1)2-1=a 1(2n-1),S 2n =a 1(22n -1)2-1=a 1(22n -1),a n +1=a 1·2n ,∴T n =17S n -S 2n a n +1=17a 1(2n -1)-a 1(22n -1)a 1·2n =17-⎝⎛⎭⎫2n +162n ≤17-8=9,当且仅当n =2时取等号,∴数列{T n }的最大项为T 2,则n 0=2,故选A.10.A 由2(x -1)2<2,得(x -1)2<1.解得0<x <2. ∴A ={x |0<x <2}.由log 12(x 2+x +1)>-log 2(x 2+2),得log 2(x 2+x +1)<log 2(x 2+2). 则⎩⎪⎨⎪⎧x 2+x +1>0,x 2+2>0,x 2+x +1<x 2+2.解得x <1.∴B ={x |x <1}.∴∁U B ={x |x ≥1}. ∴阴影部分表示的集合为 (∁U B )∩A ={x |1≤x <2}.11.D 设数列{a n }的公比为q ,则a 2=a 1q =1,∴q =1a 1,∴S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=a 1+1+1a 1,当a 1>0时,S 3≥1+2a 1·1a 1=3,当且仅当a 1=1时,取等号;当a 1<0时,S 3≤1-2=-1,当且仅当a 1=-1时,取等号.故S 3的取值范围是(-∞,-1]∪[3,+∞). 12.D a 1=1,a n +1-a n =n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(n -1+1)+(n -2+1)+…+(1+1)+1 =n +(n -1)+(n -2)+…+2+1=n (n +1)2,当n =1时,也满足上式, ∴a n =n (n +1)2,1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴S n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2⎝⎛⎭⎫1-1n +1.∵S n <m 对一切正整数n 恒成立,∴m ≥2,故选D. 13.5解析:由题可得a 5-a 6=4S 4-4S 5=-4a 5, ∴a 6=5a 5,∴q =5. 14.4解析:∵x +2y +2xy =8, 又2xy ≤⎝⎛⎭⎫x +2y 22, ∴x +2y +⎝⎛⎭⎫x +2y 22≥8,∴14(x +2y )2+x +2y -8≥0, ∴x +2y ≥4,当且仅当x =2y =2时,等号成立. ∴x +2y 的最小值为4. 15.3a km解析:由题意知,∠ACB =120°,∴AB 2=3a 2+3a 2-23a ×3a cos120°=9a 2, ∴AB =3a km. 16. 3解析:由正弦定理及(2+b )(sin A -sin B )=(c -b )sin C ,得(2+b )(a -b )=(c -b )c ,又a =2, ∴b 2+c 2-a 2=bc .由余弦定理得 cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.又22=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc , ∴bc ≤4.当且仅当b =c 时取等号. ∴S △ABC =12bc sin A ≤12×4×32= 3.17.解:(1)依题意,可知方程ax 2+3x -1=0的两个实数根为12和1,∴12+1=-3a 且12×1=-1a 解得a =-2, ∴a 的值为-2,(2)由(1)可知,不等式为-2x 2-3x +5>0,即2x 2+3x -5<0, ∵方程2x 2+3x -5=0的两根为x 1=1,x 2=-52,∴不等式ax 2-3x +a 2+1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-52<x <1. 18.解:(1)由BA →·BC →=2得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2. 因a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223,由正弦定理,得sin C =c b sin B =23×223=429.因a =b >c ,所以C 是锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.19.解:(1)在△ABC 中,∵cos A =13,∴sin 2B +C 2+cos2A =12[1-cos(B +C )]+2cos 2A -1=12(1+cos A )+2cos 2A -1=-19.(2)由余弦定理知a 2=b 2+c 2-2bc cos A ,∴3=b 2+c 2-23bc ≥2bc -23bc =43bc ,∴bc ≤94,当且仅当b =c =32时,等号成立,∴bc 的最大值为94.20.解:(1)在已知式中,当n =1时,a 31=a 21,∵a 1>0,∴a 1=1, 当n ≥2时,a 31+a 32+a 33+…+a 3n =S 2n ,① a 31+a 32+a 33+…+a 3n -1=S 2n -1,②①-②得a 3n =a n (2a 1+2a 2+…+2a n -1+a n ).∵a n >0,∴a 2n =2a 1+2a 2+…+2a n -1+a n ,即a 2n =2S n -a n ,∴a 22=2(1+a 2)-a 2,解得a 2=-1或a 2=2, ∵a n >0,∴a 2=2.(2)由(1)知a 2n =2S n -a n (n ∈N *),③当n ≥2时,a 2n -1=2S n -1-a n -1,④③-④得a 2n -a 2n -1=2(S n -S n -1)-a n +a n -1=2a n -a n +a n -1=a n +a n -1.∵a n +a n -1>0,∴a n -a n -1=1,∴数列{a n }是等差数列,首项为1,公差为1,可得a n =n .21.解:(1)证明:由已知当直线过点(2n,0)时,目标函数取得最大值,故z n =2n .∴方程为x +y =2n .∵(S n ,a n )在直线z n =x +y 上,∴S n +a n =2n .① ∴S n -1+a n -1=2(n -1),n ≥2.②由①-②得,2a n -a n -1=2,n ≥2.∴a n -1=2a n -2,n ≥2.又∵a n -2a n -1-2=a n -22a n -2-2=a n -22(a n -2)=12,n ≥2,a 1-2=-1,∴数列{a n -2}是以-1为首项,12为公比的等比数列.(2)由(1)得a n -2=-⎝⎛⎭⎫12n -1,∴a n=2-⎝⎛⎭⎫12n -1. ∵S n +a n =2n ,∴S n =2n -a n =2n -2+⎝⎛⎭⎫12n -1.∴T n =⎣⎡⎦⎤0+⎝⎛⎭⎫120+⎣⎡⎦⎤2+⎝⎛⎭⎫12+…+⎣⎡⎦⎤2n -2+⎝⎛⎭⎫12n -1 =[0+2+…+(2n -2)]+⎝⎛⎭⎫120+⎝⎛⎭⎫12+…+⎝⎛⎭⎫12n -1=n (2n -2)2+1-⎝⎛⎭⎫12n 1-12=n 2-n +2-⎝⎛⎭⎫12n -1. 22.解:由题意知f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.(1)由f (n )>0,即-2n 2+40n -72>0,解得2<n <18.由n ∈N +知,该厂从第3年起开始盈利. (2)方案①:年平均纯利润f (n )n =40-2⎝⎛⎭⎫n +36n ,∵n +36n ≥2n ×36n=12,当且仅当n =6时取等号,∴f (n )n≤40-2×12=16.因此方案①共获利16×6+48=144(万元),此时n =6.方案②:f (n )=-2(n -10)2+128.从而方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于第一方案只需6年,而第②种方案需要10年,因此,选择第①种方案更合算.。
【数学】2020高中数学人教A版必修5第二章数列章末测试题A
【关键字】数学【高考调研】2015年高中数学第二章数列章末测试题(A)新人教版必修5一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知an=cosnπ,则数列{an}是( )A.递增数列B.递减数列C.常数列D.摆动数列答案 D2.在数列2,9,23,44,72,…中,第6项是( )A.82 B.107C.100 D.83答案 B3.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于( )A.12 B.18C.24 D.42答案 C解析思路一:设公差为d,由题意得解得a1=,d=.则S6=1+15d=24.思路二:S2,S4-S2,S6-S4也成等差数列,则2(S4-S2)=S6-S4+S2,所以S6=3S4-3S2=24.4.数列{an}中,a1=1,对所有n≥2,都有a3…an=n2,则a3+a5=( )A. B.C. D.答案 A5.已知{an}为等差数列,a2+a8=12,则a5等于( )A.4 B.5C.6 D.7答案 C解析由等差数列的性质可知a2、a5、a8也成等差数列,故a5==6,故选C.6.在数列{an}中,a1=2,an+1=an+ln(1+),则an=( )A.2+ln n B.2+(n-1)ln nC.2+n ln n D.1+n+ln n答案 A解析依题意得an+1-an=ln,则有a2-a1=ln,a3-a2=ln,a4-a3=ln ,…,an-an-1=ln ,叠加得an-a1=ln(···…·)=ln n,故an=2+ln n,选A.7.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.以Sn表示{an}的前n 项和,则使得Sn达到最大值的n是( )A.21 B.20C.19 D.18答案 B解析∵a1+a3+a5=105,a2+a4+a6=99,∴3=105,4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.令an=0且an+1<0,n∈N*,则有n=20.故选B.8.设等差数列{an}的前n项和为Sn.若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于( )A.6 B.7C.8 D.9答案 A解析设等差数列{an}的公差为d,∵a4+a6=-6,∴a5=-3,∴d==2,∴a6=-1<0,a7=1>0,故当等差数列{an}的前n项和Sn取得最小值时,n等于6.9.等比数列{an}的前n项和为Sn,且1,2,a3成等差数列.若a1=1,则S4等于( ) A.7 B.8C.15 D.16答案 C解析由1+a3=2⇒4+q2=4q⇒q=2,则S4=a1+a2+a3+a4=1+2+4+8=15.故选C.10.如果数列{an}满足a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公比为2的等比数列,那么an=( )A.2n+1-1 B.2n-1C.2n-1 D.2n+1答案 B11.含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n+1nB.n+1nC.n-1nD.n+12n答案 B12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210 B.129 C.110D.15答案 D 解析 ∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,∴{a n ·a n -1a n -1-a n}为常数列.∴a n ·a n -1a n -1-a n =a 2·a 1a 1-a 2=2,∴a n ·a n -1=2a n -1-2a n .∴1a n -1a n -1=12,∴{1a n }为等差数列,1a 1=12,d =12. ∴1a n =12+(n -1)·12=n 2.∴a n =2n ,∴a 10=15. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -9解析 由题意得a 23=a 1a 4,所以(a 1+6)2=a 1(a 1+9),解得a 1=-12.所以a 2=-12+3=-9.14.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________. 答案n 22-n2+3(n ≥3)解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数n -11+n -12=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+3(n ≥3).15.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 ⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②,①-②,得3a 3=a 4-a 3,4a 3=a 4,q =a 4a 3=4.16.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,则a 36=________.答案 4 解析 ∵a 1=19,∴a 2=a 1+a 1=29,a 4=a 2+a 2=49,a 8=a 4+a 4=89.∴a 36=a 18+a 18=2a 18=2(a 9+a 9)=4a 9=4(a 1+a 8)=4(19+89)=4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的两实数根,求此数列的通项公式.答案 a n =2+(n -1)×2=2n18.(12分)等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d .a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列,得a 3a 10=a 26. 即(10-d )(10+6d )=(10+2d )2, 整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7. 于是S 20=20a 1+20×192d =20×7+190=330.19.(12分)某市共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%.试问:(1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过公交车总量的13?答案 (1)1 458辆 (2)2011年底20.(12分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若{c n }是1,1,2,…,求数列{c n }的前10项的和.解析 ∵c 1=a 1+b 1,即1=a 1+0,∴a 1=1.又⎩⎪⎨⎪⎧a 2+b 2=c 2,a 3+b 3=c 3,即⎩⎪⎨⎪⎧q +d =1, ①q 2+2d =2. ②②-2×①,得q 2-2q =0. 又∵q ≠0,∴q =2,d =-1.c 1+c 2+c 3+…+c 10=(a 1+a 2+a 3+…+a 10)+(b 1+b 2+b 3+…+b 10)=a 11-q 101-q +10b 1+10×92d=210-1+45·(-1)=978.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析 (1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).22.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项; (2)求{nS n }的前n 项和T n . 解析 (1)a n =12n ,n =1,2,…(2)∵{a n }是首项a 1=12,公比q =12的等比数列,∴S n =121-12n1-12=1-12n ,nS n =n -n2n . 则数列{nS n }的前n 项和T n =(1+2+…+n )-(12+222+…+n2n ), ①T n 2=12(1+2+…+n )-(122+223+…+n -12n +n2n +1),② ①-②,得T n 2=12(1+2+…+n )-(12+122+…+12n )+n 2n +1 =nn +14-121-12n 1-12+n2n +1,即T n =n n +12+12n -1+n2n -2.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
【人教版】高中数学必修五期末试题(附答案)(1)
