第24章圆复习课件
人教版九年级上册圆周角课件
5,求证:如果三角形一边上的中线等于这 边的一半,那么这个三角形是直角三角形。 (提示:作出这条边为直径的圆)
C
A
O
B
6,如图,已知圆心角∠AOB=100°,求圆周角
∠ACB、∠ADB的度数?
7,一条弦分圆为1:4两部分,求这弦所对的
圆周角的度数?
D
O B
A C
补充例题: 平分已知弧AB
C 已知:弧AB 求作:弧AB的中点
B O B C A C C
2
结论:在同圆或等圆中,一条弧所对的圆 周角等于它所对圆心角的一半.
2.当圆心在圆周角内部时
提示:能否转化为1的情况?
过点B作直径BD.由1可得:
∠ABD
=
1 ∠AOD,∠CBD
2
= 1 ∠COD,
2
∴ ∠ABC =12 ∠AOC.
AD C
●O
B
结论:在同圆或等圆中,一条弧所对的圆 周角等于它所对圆心角的一半.
第24章 圆
24.1.4 圆周角
1、复习提问:
(1)什么是圆心角? (2)圆心角,弧,弦,弦心
距关系定理是什么?
∠ACB与 ∠AOB 有何异同点? 你知道∠ACB这一类的角名字吗?
圆周角的概念 : C
顶点在圆上,两边 与圆相交的角,叫圆 周角。
B O
A
判断下列各图形中的是不是圆周角, 并说明理由.
E
A
B
作法:
⒈ 连结AB. ⒉作AB的垂直平分线 CD,交弧AB于点E.
∴点E就是所求弧AB的中D 点。
4、在圆中,一条弧所对的圆心角和
圆周角分别为(2x+100)°和 (5x—30)°,求这条弧所对的圆 心角和圆周角的度数。
第二十四章《圆》复习课件
.r
O
S = nπr2
360
2024/10/13
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2024/10/13
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2024/10/13
a 侧面
底面
常见的基本图形及结论:
AC
本 第1部分 圆的基本性质
章 第2部分 与圆有关的位置关系
安
排 第3部分 正多边形和圆
复 习
第4部分
弧长和面积的计算
内 容
第5部分
有关作图
2024/10/13
一.圆的基本概念: 1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
∴ OA⊥ l l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
2024/10/13
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
三角形的外接圆与内切圆:
A.
A
B. O.
.
C
B
.
O C
三角形的外心就是三角形各边垂直平分线的交点.
三角形的内心就是三角形各角平分线的交点.
不在同一直线上的三点确定一个圆.
2024/10/13
特别的:
等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2.
2022年人教版九年级数学上册第二十四章 圆教案 直线和圆的位置关系 (第2课时)
24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第2课时)一、教学目标【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题。
【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度与价值观】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.二、课型新授课三、课时第2课时,共3课时。
四、教学重难点【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课教师问:转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?(出示课件2)学生问:都是沿着圆的切线的方向飞出的.(二)探索新知探究一切线的判定方法教师问:如图,在⊙O中经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?(出示课件4)学生答:这时圆心O到直线l的距离就是⊙O的半径.由d=r得到直线l是⊙O的切线.教师问:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?(出示课件5)教师作图,学生观察并思考:(1)圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?出示课件6:教师归纳:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.应用格式:∵OA为⊙O的半径,BC⊥OA于A,∴BC为⊙O的切线.教师问:下列各直线是不是圆的切线?如果不是,请说明为什么?(出示课件7)学生观察交流后口答:(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.教师强调:在切线的判定定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.教师归纳:判断一条直线是一个圆的切线有三个方法:(出示课件8)1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.出示课件9:例1 如图,∠ABC=45°,直线AB是☉O上的直径,且AB=AC. 求证:AC是☉O的切线.教师分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.师生共同解答:证明:∵AB=AC,∠ABC=45°,∴∠ACB=∠ABC=45°.∴∠BAC=180°-∠ABC-∠ACB=90°.∵AB是☉O的直径,∴AC是☉O的切线.巩固练习:(出示课件10)如图所示,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D.BD是⊙O的切线吗?为什么?学生独立思考后板演:解:BD是⊙O 的切线.连接OD,∵OD=OA,∠A=30°,∴∠DOB=60°.∵∠B=30°,∴∠ODB=90°.∴BD是⊙O 的切线.出示课件11:例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.学生思考交流后师生共同解答.证明:连接OC(如图).∵OA=OB,CA=CB,∴OC是等腰三角形OAB底边AB上的中线.∴AB⊥OC.∵OC是⊙O的半径,∴AB是⊙O的切线.巩固练习:(出示课件12-13)如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.