一、选择题1.若正数x,y满足21yx+=,则2xy+的最小值为()A.2 B.4 C.6 D.82.已知正数x,y满足1431x y+=+,则x y+的最小值为()A.53B.2 C.73D.63.设变量,x y、满足约束条件236y xx yy x≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+的最大值为()A.2 B.3 C.4 D.94.如图,地面四个5G中继站A、B、C、D ,已知()62kmCD=+,30ADB CDB∠=∠=︒,45DCA∠=︒,60ACB∠=︒,则A、B两个中继站的距离是()A.3km B.10km C10km D.62km 5.ABC∆的内角A,B,C的对边分别为a,b,c,已知2b=,6Bπ=,4Cπ,则ABC∆的面积为()A.223+B31C.232D316.设ABC的内角A,B,C的对边分别是a,b,c.已知2cos0b a C-=,()sin3sinA A C=+,则2bca=()A7B14C.23D67.在ABC中,角A,B,C的对边分别为a,b,c,若22tan tanB Cb c=,则ABC的形状为()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D.25910.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.20.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD,求AD 的值和sin ∠ABD 的值25.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得()362sin 223sin sin 75CD ADCAC DAC+⨯⋅∠===∠︒, 在BDC 中,由正弦定理得()162sin 231sin 22CD BDC BC DBC+⨯⋅∠===+∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠()()()22123312233112=++-⨯⨯+⨯=,所以10km AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得6c b =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.10.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=.故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。
【鲁教版】高中数学必修五期末试题(含答案)(2)
一、选择题1.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16B .25C .36D .492.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .23.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 4.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3126.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC. D.8.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭9.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,10.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或11.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4512.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.如图,点A 是半径为1的半圆O的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.18.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.20.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.三、解答题21.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 22.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值. 23.如图,在ABC 中,AB AC ⊥,2AB AC ==,点E ,F 是线段BC (含端点)上的动点,且点E 在点F 的右下方,在运动的过程中,始终保持π4EAF ∠=不变,设EAB θ∠=弧度.(1)写出θ的取值范围,并分别求线段AE ,AF 关于θ的函数关系式;(2)求EAF △面积S 的最小值.24.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.25.已知数列{}n a 是首项12a =,且满足()212log log 1n n a a n N *+-=∈的正项数列,设()23log 2n n b a n N *=-∈.(1)求证:数列{}n a 是等比数列; (2)求数列{}n n a b 的前n 项和n S . 26.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.2.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.3.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题4.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.5.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 2S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C .【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.C解析:C 【分析】先利用1,1,2n n n S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=.12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.10.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.11.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.12.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是【分析】画出满足条件的平面区域,结合z =z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是55, 45. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.15.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积 解析:3【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31213423AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积2133sin 603cos 22AB AC θ=⋅⋅︒= OAB 的面积113sin 1322OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积333cos 2θθ=1333(sin )33sin(60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.16.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C=,即22sin sin 22sin cos a a a A A A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.17.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π)【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.18.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.三、解答题21.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 22.(1)答案见解析;(2)6. 【分析】(1)根据函数2()2(2)f x x a x a =-++的解析式,可将()0f x >化为(2)(1)0x a x -->,分类讨论可得不等式的解集.(2)由方程()1f x x =+有两个正实数根1x ,21x a ⇒>,利用韦达定理可得2222211212121212123()()21422141a x x x x x x x x a x x x x x x a a +++--+===-=+--,再结合均值不等式即可. 【详解】(1)由()0f x >得(2)(1)0x a x -->,当2a >时,原不等式的解集为(-∞,1)(2a⋃,)+∞,当2a =时,原不等式的解集为{|1}x x ≠,当2a <时,原不等式的解集为(-∞,)(12a⋃,)+∞;(2)方程()1f x x =+有两个正实数根1x ,2x , 等价于22(3)10x a x a -++-=有两个正实数根1x ,2x ,∴()()2121238103012102a a a x x a a x x ⎧⎪=+--≥⎪+⎪+=>⇒>⎨⎪-⎪=>⎪⎩,则2222211212121212123()()211622[(1)]21212a x x x x x x x x a a x x x x x x a +++-+===-=-++--12?62≥+= 当且仅当5a =时取等号,故2112x x x x +的最小值为6. 【点睛】本题考查了二次函数的性质、解含参数一元二次不等式、韦达定理、均值不等式,属于综合题.23.(1)π04θ≤≤,πsin 4AE θ=⎛⎫+ ⎪⎝⎭;AF =;(2))21.【分析】(1)依据直角三角形直接写出θ的范围,然后根据正弦定理可得AE ,AF 关于θ的函数关系式.(2)根据(1)的条件可得EAF S △,并结合辅助角公式,简单计算以及判断即可. 【详解】(1)由题意知π04θ≤≤,πππsin sin sin 444AE AB AE θθ=⇒=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 42AF AC AF θθ=⇒=⎛⎫- ⎪⎝⎭. (2)1π2cos 22sin 422EAF S θθ=⋅⋅⋅=⎛⎫+ ⎪⎝⎭⎝⎭△)122111cos 2πsin 221224θθθ==≥=+⎛⎫+++ ⎪⎝⎭.当且仅当π8θ=时,取“=”. 24.(1)23π;(2【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=, 整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC的面积为112sin 4sin223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.25.(1)证明见解析;(2)135210nn S n .【分析】(1)利用对数的运算性质结合等比数列的定义可证得结论成立; (2)求出n n a b 的表达式,利用错位相减法可求得n S . 【详解】(1)对任意的n *∈N ,12122log log log 1n n n n a a a a ++-==,所以,12n naa +=, 所以,数列{}n a 是等比数列,且首项和公比均为2,1222n n n a -∴=⨯=;(2)23log 232n n b a n =-=-,()322n n n a b n ∴=-⋅,()123124272322n n S n ∴=⨯+⨯+⨯++-⨯,()()23121242352322n n n S n n +=⨯+⨯++-⨯+-⨯,上式-下式得()()()()212311321223222322232212n n n n n S n n -++⨯--=+⨯+++--⨯=+--⨯-()153210n n +=-⨯-,因此,135210nn S n .【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-, 又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解.。
【苏科版】高中数学必修五期末试题(带答案)(1)
一、选择题1.已知实数x,y满足221x yx m-≤-≤⎧⎨≤≤⎩且2z y x=-的最小值为-6,则实数m的值为().A.2 B.3 C.4 D.82.实数x,y满足约束条件40250270x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x yzx+-=-的最大值为()A.53-B.15-C.13D.953.已知变量,x y满足不等式组2203x yx yy+-≥⎧⎪-≤⎨⎪≤⎩,则2z x y=-的最大值为()A.3-B.23-C.1 D.24.设函数2()1f x mx mx=--,若对于任意的x∈{x|1 ≤ x ≤ 3},()4f x m<-+恒成立,则实数m的取值范围为()A.m≤0B.0≤m<57C.m<0或0<m<57D.m<575.如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45.已知小车的速度是20km/h,且33cos AOB∠=-,则此山的高PO=()A .1 kmBCD6.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A.2+B1C.2D17.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C.D.9.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.15.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,①若sin A >sin B ,则A >B ;②若sin2A =sin2B ,则△ABC 一定为等腰三角形;③若222cos cos cos 1A B C +-=,则△ABC 为直角三角形;④若△ABC 为锐角三角形,则sin A <cos B .以上结论中正确的有____________.(填正确结论的序号)18.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.已知111,2n n a a a +==,若(1)n n n b a n =+-⋅,则数列{}n b 的前10项的和10S =______.20.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.23.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)24.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 25.已知等差数列{}n a 的前n 项和为n S ,35a =,636S =.(1)求数列{}n a 的通项公式; (2)记m b 为2log k 在区间(]()*0,m a m N∈中正整数k 的个数,求数列{}mb 的前m 项和.26.在①2na n nb a =⋅,②10nn b a =-,③21n n n b a a +=这三个条件中任选一个,补充在下面问题中,并完成问题的解答.问题:已知数列{}n a 是各项均为正数的等差数列,22a =,且11a +、4a 、8a 成等比数列. (1)求数列{}n a 的通项公式;(2)记_____________,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.4.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m << 综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围5.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以()2222.532333h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.6.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.8.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.9.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124ni n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>, 则当n 为偶数时,1211220n n n n a a a a a a -++=+==+> 111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾, 当n 为奇数时,1211220n n n a a a a a -++=+==> 类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>, 即123g()()()()0n a g a g a g a ++++>,与题意矛盾 同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++= 再引申结论: 若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++=因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题故选:A【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.C解析:C【解析】设等差数列{}n a 的公差为d∵310S S =∴()()113319913922a d a d ⨯-⨯-+=+∴160a d +=∴70a =∵10a >∴当n S 取最大值时,n 的值为6或7故选C12.C解析:C【分析】根据题意得到12n n b b +=,计算得到答案.【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=,14b =,910422048b ∴=⨯=.故选:C .【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大 联立2801x y x +-=⎧⎨=⎩,得172x y =⎧⎪⎨=⎪⎩即71,2A ⎛⎫⎪⎝⎭所以此时斜率为 ()7072138-=--, 故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.15.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12 【分析】 直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】 解:ABC中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BD S CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C .【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-=即222sin sin sin sin sin A B C A B +-=根据正弦定理得222a b c ab +-= 故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈ 得3C π= 故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题. 17.①③【分析】结合三角形的性质三角函数的性质及正弦定理对四个结论逐个分析可选出答案【详解】对于①由正弦定理所以由sinA >sinB 可推出则即①正确;对于②取则而△ABC 不是等腰三角形即②错误;对于③则 解析:①③【分析】结合三角形的性质、三角函数的性质及正弦定理,对四个结论逐个分析可选出答案.【详解】对于①,由正弦定理sin sin a b A B =,所以由sin A >sin B ,可推出a b >,则A B >,即①正确;对于②,取15,75A B ︒︒==,则sin 2sin 2A B =,而△ABC 不是等腰三角形,即②错误;对于③,()()()222222cos cos cos 1sin 1sin 1sin 1A B C A B C +-=-+---=, 则222sin sin sin A B C +=,由正弦定理可得222+=a b c ,故△ABC 为直角三角形,即③正确;对于④,若△ABC 为锐角三角形,取80,40A B ︒︒==,此时sin80cos40sin50︒︒︒>=,即sin cos A B >,故④错误.故答案为:①③.【点睛】本题考查真假命题的判断,考查三角函数、解三角形知识,考查学生推理能力与计算求解能力,属于中档题.18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 19.1028【分析】由题可知为等比数列求出的通项公式即可写出的通项公式利用分组求和法即可求出前10项和【详解】是首项为1公比为2的等比数列则故答案为:1028【点睛】本题考查等比数列的判断以及通项公式的解析:1028【分析】由题可知{}n a 为等比数列,求出{}n a 的通项公式,即可写出{}n b 的通项公式,利用分组求和法即可求出前10项和.【详解】111,2n n a a a +==,{}n a ∴是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,121n n nb n , 则910124212310S 1011251102812. 故答案为:1028.【点睛】 本题考查等比数列的判断以及通项公式的求法,考查分组求和法求数列的前n 项和,属于基础题.20.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34- 【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值.【详解】当2n ≥时,1133n n nn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=, 即14n n a a +=,并且数列{}n a 是等比数列,所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34-【点睛】 关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥. 【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可.【详解】(Ⅰ)由指数函数x y b =的图象过点(2,4),得2b =, 所以2()222x x n f x +=-⋅-, 又()f x 为R 上的奇函数,所以()00f =,得1n =-,经检验,当1n =-时,符合()()f x f x -=-, 所以121()22x x f x +-+=+; (Ⅱ)12111()22221x x x f x +-+==-+++, 因为21x y =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减,由于()f x 为R 上的奇函数,所以由()23()0f x x f a x ++-+=,可得()()23()f x x f a x f a x +=--+=-, 则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根,即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点, 则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数, 由()22(1)0f t a f at -+-≥, 得()()221f t a f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--, 由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩, 得0a ≥,所以实数a 的取值范围为:{}0a a ≥.【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键.22.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-. 【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解.【详解】(1)当2a =时,不等式为23440x x -++>,所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<,所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-. 【点睛】 本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.23.条件选择见解析;最大值为3.【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABC S ∆=,即可求解.【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =,根据正弦定理可得cos 2cos b C c B =, 由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=, 根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin 2A b ===,1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin A ===,1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.24.B =30°,90C =,b =c =. 【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可.【详解】由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒,由正弦定理sin sin sin b c a B C A ==,∴sin 3sin 30sin sin 60a B b A ︒===︒sin 3sin 90sin sin 60a C c A ︒===︒25.(1)21n a n =-;(2)212233m m +-- 【分析】(1)根据等差数列的通项公式和前n 项和公式列出式子求出首项和公差即可求出通项公式;(2)由20log 21m k a m ≤=-<解得2112m k -<≤,即可得出1241m m b -=⨯-,再分组求和即可得出.【详解】(1)设等差数列{}n a 的公差为d , 则3161+25656+362a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()11221n a n n ∴=+-⨯=-;(2)由20log 21m k a m ≤=-<,解得2112m k -<≤,m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,21121241m m m b --∴=-=⨯-,设数列{}m b 的前m 项和为m T ,则()21214221433m m m T m m +-=-=---. 【点睛】本题考查等差数列基本量的计算,解题的关键是求出首项和公差,考查等比数列的求和公式,解题的关键是求出1241m m b -=⨯-.26.(1)n a n =;(2)答案见解析.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,利用等差数列的通项公式可求得{}n a 的通项公式;(2)选①,求得2n n b n =⋅,利用错位相减法可求得n S ;选②,求得10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,分10n ≤和10n >两种情况讨论,结合等差数列的求和公式可求得n S ;选③,可得11122n b n n ⎛⎫- ⎪+⎝⎭=,利用裂项相消法可求得n S . 【详解】 (1)因为11a +、4a 、8a 成等比数列,所以()24181a a a =+,设等差数列{}n a 的公差为d ,则0d ≥,则有()()()2111317a d a a d +=++,①又22a =,所以12a d +=,②联立①②解得111a d =⎧⎨=⎩,所以()11n a a n d n =+-=;(2)选①,则2n n b n =⋅,231222322n n S n =⨯+⨯+⨯++⨯()23121222122n n n S n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n S n n n +++--=++++-⨯=-⨯=-⋅--, 化简得()1122n n S n +=-⋅+;选②,则10,101010,10n n n b n n n -≤⎧=-=⎨->⎩, 当10n ≤时,10n b n =-,()()9101922n n n n n S +--==; 当10n >时,()()()()2101109101918098101210+222n n n n n S n -+-⨯-+⎡⎤=++++++++-==⎣⎦. 综上()219,10219180,102n n n n S n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩; 选③,则()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭1111111111111213243546112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()2111113521212412n n n S n n n n +⎛⎫∴=+--= ⎪++++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
人教A版高中数学必修五必修五 综合测试题 (第三套).docx
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
【精品推荐】新课程高中数学测试题组(必修5)全套含答案
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
山东日照实验高中高二上学期期末数学复习(必修5+选修2-1)理科练习五
山东日照实验高中高二上学期期末数学复习理科练习五 一、选择题(60分)1.设b a p 、、是空间向量,则 “b y a x p +=,),(R y x ∈”是“b a p、、共面”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件2.抛物线24x y =的准线方程是( )A .1=xB .1-=xC .161=yD .161-=y3.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB =b ,1CC =c , 则1A B = ( )A .+-a b cB .-+a b cC .-++a b cD .-+-a b c4.已知A,B,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A,B,C 一定共面的是( )A .OM OA OB OC =++ B .2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++5.已知渐近方程为y=2x±的双曲线经过点(4,则双曲线的方程是 ( )A .2214y x -=B .2214y x +=C .2214x y -= D .2214x y -= 6.已知(1,0,2),(6,21,2),a b a b λλμλμ=+=-,则与的值分别为( )A .11,52B .5,2C .11,52-- D .-5,-27.过点M(-2,0)的直线l 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P .若直线l 的斜率为1k (1k ≠0),直线OP 的斜率为2k ,则1k 2k 为( ) A .-2B .2C .12D .12-8.下列四个结论:①若p :2是偶数,q :3不是质数,那么q p ∧是真命题;②若p :π是无理数,q :π是有理数,那么q p ∨是真命题; ③若p :2>3,q :8+7=15,那么q p ∨是真命题;④若p :每个二次函数的图象都与x 轴相交,那么p ⌝是真命题; 其中正确结论的个数是( ) A .1 B .2C .3D .49.双曲线24x -212y =1的焦点到渐近线的距离为( )A .B .2CD .110.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D .22(1)(01)y x x =--<≤11.已知直线m 过点O (0,0,0),其方向向量是a =(1,1,1),则点Q (3,4,5)到直线m 的距离是( )A .1B .2C .3D .212.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( )A B .2 CD二、填空题(20分)13.命题“.01,200<-∈∃x R x ”的否定为: .14.椭圆221123x y +=的焦点分别是12,F F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,则12PF PF 是的___________倍.15.已知点G 是ABC ∆的重心,O 是空间任一点,若,OA OB OC OG λλ++=则的值为_____16.有下列命题:①双曲线192522=-y x 与椭圆13522=+y x 有相同的焦点;②“-21<x <0”是“2x 2-5x -3<0”必要不充分条件;③若a 、b 共线,则a 、b 所在的直线平行;④若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;⑤R x ∈∀,0332≠+-x x .其中是真命题的有:_ ___.(把你认为正确命题的序号都填上)三、解答题(70分,本大题共5题,解答题应写出文字说明、演算步骤或证明过程.)17.已知双曲线的离心率等于2,且与椭圆221259x y +=有相同的焦点,求此双曲线方程.18.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根.如果P ∨Q 为真命题,P ∧Q 为假命题,求实数a 的取值范围.19.E 是长方体ABCD-A 1B 1C 1D 1的棱长CC 1所在直线上一点,11112C E CC BC AB ====.1)求异面直线D 1E 与B 1C 所成角的余弦值; 2)求点A 到直线B 1E 的距离;3)求直线AC 与平面D 1EB 1所成的角;4)求两平面B 1D 1E 与ACB 1所形成的锐二面角的余弦值; 5)求点A 到平面D 1EB 1的距离;20.抛物线x y42=上有两个定点A 、B 分别在对称轴的上、下两侧,F 为抛物线的焦点,并且|FA|=2,|FB|=5,在抛物线AOB 这段曲线上求一点P ,使△PAB 的面积最大,并求这个最大面积.21已知椭圆C :()222210x y a b a b+=>>的焦距是2,离心率是0.5;(1)求椭圆的方程;(2)求证:过点A (1,2)倾斜角为045的直线l 与椭圆C 有两个不同的交点;又记这两个交点为P 、Q ,试求出线段PQ 的中点M 的坐标。