教师分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O 向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.证明:连接OE,OA,过O作OF⊥AC.∵⊙O与AB相切于E,∴OE⊥AB.又∵△ABC中,AB=AC,O是BC的中点.∴AO平分∠BAC,又OE⊥AB,OF⊥AC.∴OE=OF.∵OE是⊙O半径,OF=OE,OF⊥AC.∴AC是⊙O的切线.出示课件14:学生对比思考.1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.学生答:连接OC.2.如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.学生答:作垂直.教师归纳:(出示课件15)证切线时辅助线的添加方法:(1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.有切线时常用辅助线添加方法:见切点,连半径,得垂直.切线的其他重要结论:(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.探究二切线的性质定理教师问:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?(出示课件16)学生思考后教师总结:切线性质:圆的切线垂直于经过切点的半径.应用格式:∵直线l是⊙O的切线,A是切点.∴直线l⊥OA.出示课件17-18,教师引导学生进行证明.证法1:反证法.证明:假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M.则OM<OA,即圆心到直线CD的距离小于⊙O的半径,因此,CD与⊙O相交.这与已知条件“直线与⊙O相切”相矛盾.所以AB与CD垂直.证法2:构造法.作出小⊙O的同心圆大⊙O,CD切小⊙O于点A,且A点为CD的中点.连接OA,根据垂径定理,则CD⊥OA,即圆的切线垂直于经过切点的半径.教师总结:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.(出示课件19)出示课件20:例1 如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.(1)求证:△ACB≌△APO;(2)若AP求⊙O的半径.教师分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.师生共同解答:(出示课件21-22)(1)证明:∵PA为⊙O的切线,A为切点,∴∠OAP=90°.又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又∵BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).(2)解:在Rt△AOP中,∠P=30°,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.巩固练习:(出示课件23)如图所示,点A是⊙O外一点,OA交⊙O于点B,AC是⊙O的切线,切点是C,且∠A=30°,BC=1.求⊙O的半径.学生独立思考后自主解决.解:连接OC.∵AC是⊙O的切线,∴∠OCA=90°.又∵∠A=30°,∴∠COB=60°,∴△OBC是等边三角形.∴OB=BC=1,即⊙O的半径为1.(三)课堂练习(出示课件24-33)1.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由.2.判断下列命题是否正确.(1)经过半径外端的直线是圆的切线.()(2)垂直于半径的直线是圆的切线.()(3)过直径的外端并且垂直于这条直径的直线是圆的切线.()(4)和圆只有一个公共点的直线是圆的切线.()(5)过直径一端点且垂直于直径的直线是圆的切线.()3.如下图所示,A是☉O上一点,且AO=5, PO=13, AP=12,则PA与☉O的位置关系是.4.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°5.如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?6.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E. 求证:PE是⊙O的切线.7.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.8.已知:△ABC内接于☉O,过点A作直线EF.(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):①_________;②_____________.(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.参考答案:1.解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.2.⑴×⑵×⑶√⑷√⑸√3.相切4.C5.解:连接OB,则∠OBP=90°.设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2. 解得r=3,即⊙O的半径为3.6.证明:连接OP.∵AB=AC,∴∠B=∠C.∵OB=OP,∴∠B=∠OPB.∴∠OBP=∠C.∴OP∥AC.∵PE⊥AC,∴PE⊥OP.∴PE为⊙O的切线.7.证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.8.解:⑴①BA⊥EF;②∠CAE=∠B.证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.∴∠D+∠DAC=90 °,∵∠D与∠B同对,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE,∴∠DAC+∠EAC=90°,∴EF是☉O的切线.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流. (五)课前预习预习下节课(24.2.2第3课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.。
第24章 圆的复习-九年级数学上册教学课件(人教版)
原 所示,则这个小圆孔的宽口AB的长度为 8 mm.
理
C
精
炼
O
8mm
A
B
提
D
升
与圆有关的概念
典 1.圆:平面内到定点的距离等于定长的所有点组成的图形.