【浙教版】高中数学必修五期末试卷带答案(2)
一、选择题1.已知2244x y +=,则2211x y+的最小值为( ) A .52B .9C .1D .942.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .43.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .24.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 6.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形7.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC边上的中线2BD =,则△ABC 的周长为( ) A .15B .14C .16D .128.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 9.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .110.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n11.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--12.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .21二、填空题13x =______. 14.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.15.已知ABC 中,D 是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =△△,1AD =,12DC =,则AC =_________. 16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin sin sin b C c B B C +=,2226b c a +-=,则ABC 的面积为_______. 18.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 19.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.20.数列{}n a 满足11a =,()*132n n a a n n N ++=+∈,则{}n a 的通项公式为n a =________.三、解答题21.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?22.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由. 23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积.24.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围.25.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T .26.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫==++, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.3.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.4.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <.故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 6.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.7.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15.故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.8.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos 2B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.9.C解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--,所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;10.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122ni n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.11.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.12.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.二、填空题13.4【分析】将所给式子变形为然后利用基本不等式求解即可【详解】因为所以当且仅当即时等号成立故答案为:4【点睛】关键点睛:此题的解题关键是将所给式子变形为从而满足基本不等式成立的条件最后计算求解解析:4 【分析】11=+-,然后利用基本不等式求解即可. 【详解】11≥,111615=-≥=-=,1=4x =时,等号成立. 故答案为:4. 【点睛】11,从而满足基本不等式成立的条件,最后计算求解.14.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由20y x y =⎧⎨-=⎩,解得(2,2)A , 此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.15.【分析】由面积比得得由角平分线定理得在和中应用余弦定理结合可求得【详解】由已知则又平分所以设则中同理中因为所以解得(负的舍去)故答案为:【点睛】本题考查三角形面积公式三角形内角平分线定理余弦定理通过解析:2【分析】 由面积比得2BD DC =,得1BD =,由角平分线定理得2ABAC=,在ABD △和ACD △中应用余弦定理结合cos cos ADB ADC ∠=-∠可求得AC . 【详解】由已知1sin 221sin 2ABD ACD BD AD ADBS BD S CD CD AD ADC ⋅∠===⋅∠△△,12CD =,则1BD =, 又AD 平分BAC ∠,所以2AB BDAC CD==,2AB AC =,设AC x =,则2AB x =, ABD △中,22222114cos 1222BD DA AB x ADB x BD AD +-+-∠===-⋅, 同理,ACD △中,221154cos 14212x ADC x +-∠==-⨯⨯, 因为180ADB ADC ∠+∠=︒,所以225cos cos 1204ADB ADC x x ∠+∠=-+-=,解得x (负的舍去),故答案为:2. 【点睛】本题考查三角形面积公式,三角形内角平分线定理,余弦定理,通过180ADB ADC ∠+∠=︒,cos cos 0ADB ADC ∠+∠=,把两个三角形联系起来达到求解的目的.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A .所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦A A A A218sin sin cos 4sin 2⎫=-=-⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解.【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin A =又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题.18.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b aa b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b aa b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图.由10y x y -=⎧⎨-=⎩ 可得点(1,1)B . 当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=.所以28282828()()101018b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 19.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.20.【分析】先根据条件得隔项成等差数列再根据等差数列通项公式得结果【详解】相减得所以当为奇数时当为偶数时因此故答案为:【点睛】本题考查等差数列通项公式根据递推关系求通项公式考查基本分析求解能力属中档题解析:()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩ 【分析】先根据条件得隔项成等差数列,再根据等差数列通项公式得结果. 【详解】1+12323(1)2n n n n a a n a a n +++=+∴+=++相减得23n n a a +-=所以当n 为奇数时,111313(1)13(1)222n n n n a a ++-=+-=+-= 当n 为偶数时,2323(1)513(1)222n n nn a a +=+-=-+-=因此n a =()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩故答案为:()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩ 【点睛】本题考查等差数列通项公式、根据递推关系求通项公式,考查基本分析求解能力,属中档题.三、解答题21.(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽. 【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>, (2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米. 【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.22.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析 【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数; (2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论. 【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩, 由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用, 即需4y ≥, 则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y , 则()1220(8)2616168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦, 当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L . 【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键. 23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b a c ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件.24.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)123A π-<-≤则()2sin cos A A C 2+-的范围为1,12⎛-⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T . 【详解】(1)设等差数列{}n a 的公差为d , 则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212nnn n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)41n a n =-;(2)2(1)n nT n =+.【分析】(1)由已知列方程求出首项和公差,可得答案;(2)求出n S 及n b 的通项公式,由裂项相消求和可得答案.【详解】(1)∵313321S a d =+=①,51419a a d =+=②由①②得13a =,4d =.∴1(1)41n a a n d n =+-=-;(2)由(1)知41n a n =-,13a =,()234122n n n S n n +-∴==+; ∴111112(1)21n n b S n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴11111111122233412(1)n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】本题考查了等差数列的通项公式、数列求和,解题关键点是求出数列的首项和公差以及裂项相消求和,考查了学生的基础知识、基本运算.。
(压轴题)高中数学必修五第三章《不等式》测试题(答案解析)(4)
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .324.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6545.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-11.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 15.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 18.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.19.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___.20.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 23.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.4.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.5.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+=⎪⎝⎭ 故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)559a b a b +=-+-+≥=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =213A C A C C C A C -≤++-=【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.19.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21【分析】画出,x y满足的可行域,当目标函数24z x y=+-经过点()7,9B时,z取得最大值,求解即可.【详解】画出,x y满足的可行域,由20250x yx y-+=⎧⎨--=⎩解得点()7,9B,则目标函数24z x y=+-经过点()7,9B时,z取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.20.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭,两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根 ∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.23.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞. 24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增,∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
【浙教版】高中数学必修五期末试题(含答案)(2)
一、选择题1.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .32.某校的一个者愿者服务队由高中部学生组成,成员同时满足以下三个条件:(1)高一学生人数多于高二学生人数;(2)高二学生人数多于高三学生人数;(3)高三学生人数的3倍多于高一高二学生人数之和.若高一学生人数为7,则该志愿者服务队总人数为( ) A .15人 B .16人C .17人D .18人3.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R4.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-5.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .()353+6.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .3kmB .10kmC 10kmD .62km7.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .23a <<8.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c=+-,则πsin4C⎛⎫+=⎪⎝⎭()A.1 B.2C.4D.49.数列{}n a中,11a=,113,3,3nnnna Nana N*+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021na<对任意的()n k k*≤∈N恒成立的最大k值为()A.1008B.2016C.2018D.2020 10.已知数列{}n a满足11a=,+121nnnaaa=+,则数列{}1n na a+的前n项和n T=()A.21nn-B.21nn+C.221nn+D.42nn+ 11.设等差数列{}n a的前n项和为n S,若10a>,81335a a=,则nS中最大的是( ). A.10S B.11S C.20S D.21S12.记等差数列{}n a的前n项和为n S.若64a=,19114S=,则15S=()A.45 B.75 C.90 D.95二、填空题13.已知实数x,y满足约束条件2020220x yx yx y+-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y=+的最小值为________. 14.实数,x y满足约束条件20,10,0,x yx yy-≥⎧⎪--≤⎨⎪≥⎩若目标函数(0,0)z ax by a b=+>>的最大值为4,则ab的最大值为______15.ABC的内角A,B,C的对边分别为a,b,c,其中2a=,若()()22sin sin sin3sin sinB C B C B C+-+=,则ABC面积的最大值是______.16.已知点(3,A,O是坐标原点,点(),P x y的坐标满足20yxy-≤+≥⎨⎪≥⎪⎩,设z为OA在OP上的投影,则z的取值范围是__________.17.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =+,则tan B =______ 18.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.19.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 20.已知等差数列{a n }的前n 项和为S n ,且a 2=4,S 5=30,则数列{1nS }的前n 项和为_____.三、解答题21.已知2()(1)1f x ax a x =+-- (1)若()0f x >的解集为11,2⎛⎫-- ⎪⎝⎭,求关于x 的不等式301ax x +≤-的解集; (2)解关于x 的不等式()0f x ≥.22.已知定义在R 上的函数()()2232f x x x a x =+--+(其中a R ∈).(1)若关于x 的不等式()0f x <的解集为()2,2-,求实数a 的值; (2)若不等式()30f x x -+≥对任意2x >恒成立,求a 的取值范围.23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 为锐角三角形,2c =,求b 的取值范围.24.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 32sin 0a b A -=. (1)求角B ; (2)若7b =,5a c +=,求ABC 的面积.25.若数列{}n a 的前n 项和()2*n S n n N =∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足3nn n a b =,求数列{}n b 的前n 项和n S . 26.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>, 由基本不等式可得()()128a b -++≥=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】设高二学生人数为x ,高三学生人数为y ,根据题意列不等式组,画出不等式组表示的平面区域,根据不等式的解为整数,可得结果. 【详解】设高二学生人数为x ,高三学生人数为y , 则737y x y x <<⎧⎨≥+⎩,画出不等式组表示的平面区域,如图阴影部分,根据不等式的解为整数,则阴影部分只有()6,5A 满足,6,5x y ∴==, 该志愿者服务队总人数为76518++=人. 故选:D. 【点睛】本题主要考查二元一次不等式组的解的问题,于基础题.3.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.4.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-.故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.5.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值.【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==,得236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.6.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒,在ADC中,由正弦定理得sin 2sin sin 75CD ADCAC DAC⋅∠===∠︒在BDC中,由正弦定理得1sin 1sin 2CD BDC BC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.7.C解析:C 【分析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理:sin sin a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.8.D解析:D 【分析】根据()22a b c =+-cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭,又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.9.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.10.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+,在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.11.C解析:C 【解析】分析:利用等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><,即可作出判定.详解:在等差数列{}n a 中,18130,35a a a >=,则113(7)5(12)a d a d +=+,整理得12390a d +=,即()()1119200a d a d +++=, 所以20210a a +=,又由10a >,所以20210,0a a ><,所以前n 项和n S 中最大是20S ,故选C .点睛:本题考查了等差数列的通项公式,及等差数列的前n 项和n S 的性质,其中解答中根据等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><是解答的关键,着重考查了学生分析问题和解答问题的能力.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.2【分析】作出不等式对应的平面区域利用z 的几何意义确定取得最大值的条件然后利用基本不等式进行求可得的最大值【详解】作出不等式对应的平面区域由得则目标函数对应直线的斜率平移直线由图象可知当直线经过点A解析:2 【分析】作出不等式对应的平面区域,利用z 的几何意义确定取得最大值的条件,然后利用基本不等式进行求,可得ab 的最大值. 【详解】作出不等式对应的平面区域,由(0,0)z ax bya b =+>>得a zy x b b=-+,则目标函数对应直线的斜率0a b -<,平移直线ay x b=-, 由图象可知当直线经过点A 时,直线的截距最大,此时z 最大. 由2010x y x y -=⎧⎨--=⎩解得(2,1)A此时z 的最大值为2422z a b ab =+=,当且仅当2,1b a ==时取等号.24ab ∴解2ab 故答案为: 2. 【点睛】本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.15.【分析】根据利用正弦定理得到再利用余弦定理求得然后由余弦定理结合基本不等式得到再利用三角形面积公式求解【详解】因为所以即所以因为所以由余弦定理得:所以所以故面积的最大值是故答案为:【点睛】本题主要考【分析】根据()()22sin sin sin 3sin sin B C B C B C +-+=,利用正弦定理得到222b c a bc +-=,再利用余弦定理求得3A π=,然后由余弦定理结合基本不等式得到4bc ≤,再利用三角形面积公式求解. 【详解】因为()()22sin sin sin 3sin sin B C B C B C +-+= 所以()223b c a bc +-=,即222b c a bc +-=,所以2221cos 22b c a A bc +-==, 因为()0,A π∈, 所以3A π=,由余弦定理得:222222cos a b c bc A b c bc bc =+-=+-≥, 所以4bc ≤,所以1sin 2ABC S bc A =≤△,故ABC【点睛】本题主要考查正弦定理,余弦定理的应用以及基本不等式的应用,还考查了运算求解的能力,属于中档题.16.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题 解析:[]3,3-【分析】作出可行域.根据投影的定义得z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围. 【详解】作出可行域,如图所示cos 3OA OP z OA AOP AOP OP⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-. 【点睛】本题考查简单的线性规划和向量的投影,属于中档题.17.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 31sin 2tan 2A B A B B B +==+ 又因为132c b =+31=2+132+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.18.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角解析:)41【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得cos CBD ∠=sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠12==, 在BCD △中,由正弦定理得sin sin 2BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.19.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n na S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.20.【分析】依据等差数列通项及前n 项和公式求得等差数列{an}的基本量应用等差数列前n 项和公式表示出进而得到数列{}的通项并利用裂项法求前n 项和即可【详解】根据等差数列通项及前n 项和公式知解得∴由等差数 解析:1nn + 【分析】依据等差数列通项及前n 项和公式求得等差数列{a n }的基本量122a d =⎧⎨=⎩,应用等差数列前n项和公式表示出n S ,进而得到数列{1nS }的通项,并利用裂项法求前n 项和即可 【详解】根据等差数列通项及前n 项和公式,知2151451030a a d S a d =+=⎧⎨=+=⎩解得122a d =⎧⎨=⎩ ∴由等差数列前n 项和公式:22(1)n S n n n n n =+-=+,()n N +∈ 对于数列{1n S }有211111n S n n n n ==-++∴数列{1n S }的前n 项和1111111...1223111n n T nn n n故答案为:1nn + 【点睛】本题考查了等差数列,根据已知量,结合等差数列的通项公式和前n 项和公式列方程求基本量,进而得到其前n 项和公式,根据新数列与等差数列前n 项和的关系求得数列通项公式,结合裂项法得到新数列的前n 项和公式三、解答题21.(1)3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2)当0a =时,解集为(,1]-∞-,当0a >时,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭,当1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦,当1a =-时,解集为{}1-,当10a -<<时,解集为1,1a⎡⎤-⎢⎥⎣⎦.【分析】(1)根据不等式的解与方程的根的关系,利用韦达定理列出方程组,求得a 的值,代入求得不等式的解集.(2)对参数a 分情况讨论,分别求得不等式的解集. 【详解】解:(1)由题意得11121112a a a -⎧--=-⎪⎪⎨-⎛⎫⎪-⨯-=⎪⎪⎝⎭⎩,解得2a =-,故原不等式等价于2301x x -+-,即(23)(1)010x x x --⎧⎨-≠⎩所以不等式的解集为3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭.(2)当0a =时,原不等式可化为10x +≤,解集为(,1]-∞-; 当0a >时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭; 当0a <时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭, 当11a >-,即1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦; 当11a=-,即1a =-时,解集为{}1-; 当11a <-,即10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查一元二次不等式的解法及分式不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属中档题. 22.(1)3;(2)[2,)-+∞ 【分析】(1)先因式分解得到()()()21=---⎡⎤⎣⎦f x x x a ,再根据关于x 的不等式()0f x <的解集为()2,2-,由12322+=-=-+x x a 求解.(2)将不等式()30f x x -+≥对任意2x >恒成立,根据2x >,转化为2452x x a x -+≥--求解. 【详解】(1)()()()()223221=+--+=---⎡⎤⎣⎦f x x x a x x x a ,因为关于x 的不等式()0f x <的解集为()2,2-, 所以1230+=-=x x a , 解得3a =(2)因为不等式()30f x x -+≥对任意2x >恒成立, 所以()()2245-≥--+a x x x 对任意2x >恒成立,因为2x >, 所以20x ->所以2452x x a x -+≥--,对任意2x >恒成立,而24512222-+⎛⎫-=--+≤- ⎪--⎝⎭x x x x x ,当且仅当 122x x -=-,即 3x =时,取等号, 所以 2a ≥-,所以a 的取值范围[2,)-+∞. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式恒成立问题,基本不等式的应用,还考查了转化求解问题的能力,属于中档题. 23.(1)π3;(2)()1,4. 【分析】(1)利用正弦定理和三角恒等变换化简已知即得解; (2)先求出ππ62C <<,再利用正弦定理求出1b =. 【详解】(1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=, 又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=, 所以2cos sin sin 0A C C -=.因为0πC <<,所以sin 0C ≠,所以1cos 2A =. 因为()0,πA ∈, 所以π3A =. (2)由(1)得π3A =, 根据题意得π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩,解得ππ62C <<.在ABC 中,由正弦定理得sin sin c bC B=,所以π2sin sin sin 31sin sin sin tan C c B C C b C C C C ⎛⎫+ ⎪+⎝⎭====+. 因为ππ62C <<,所以tan C ⎫∈+∞⎪⎝⎭,所以()0,3tan C ∈,所以()11,4tan C+∈. 故b 的取值范围为()1,4. 【点睛】易错点睛:本题求b 的取值范围,利用的是函数的方法,学生容易把C 的范围求错,简单认为(0,)2C π∈,解不等式π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩得到的才是正确范围.24.(1)3B π=;(2【分析】(12sin 0b A -=2sin sin 0A B A -=求解. (2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解.【详解】 (1)∵2sin 0b A -=,∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角,∴3B π=.(2)由余弦定理得2222cos 3=+-b a c ac π,整理得2()37a c ac +-=, ∵5a c +=, ∴6ac =,∴ABC的面积1sin 2S ac B ==. 【点睛】方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.25.(1)21n a n =-;(2)113n n n S +=-.【分析】(1)利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求通项公式;(2)由(1)知利用错位相减法求和. 【详解】解:(1)当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,也符合上式,所以对任意正整数n ,21n a n =-.(2)由(1)得213n n n b -=, 所以1312135232133333n n n n n S ---=+++++…,① 234111352321333333…n n n n n S +--=+++++,② -①②,得32121111212333333n n n n S +-⎛⎫=++++- ⎪⎝⎭…, 21113311132[1()]12122231333n n n n n -++⨯--+=+-=--, 所以113n n n S +=-. 【点睛】 方法点睛:本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和. 26.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项.(2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围.【详解】(1)因为()*224n n S a a n N =-∈,故11224n n S a a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12n n a a -=即{}n a 为等比数列且公比为2,故12n n a . (2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m >即233m <. 【点睛】 方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.。
高中数学必修5试题及详细答案(2021年整理)
(完整)高中数学必修5试题及详细答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修5试题及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修5试题及详细答案(word版可编辑修改)的全部内容。
期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的.1.在等差数列3,7,11,…中,第5项为( ). A .15B .18C .19D .232.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列D .首项为1的等比数列3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4B .5C .6D .74.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( ).A .5B .13C .13D .375.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4B .8C .15D .316.△ABC 中,如果A a tan =B b tan =Cctan ,那么△ABC 是( ). A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形7.如果a >b >0,t >0,设M =ba,N =tb ta ++,那么( ). A .M >N B .M <NC .M =ND .M 与N 的大小关系随t 的变化而变化8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1C .a n =n21D .a n =1+log 2 n9.如果a <b <0,那么( ). A .a -b >0B .ac <bcC .a 1>b1D .a 2<b 210.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程.令a =2,b =4,若c ∈(0,1),则输出的为( ).A .MB .NC .PD .∅11.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 的值为( ).(第10A.50 B.49 C.48 D.4712.设集合A={(x,y)|x,y,1―x―y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是( ).A B C D13.若{a n}是等差数列,首项a1>0,a4+a5>0,a4·a5<0,则使前n项和S n>0成立的最大自然数n的值为( ).A.4 B.5 C.7 D.814.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k=( ).A.9 B.8 C.7 D.6二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上.15.已知x是4和16的等差中项,则x=.16.一元二次不等式x2<x+6的解集为.17.函数f(x)=x(1-x),x∈(0,1)的最大值为.18.在数列{a n}中,其前n项和S n=3·2n+k,若数列{a n}是等比数列,则常数k的值为.三、解答题:本大题共3小题,共28分。
高中数学必修五综合练习
高二数学《必修5》测试题一、选择题1. 在等差数列}{n a 中,若,2951π=++a a a 则)sin(64a a +=A .23B .22 C .21 D .12.已知等比数列{}n a ,若1a +2a =20,3a +4a =80,则5a +6a 等于 A .480B .320C .240D .1203.已知等差数列{}n a 的通项公式为n a n 25-= , 则它的公差是 A. 5- B. 2- C. 2 D. 54.在△ABC 中,角A 、B 、C 的对边分别为a,b,c ,若,tan )(222ac B b c a =-+,则角B 的值是A .3π B .6πC .3π或32πD .6π或65π5. 在△ABC 中,3=a ,3=b ,A=120°,则B 等于A. 30°B. 60°C. 150°D. 30°或150° 6. 在等比数列{}n a 中,524a a a ⋅=,则3a 等于A .-1B .0C .1D .37.在△ABC 中,C bacos 2=,则这个三角形的形状一定是A. 等边三角形B.等腰三角形C. 直角三角形D. 等腰直角三角形 8.甲、乙二人同时从A 点出发,甲沿着正东方向走,乙沿着北偏东30°方向走,当乙走了2千米到达B 点时,两人距离恰好为3千米,那么这时甲走的距离是A. 32千米 B .2千米 C .3千米 D .1千米 9.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2、a+1、c 成等差数列,则 B sin :A sin 等于 A .2:1 B .2:1 C .1:1 D .1:210.对一切正整数n 规定运算:①1*1=2,②1*(n +1)=3(1*n ),则1*2010的值是A .20093B .20103C .2×20093D .2×20103 二、填空题11.在等比数列{}n a 中,若=1a 2,3=q ,则=3a . 12.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为____________ 13.在等差数列{}n a 中,若1491=+a a ,则5a = .14.在ABC ∆中,若︒===30,2,1C b a ,则ABC ∆的面积是 .东西15.已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________ . 16. 如图,画一个边长为4cm 的正方形,再将这个正方形各边的中点相连得到第2个正方形,以此类推,这样一共画了5个 正方形,则这5个正方形的面积的和是 cm 2.17.已知数列2008,2009,1,-2008,-2009,……这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2009项之和2009S 等于 .18. 已知数列{}n a 是一个公差不为0等差数列,且22a =,并且3,6,12a a a 成等比数列,则13243521111...n n a a a a a a a a +++++=________.三、解答题(本大题共5小题,共60分)解答应写出文字说明、证明过程或演算步骤19. 某工厂第n 年的生产总值n a 的信息如图所示:(1)写出21,a a 的值;(2)求n a ;(3)求前n 年的生产总值n S .20. 三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.21. 已知ABC ∆中,角,,A B C 所对的边分别为,,a b c 又060A ∠=,sin B :sin C =2:3.(1)求bc的值; (2)若ABC ∆的边AB上的高为求a 的值.22. 已知数列{}n a 满足12,111+==+n n a a a ,*N n ∈. (1)求数列{}n a 的通项公式;(2)设)1(+=n n a n b ,求数列{}n b 的前n 项和n S .(第16题图)(第19题图)。
人教版高二数学必修5等差数列期末复习题及答案
高中数学必修5期末复习 等差数列一、选择题: 1.三个数,,a b c 既是等差数列,又是等比数列,则,,a b c 间的关系为( )A. b a c b -=-B. 2b ac = C. a b c == D. 0a b c ==≠2.下列关于星星的图案构成一个数列,该数列的一个通项公式是 ( )A .a n =n 2-n +1 B.a n =n(n -1)2 C.a n =n(n +1)2 D.a n =n(n +2)23.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)= ( )A .8B .-8C .±8D .98 4.如果,,1)()1(*∈+=+N n n f n f 且,2)1(=f 则=)100(f102.101.100.99.D C B A5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .276.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( )A .5B .4C .3D .2 7.已知等差数列{n a }满足,0101321=++++a a a a 则有57.0.0.0.5199310021011==+<+>+a D a a C a a B a a A8.设{a n }是由正数组成的等比数列,且a 5a 6=81,log 3a 1+ log 3a 2+…+ log 3a 10的值是( )A .20B .10C .5D .2或4二、填空题:9.数列{a n }中,a 1=1,且a 1·a 2·……·a n =n 2 (n ≧2 ), 则a n = . 10.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列 一共有 项. 11.等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,若231n n A nB n =+,则n na b = 。
高二期末测试卷必修五用