例 2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
原 4.劣弧:小于半圆周的圆弧.
理 5.优弧:大于半圆周的圆弧.
炼 【注意】(1)三角形的外心是三角形三边的垂直平分线的交点.
(2)一个三角形的外接圆是唯一的.
提
(3)三角形的内心是三角形三条角平分线的交点.
升
(4)一个三角形的内切圆是唯一的.
点与圆的位置关系
典 1.在△ABC中,∠C=90º,AC=1,BC=2,M是AB的中点,以点C为圆 例 心,1为半径作⊙C,则( C )
原 2.垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦, 理 并且平分这条弦所对的两条弧;
精 3.垂径定理的推论:平分弧的直径垂直平分这条弧所对的弦. 炼
提 升
圆的基本性质
典 1.圆的对称性: 例 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴.
原 2.有关圆心角、弧、弦的性质:
理
在同圆或等圆中,如果两个圆心角、
° 精 炼
提 升
典 6.如图,已知A、B、C、D是⊙O上的四点,延长DC,AB相交于点 例 E.若BC=BE.求证:△ADE是等腰三角形.
原 理
精 炼
提 升
典 7.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. 例 (1)若∠CBD=39º,求∠BAD的度数; 原 (2)求证:∠1=∠2. 理
第24章 圆 初中数学人教版九年级上册小结与复习课件
(3) 圆锥的侧面积为 πlr ; (4) 圆锥的全面积为 πlr πr2 .
5. 圆内接正多边形的计算
(1)
正
n
边形的中心角为
360° n
.
(2) 正 n 边形的边长 a,半径 R,边心距 r 之间的关系为
R2 r2 (a)2. 2
(3) 边长为 a,边心距 r 的正 n 边形的面积为
半径决定大小;(2) 不在同一条直线上的
三个点确定一个圆.
·
9. 圆内接正多边形、外接圆:将一个圆 n (n≥3) 等分, 依次连接各等分点所得到的多边形叫做这个圆的内接 正多边形,这个圆是这个正多边形的外接圆.
10. 三角形的外接圆 外心:三角形的外接圆的圆心叫做这个三角形的外心. [注意] (1) 三角形的外心是三角形三条边的垂直平分 线的交点;(2) 一个三角形的外接圆是唯一的.
针对训练
2.如图 ,四边形 ABCD 为 ☉O 的内接正方形,点 P 为
劣弧 BC 上的任意一点 (不与 B,C 重合),则∠BPC 的
度数是 135° .
A
D
O
B
C
P
例2 如图,已知 A、B、C、D四点都在⊙O上,OB⊥AC,
BC = CD,在下列四个说法中:① AC 2CD ;② AC =
平分弦所对的 两条弧 .
[注意] ①条件中的“弦”可以是直径;②结论中的 “平分弧”指平分弦所对的劣弧、优弧.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧;
平分弧的直径垂直平分这条弧所对的弦.
2. 圆周角定理及其推论 (1) 圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2) 推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧 或等弧”不能改为“同弦或等弦”. (3) 推论2:90° 的圆周角所对的弦是直径. (4) 推论3:圆的内接四边形的对角互补.
人教版数学九年级上册 第24章 圆 24.1.4 圆周角 课件(共16张PPT)优质课件PPT
•
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力是人自我调节系
统中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备
D
的圆周角”的数量关系,就转化为圆
内接四边形的对角之间的数量关系,
也就是本节课的主题。
探究性质
B
O
A
C
D
圆内接四边形ABCD的对角 有什么数量关系?
通过学生自己动手画图、测量、 猜想,最后证明结论,探究得出 圆内接四边形的性质
B
性质:
50
圆内接四边形的对角互补.
O
延伸:
A
130 50C D
圆内接四边形的任意一个 外角等于它的内对角.