高中数学必修5模块期末综合测试卷一一、选择题(本大题共12小题,每小题5分,共60分.)1.一个直角三角形三内角的正弦值成等比数列,则其最小内角的正弦值为( ) A.5+12 B.5-12 C.1-52 D.122.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9 3.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .-14D .144.已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2 009的值是( )A .2 0092B .2 008×2 007C .2 009×2 010D .2 008×2 009 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 6.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 27.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .18.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2Y B .Y (Y -X )=Z (Z -X ) C .Y 2=XZ D .Y (Y -X )=X (Z -X )9.下列命题正确的是( )A .a ,b ∈R ,且a >b ,则a 2>b 2B .若a >b ,c >d ,则a c >bdC .a ,b ∈R ,且ab ≠0,则a b +ba ≥2D .a ,b ∈R ,且a >|b |,则a n >b n (n ∈N *) 10.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.1543C.214 3D.3543 11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29 12.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( )A .1 B.12 C.22 D.14二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 14.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.15.设x ,y 满足约束条件⎩⎨⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.16.设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x3y4的最大值是______.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 000 m 的C 、D 两地(A ,B ,C ,D 在同一平面上)测得∠ACD =45°,∠ADC =75°,∠BCD =30°,∠BDC =15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A 、B 两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:2≈1.4,3≈1.7,7≈2.6)18.(本小题满分12分)已知关于x的不等式2x2+(3a-7)x+(3+a-2a2)<0的解集中的一个元素为0,求实数a的取值范围,并用a表示该不等式的解集.19.(本小题满分12分)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项;(2)求数列{2a n}的前n项和S n.20.(本小题满分12分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少?21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:22.(本小题满分14分)设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n =a nb n,求数列{c n }的前n 项和T n .1.解析: 设最小内角为α,则sin α,cos α,1成等比数列,所以1-sin 2α=sin α, 解得sin α=5-12或sin α=-5-12(舍).答案: B 2.解析: a 4+a 6=2a 5=-6∴a 5=-3∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值.答案: A3.解析: 不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13, 故⎩⎪⎨⎪⎧-12+13=-b a ,-12×13=2a .解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.答案: C4.解析:由已知a n +1-a n =2n ,所以a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n -1=2×(n -1),以上各式两端分别相加得:a n -a 1=2[1+2+3+…+(n -1)]=n (n -1),即a n =n (n -1)∴a 2 009=2 008×2 009.D5.解析: 由余弦定理,得a 2+c 2-b 2=2ac cos B .由已知,得2ac cos B ·sin Bcos B =3ac ,即sin B=32,又B 是三角形的内角,所以B =π3或2π3.故选D.答案: D 6.解析:a 7·a 8·a 9a 1·a 2·a 3=q 18=2,∴q 9=2,a 4·a 5·a 6=(a 1·a 2·a 3)·q 9=5 2.答案: A7.解析: 作出可行域如图所示目标函数y =12x -12z过点A (1,-1)时z max =3答案: B8.解析: 易知X ,Y -X ,Z -Y 成等比数列∴(Y -X )2=X (Z -Y ) 化简可得Y (Y -X )=X (Z -X ).答案: D 9.解析: a >|b |≥0,故a n >b n .答案: D10.解析: 由题可知a =b +2,b =c +2,∴a =c +4.∵sin A =32,∴A =120°.又cos A =cos 120°=b 2+c 2-a 22bc=(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,整理得c 2-c -6=0,∴c =3(c =-2舍去),从而b =5,∴S △ABC =12bc sin A =1543.故选B.答案: B11.解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 12q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52即⎩⎪⎨⎪⎧a 1q 3=2a 1q 3+2a 1·q 3·q 3=52解得⎩⎪⎨⎪⎧q =12a 1=16,故S 5=16×⎝ ⎛⎭⎪⎫1-1251-12=31.答案: C12.解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B13.解析: ∵c 2=a 2+b 2-2ab cos ∠C ,∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0,∴(a +2)(a -1)=0∴a =1答案: 114.解析: 不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,即(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立.若a +2=0,则4x -3>0,显然不恒成立;若a +2≠0,则⎩⎨⎧a +2>0,Δ<0,即⎩⎨⎧a +2>0,42-4(a +2)(a -1)<0,解得a >2.答案: (2,+∞) 15.解析: 可行域如图所示 目标函数y =-abx +z∵a >0,b >0 ∴斜率-ab <0∴直线过A (1,4)时z 取到最大值8∴ab =4∴a +b ≥2ab =4(当且仅当a =b =2时等号成立)∴a +b 的最小值为4.16.解析: 由3≤xy 2≤8得18≤1xy 2≤13①由4≤x 2y ≤9得16≤x 4y 2≤81②①×②得2≤x 3y4≤27∴最大值为2717.解析: 在△ACD 中∠CAD =180°-∠ACD -∠ADC =60°,=23CD .在CD =6 000,∠ACD =45°,根据正弦定理,得AD =CD sin 45°sin 60°△BCD 中,∠CBD =180°-∠BCD -∠BDC =135°,CD = 6 000,∠BCD=30°,根据正弦定理,得BD =CD sin 30°sin 135°=22CD .又在△ABD 中,∠ADB =∠ADC +∠BDC =90°,根据勾股定理,得AB =AD 2+BD 2=23+12CD =1 00042,而1.2AB ≈7 425.6,则实际所需电线长度约为7 425.6 m.18.解析: 原不等式即(2x -a -1)(x +2a -3)<0,由x =0,适合不等式,故(0-a -1)(2a -3)<0,即(a +1)(2a -3)>0,∴a >32或a <-1.若a >32,则-2a +3-a +12=52(1-a )<-54,∴不等式的解集为⎝⎛⎭⎪⎫3-2a ,a +12; 若a <-1,则-2a +3-a +12=52(1-a )>5,∴不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .综上,a 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.当a >32时,不等式的解集为⎝ ⎛⎭⎪⎫3-2a ,a +12.当a <-1时,不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .19.解析: (1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d,解得d =1,d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n .(2)由(1)知2a n =2n ,由等比数列前n 项和公式得S n =2+22+23+ (2)=2(1-2n)1-2=2n +1-2.20.解析: 设矩形温室的左侧边长为a m ,后侧边长为b m ,则ab =72,蔬菜的种植面积S =(a -4)(b -2)=ab -4b -2a +8=80-2(a +2b )≤80-42ab =32(m 2)当且仅当a =2b ,即a =12,b =6时,S max =32.答:矩形温室的边长为6 m,12 m 时,蔬菜的种植面积最大,最大种植面积是32 m 2. 21.解析: 设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,则z =6x +8y由题意有⎩⎨⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y 均为整数.由图知直线y =-34x +18z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元. 22.解析: (1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, 当n =1时,a 1=S 1=2满足上式,故{a n }的通项式为a n =4n -2.设{b n }的公比为q ,由已知条件b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =14,∴b n =b 1q n -1=2×14n -1,即b n =24n -1.(2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =[1+3×41+5×42+…+(2n -1)4n -1]. 4T n =[1×4+3×42+5×42+…+(2n -3)4n -1+(2n -1)4n ]. 两式相减得:3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5].∴T n =19[(6n -5)4n +5].高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分. 1.在△ABC 中,a =5,b =15,A =30°,则c 等于( ) A .25 B.5C .25或 5 D .3 5 2.当0<a <b <1时,下列不等式正确的是( )A .(1-a )1b >(1-a )bB .(1+a )a >(1+b )bC .(1-a )b >(1-a )b2D .(1-a )a >(1-b )b3.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A .a <-7或a >24 B .a =7或a =24C .-7<a <24 D .-24<a <74.数列1,3,7,15,…的通项公式a n 等于( ) A .2n B .2n +1 C .2n -1D .2n -15.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32 B .1+3C.2+32D .2+ 36.若数列{x n }满足lg x n +1=1+lg x n (n ∈N *),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102 B .101C .100 D .997.在△ABC 中,角A 、B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =b D .a 与b 的大小关系不能确定8.设变量x ,y 满足约束条件⎩⎨⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .69.函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4]∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1) 10.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最小值54B .最大值54C .最小值1D .最大值111.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6.则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.15812.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( ) A .50 B .25 C .100 D .220二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =4,b =6,C =120°,则sin A 的值是________. 14.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.15.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________处.16.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且2sin A =3cos A .(1)若a 2-c 2=b 2-mbc ,求实数m 的值; (2)若a =3,求△ABC 面积的最大值.18.(本小题满分12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝ ⎛⎭⎪⎫13n +1(n ∈N *).(1)求数列{a n}的通项公式a n以及前n项和S n;(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.19.(本小题满分12分)已知全集U=R,集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0(a≠b)},M={x|x2-2x-3≤0}.(1)若∁U B=M,求a,b的值;(2)若-1<b<a<1,求A∩B;(3)若-3<a<-1,且a2-1∈∁U A,求实数a的取值范围.20.(本小题满分12分)某人有楼房一幢,室内面积共180 m2,拟分隔成两类房间作为旅游客房.大客房每间面积为18 m2,可住游客5名,每名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?21.(本小题满分12分)森林失火,火势以每分钟100 m2的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火5分钟到达现场开始救火,已知消防员在现场平均每人每分钟可灭火50 m2,所消耗的灭火材料、劳务津贴等费用平均每人每分钟125元,所消耗的车辆、器械和装备等费用平均每人100元,而每烧毁1 m2的森林损失费为60元,设消防队派x名消防队员前去救火,从到现场把火完全扑灭共用n分钟.(1)求出x与n的关系式;(2)求x为何值时,才能使总损失最少.22.(本小题满分14分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n .高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解析: 由余弦定理:cos A =b 2+c 2-a 22bc ,∴32=15+c 2-52×15×c,即c 2-35c +10=0,∴c =5或25,经检验,a ,b ,c 能构成三角形.故选C.2.解析: 特值法.取a =14,b =12,则(1-a )1b =⎝ ⎛⎭⎪⎫1-142=⎝ ⎛⎭⎪⎫342=916.(1-a )b =⎝ ⎛⎭⎪⎫1-1412=32.∴(1-a )1b <(1-a )b .故排除 A.同理可排除B ,C.答案: D3.解析: (3×3-2×1+a )·(-3×4-2×6+a )<0⇔-7<a <24.答案: C4.解析: 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D.