自我激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自
家的后院练习棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,
难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。如果把困难看作对自己的诅咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力
O A OB
C
C
AB 2.半圆(或直径)所
O
对的圆周角是直
O
角, 90的圆周角
人教版九年级上册数学同步练习课件-第24章 圆-复习与巩固24
与AB的位置关系是
()
▪ A.相交 B.相切
▪ C.相离 D.不能确定
20
▪ 2.如图,两个同心圆,大圆的半径为5,小
圆的半径为3,若大圆的弦AB与小圆有公共A
点,则弦AB的取值范围是
()
▪ A.8≤AB≤10
▪ B.8<AB≤10
▪ C.4≤AB≤5
▪ D.4<AB≤5
21
▪ 3.⊙O的半径为6,⊙O的一条弦AB长6,以 3为相半切径的同心圆与直线AB的位置关系是 ________. 4.如图,△AOB中,∠O=90°,AO=8 cm,BO=6 cm,
第二十四章 圆 复习与巩固
名师导航
考点 1 圆的有关性质
【典例 1】如图,在⊙O 中,半径 OD⊥弦 AB 于点 C,连接 AO
并延长交⊙O 于点 E,连接 C,若 AB=8,CD=2,则 EC 的长度为
()
A.2 5
B.8
C.2 10
D.2 13
2
分析:连接 BE,设⊙O 的半径为 R. ∵OD⊥AB,∴AC=BC=12AB=12×8=4. 在 Rt△AOC 中,OA=R,OC=R-CD=R-2, ∵OC2+AC2=OA2, ∴(R-2)2+42=R2,解得 R=5, ∴OC=5-2=3, ∴BE=2OC=6. ∵AE 为直径,∴∠ABE=90°, 在 Rt△BCE 中,CE= BE2+BC2= 62+42=2 13.
要分析用:根一据个题意圆可知盖,圆去盖盖的直住径至这少应个为洞正方口形的,对角那线么的长圆;再盖根据的勾股 定理直,得径圆盖至的直少径应至少为应为__50_2+_5_02_=_50_2c(cmm)..
答案:50 2 点评:根据圆与其内切正方形的关系,得到圆盖的直径至少应为正方形的对
第24章圆期末复习圆与直线的位置关系PPT课件(沪科版)
P
∵OP2=OA2+ AP2,∴OP= 3 5 . A
∵AC∥OP,∴AC:OP=AE:PE,
∴AC=
65 5
.
EC
D OB
∵OC⊥AB,
B
∴∠CED=∠OEB=90°–∠B.
∵∠CDE=90°–∠ODB, ∴∠CDE=∠CED.
(2)连接AD,
A D
∵AB是⊙O的直径, ∴∠ADB=90°.
O
C
E
∵AB=13, ∴OB=6.5
B
∵∠ADB=∠BOE=90°,∠B=∠B,
∴△ABD∽△EBO.
∴AB:EB=DB:BO,
CD
AO E
B
解:(1)连接OD.
∵AB为直径, ∴∠ACB=900,
CD
∵OA=OD,
AO E
B
∴∠ODA=∠OAD,
∵AD平分∠CAB, ∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∴∠ODB=∠ACB=90°,
∴BD是⊙O的切线.
(2)∵
AC AB
=
1 4
,
∴AB=4AC,
∵BC2=AB2-AC2, ∴15AC2=80.
4.圆的切线的定义 直线和圆只有 一个公共点时,这条直线叫做圆的
切线;这个唯一的公共点叫做 切点 .
5.圆的切线的性质 圆的切线垂直于过切点的 半径 ;
6.圆的切线的判定 经过直径的 外端 ,并且垂直于这条的直线是圆的
切线.
7.切线长 经过圆外一点作圆的切线,这点和 切点 之间的 线段的长,叫做这点到圆的切线长。从圆外一点可以 作出 两 条圆的切线,它们的切线长 相等 ;这点与圆 心的连线 平分 两切线的夹角. 8.三角形内切圆 和三角形各边都 相切的圆叫做三角形的内切圆, 内切圆的圆心是三角形三条 角平分线 的交点,它到 三边的距离相等,叫做三角形的 内 心.
第24章圆期末复习圆的基本性质PPT课件(沪科版)
2
O E1C D
BO⊥AD
8.如图,AB是⊙O的直径,AC,BC分别
与⊙O相交于点D,E,连接DE,现给出两个命题:
①若AC=AB,则DE=CE;②若∠C=45°,记
△CDE的面积为S1,四边形DABE的面积为S2,则
S1=S2,那么( D ).
C
A.①是真命题 ②是假命题
B.①是假命题 ②是真命题 D
并交BO、AO的延长线于点C、D,连接CD,交
⊙O于点E、F,过圆心O作OM⊥CD于点M.
求证: (2)CE=DF.
(2) ∵△ACO≌△BDO, A
B O
∴OC=OD,
∵OM⊥CD, C E M F
D
∴CM=DM, EM=FM,
∴CM-EM=DM-FM.