答案: C 5.解析: 2b =a +c ,S =12ac sin B =32∴ac =6又∵b 2=a 2+c 2-2ac cos B ∴b 2=(a +c )2-2ac -2ac cos 30°∴b 2=4+23,即b =1+3,故选B6.解析: 由lg x n +1=1+lg x n 得x n +1x n =10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100,x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102.答案: A 7.解析: 由正弦定理得a sin A =c sin C 即a sin A =2a sin 120°∴sin A =64>12∴A >30°,则B <30°故A >B ,∴a >b 答案: A8.解析: 作出可行域如图所示目标函数y =32x -12z 易知过A (0,-2)时z max =4答案: C9.解析: 由已知得⎩⎨⎧x 2-3x +2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔⎩⎨⎧x ≤1或x ≥2,-4≤x ≤1,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔x ∈[-4,0)∪(0,1).答案: D10.解析: f (x )=(x -2)2+12(x -2)=(x -2)2+12(x -2).∵x ≥52,∴x -2>0,∴f (x )≥214=1.当且仅当x -22=12(x -2),即x =3时,取等号.答案: C11.解析: 9S 3=S 6而S 6=S 3+a 4+a 5+a 6∴8(a 1+a 2+a 3)=a 4+a 5+a 6即q 3=8∴q =2 ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列.S ′5=1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.答案: C12.解析: 由题可知S 20=20(a 1+a 20)2=20(a 3+a 18)2=100,所以a 3+a 18=10,故a 3·a 18≤⎝⎛⎭⎪⎫a 3+a 1822=25. 13.解析: 根据余弦定理c 2=a 2+b 2-2ab cos C =42+62-2×4×6cos120°=76.所以c =219,根据正弦定理,得sin A =a sin C c =4sin 120°219=5719.14.解析: 由⎩⎨⎧S 3=3S 6=24知⎩⎪⎨⎪⎧3a 1+3×(3-1)2d =36a 1+6(6-1)2d =24即⎩⎨⎧ a 1+d =12a 1+5d =8,∴⎩⎨⎧a 1=-1d =2∴a 9=-1+8×2=1515.解析: 由已知得y 1=20x ,y 2=0.8x (x 为仓库与车站的距离).费用之和y =y 1+y 2=0.8x +20x ≥20.8x ·20x =8,当且仅当0.8x =20x 即x =5时等号成立.16.解析: 当a =-2时,原不等式可化为0·x 2+0·x -1≥0,解集为空集,符合题意. 当a =2时,原不等式可化为0.x 2+4x -1≥0,解集不能为空集.当⎩⎨⎧a 2-4<0Δ=(a +2)2+4(a 2-4)<0,不等式的解集为空集.∴-2<a <65综上-2≤a <65. 17.解析: (1)将2sin A =3cos A 两边平方,得2sin 2A =3cos A ,即(2cos A -1)(cos A +2)=0.解得cos A =12>0,∵0<A <π2,∴A =60°.a 2-c 2=b 2-mbc 可以变形得b 2+c 2-a 22bc =m 2.即cos A =m 2=12,∴m=1.(2)∵cos A =b 2+c 2-a 22bc =12,∴bc =b 2+c 2-a 2≥2bc -a 2,即bc ≤a 2.故S △ABC =bc 2sin A ≤a 22×32=334.∴△ABC 面积的最大值为34 3.18.解析: (1)由S n +1-S n =⎝ ⎛⎭⎪⎫13n +1得a n +1=⎝ ⎛⎭⎪⎫13n +1(n ∈N *);又a 1=13,故a n =⎝ ⎛⎭⎪⎫13n (n ∈N *).从而,S n =13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3⎝ ⎛⎭⎪⎫49+1327=2×⎝ ⎛⎭⎪⎫13+49t ,解得t =2. 19.解析: 由题意,得A ={x |(x +a )(x -1)>0},∁U B ={x |(x +a )(x +b )≤0},M ={x |(x +1)(x-3)≤0}.(1)若∁U B =M ,则(x +a )(x +b )=(x +1)(x -3),所以a =1,b =-3,或a =-3,b =1. (2)若-1<b <a <1,则-1<-a <-b <1,所以A ={x |x <-a 或x >1},B ={x |x <-a 或x >-b }.故A ∩B ={x |x <-a 或x >1}.(3)若-3<a <-1,则1<-a <3,所以A ={x |x <1或x >-a },∁U A ={x |1≤x ≤-a }.又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎨⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.20.解析: 设隔出大房间x 间,小房间y 间,获得收益为z 元,则⎩⎨⎧18x +15y ≤180,1 000x +600y ≤8 000,x ≥0,y ≥0,且x ,y ∈N即⎩⎨⎧6x +5y ≤60,①5x +3y ≤40,②x ≥0,y ≥0,且x ,y ∈N.目标函数为z =200x +150y 画出可行域如图阴影部分所示.作出直线l :200x +150y =0,即直线4x +3y =0.当l 经过平移过可行域上的点A ⎝ ⎛⎭⎪⎫207,607时,z 有最大值,由于A 的坐标不是整数,而x ,y ∈N ,所以A 不是最优解.调整最优解: 4x +3y ≤37,令4x +3y =37,即y =37-4x3,代由x ,y ∈N ,知z ′=解得52≤x ≤3.入约束条件①,②,可但此时y =253∉N.再次调整最优解: 由于x ∈N ,得x =3,令4x +3y =36,即y =36-4x3,代入约束条件①,②,可解得0≤x ≤4(x ∈N).当x =0时,y =12;当x =1时,y =1023;当x =2时,y =913;当x =3时,y =8;当x =4时,y =623.所以最优解为(0,12)和(3,8),这时z ′max =36,z max =1 800.所以应隔出小房间12间或大房间3间、小房间8间,可以获得最大收益. 21.解析: (1)由已知可得50nx =100(n +5),所以n =10x -2(x >2).(2)设总损失为y 元,则y =6 000(n +5)+100x +125nx =6 000⎝ ⎛⎭⎪⎫10x -2+5+100x +1 250x x -2=62 500x -2+100(x -2)+31450≥26250 000+31 450=36 450,当且仅当62 500x -2=100(x -2),即x =27时,y 取最小值.答:需派27名消防员,才能使总损失最小,最小值为36 450元.22.解析:(1)设等差数列{a n}的首项为a1,公差为d,由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.由于a n=a1+(n-1)d,S n=n(a1+a n)2,所以a n=2n+1,S n=n(n+2).(2)因为a n=2n+1,所以a n2-1=4n(n+1),因此b n=14n(n+1)=14⎝⎛⎭⎪⎫1n-1n+1.故T n=b1+b2+…+b n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4(n+1)所以数列{b n}的前n项和T n=n4(n+1).。
数学练习题高中数学必修5模块测试
高中数学必修5模块测试一、 选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D C B 或或2、在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 610.B. 75C . 49 D. 514、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .2435、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n S B .nn qS - C .nn qS -1 D .11--n n qS7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210, 则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒> B.a ba b c c>⇒>C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=,则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个题号 1 2 3 4 5 6 7 8 9 10 答案第二部分(非选择题)二、填空题(每小题5分,4小题,共20分)11、已知0,0>>y x ,且191=+yx ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式》练习一1. 函数1()lg4xf x x -=-的定义域为( A ) A.(14), B.[14), C.(1)(4)-∞+∞,, D.(1](4)-∞+∞,, 2. 设,a b R ∈,若||0a b ->,则下列不等式中正确的是( D ) A 、0b a -> B 、330a b +< C 、220a b -< D 、0b a +>3不等式组⎪⎩⎪⎨⎧≤+≥+≥43430y x y x x ,所表示的平面区域的面积等于( C )A.23B.32C.34D.43 4. 不等式252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦, B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,, D .(]11132⎡⎫-⎪⎢⎣⎭,, 5. 若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则 实数m 的取值范围是( A )A .3-≤mB .3-≥mC .03≤≤-mD .03≥-≤m m 或6. 下列命题中正确的是 ( B ) A .当2lg 1lg ,10≥+≠>xx x x 时且 B .当0>x ,21≥+xxC .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大值7. 已知x+3y-1=0,则关于y x 82+的说法正确的是( B ) A有最大值8 B有最小值22 C有最小值8 D有最大值22 8. 不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,则实数m 的取值范围为___-51<m ≤3__.9. 函数y=142-+-x x x 在x>1的条件下的最小值为5 ;此时x=_3_.10. 14001x ,y ,x y>>+=若且,则x y +的最小值是 9 . 11. 当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是5m ≤- .12.甲,乙二人沿同一条道路同时从A 地向B 地出发,甲用速度1v 与2v (21v v ≠)各走一半路程,乙用1v 与2v 各走全程所需时间的一半,试判断甲,乙两人___乙___先到达B 地。
13. 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >,即a 的取值范围是(2)+∞,. 14. 解关于x 的不等式:2)1(--ax x a >1(a ∈R ,且a ≠0). 解:原不等式变形为02)2()1(>----ax ax x a , 整理得:022>--ax a,等价于(2-a )(ax -2)>0.(*) ∵a ≠0,∴(*)式又可化为a (a -2)(x -a2)<0(1)当a (a -2)<0即0<a <2时,原不等式的解为ax 2>;(2)当a (a -2)=0即a =2时,原不等式的解为x ∈Ø(3)当a (a -2)>0即a <0或a >2时,原不等式的解为ax 2<;∴综上所述,当0<a <2时,原不等式的解集为{x |ax 2>}; 当a =2时,原不等式的解集为Ø;当a <0或a >2时,原不等式的解集为{x |ax 2<}. 15. 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y 表示为x 的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
解:(1)如图,设矩形的另一边长为a m 则2y -45x-180(x-2)+180·2a=225x+360a-360 由已知xa=360,得a=x360, 所以y=225x+)0(3603602x x - (II)108003602252360225,022=⨯≥+∴xx x 104403603602252≥-+=∴x x y .当且仅当225x=x2360时,等号成立.即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元.《不等式》练习二1. 不等式0322<++x x 的解集是( A ) A.φ B.R C.)2,1( D.),2()1,(+∞-∞2.若110ab<<,则下列不等式中,正确的不等式有 ( B ) ①a b ab +< ②a b > ③a b < ④2b a ab+>A .1个B .2个C .3个D .4个3. 设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 234. 不等式125x x ++-<的解集是( A ) A .23x -<< B .2x <-或3x > C .32x -<< D .3x <-或2x >5.1x ≤的解集是 (0,2) . 6. 0,0a b ≥≥,且2a b +=,则( C )(A )12ab ≤ (B )12ab ≥ (C )222a b +≥ (D )223a b +≤ 7. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____1618. 若a >b >1,P =b a lg lg , Q =21(lga +lgb) ,R =lg(2ba +) P 、Q 、R 大小关系为 P<Q<R 9. 2,,,230,y x y z R x y z xz *∈-+=的最小值为 3 。
10. 若不等式012>++p qx x p的解集为{}42|<<x x ,则实数.223,22=-=q P 11. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 2 吨.12.设f(x)=⎪⎩⎪⎨⎧≥-<⋅-,2x ),1x (log ,2x ,32231x 则不等式f(x)>2的解集_),10()2,1(+∞ _. 13. .设a >b >c ,n ∈N ,且1a b -+1b c -≥n a c-恒成立,则n 的最大值为(C )(A )2 (B )3 (C )4 (D )5 14. 已知a >0,b >0,比较b a 323+与b a 3231+的大小. 解:设M =b a 323+,N =b a 3231+, 则M 2=b a 323+,N 2=b ab a 94949+-.∴M 2-N 2=b a 323+-(b ab a 94949+-)=)2(92b ab a +- =2)(92b a - ≥0. ∴M 2≥N 2.∴由M >0,N >0有M ≥N ,即b a 323+≥b a 3231+. 15. 某公司计划2018年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? 解:设公司在甲电视台和乙电视台做广告的l时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥ 目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行 域.如图:作直线:300020000l x y +=, 即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时,目标函数 取 得最大值. 联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),. max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元. 16。
实系数方程02)(2=++=b ax x x f 的一个根在)1,0(内,另一个根在)2,1(内,求:(1)12--a b 的值域; (2)22)2()1(-+-b a 的值域。
(3)3-+b a 的值域。