∴CE=DF.
D
5.如图,AB是⊙O的直径,C、D是⊙O上 的两点,分别连接AC、BC、CD、OD,若 ∠DOB=140°,则∠ACD= ( A).
A.20° B. 30° C. 40° D.70° C
A
O
B
D
6.如图,⊙O的直径CD过弦EF的中点G, 连接 CF,∠C=30°,CF= 2 ,3 则OG的长是( A).
沪科版
第24章 圆 期末复习(2)
圆的基本性质
复习要点
1.圆 (1)平面上到定点的 距离 等于定长的所有 点 组成
的图形叫做圆; 定点称为圆心, 定长 称为半径. (2)圆是轴对称图形,其对称轴是任意一条过 圆心的
直线;圆又是中心对称图形,对称中心是 圆心 . (3)不在同一条直线上的 三个点确定一个圆.
AB=AC, ∠ BAC=36°,在AB上取点D(不与点
A,B重合),连接BD,AD,则∠BAD+
沪科版九年级下册数学第24章 圆 【说课稿】 切线的判定
切线的判定各位评委、各位老师:大家好!我说课的内容是《切线的判定》。
我将从教材分析、学情分析、目标重难点分析、教法学法分析、教学过程、五个方面阐述我对本节课的设计意图。
一、教材分析1、教材的地位和作用本节内容选自沪科版九下册第二十四章《圆》24.4《直线和圆的位置关系》的第二课时《切线的判定》。
本课时内容是在学习了直线与圆的位置关系的基础上,进一步探究直线和圆相切的条件,并为探究切线长定理而作准备的,它在圆的学习中起着承上启下的作用,在整个初中几何学习中起着桥梁和纽带的作用。
因此,它是几何学习中必不可少的知识工具。
2、本课主要知识点切线的判定定理3、教材整改结合教学实际及中考要求,我对教材内容略作了调整。
当探究出判定后,为了提高学生将所学的知识应用于实际,我特增加了例1和例2,让学生总结出“证明一条直线是圆的切线时,常常添加辅助线的两种方法”,总结例1主要是连半径、证垂直;例2主要是作垂直、证半径。
帮助学生进一步深化理解切线的判定定理,达到学以致用。
同时我对学案也作了调整,将在后面的学习过程中得以具体的体现。
二、学情分析1、已有的知识能力学生已经掌握了等腰三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义等。
2、已有的数学能力具有初步的逻辑推理能力等。
3、已有的学习能力预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。
三、目标、重难点分析基于上述情况,结合《新课程标准》和我校学生的实际情况,特制定了如下教学目标。
(一)目标分析1、知识与技能(1)能判定一条直线是否为圆的切线.(2)切线的性质定理的应用2、过程与方法(1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力.(2)通过切线的判定定理和性质定理的学习,提高学生的综合运用能力。
3、情感态度与价值观(1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.(2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.设计意图:学习目标是在对教材分析和学情分析基础上设定,它的设定既符合新课标的知识、能力要求,又要适合学生的能力水平。
新人教版九年级上册第24章圆的复习课件(1)PPT
图1
A
O
图2
B
四、点和圆的位置关系
.o .p r
Op< Op<r Op=r Op>r >
.o
.p
.o .p
p在 o内 点 p在 ⊙ o内 点p在⊙o上 在 上 点p在⊙o外 在 外
希望同学们认真复习,完成自己的目标分数,加油 希望同学们认真复习,完成自己的目标分数,加油!
∴CD⊥OA. ⊥
C
A
希望同学们认真复习,完成自己的目标分数,加油 希望同学们认真复习,完成自己的目标分数,加油!
2011年1月18日11时18分
欢迎046班的同学们!注意听课, 积极思考呵!
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个 ,那么 任意两个 第三个也成立。 经过切点、 垂直于切线、 经过圆心。 第三个也成立。①经过切点、②垂直于切线、③经过圆心。 如 ① ② ① ③ ② ③
2011年1月18日11时18分 欢迎046班的同学们!注意听课, 积极思考呵!
1、两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽 度为_____ cm; 2、如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由 图你还能知道哪些正确的结论?请把它们一一写出 来 ; 3、为改善市区人民生活环境,市建设污水管网工程,某圆 柱型水管的直径为100 cm,截面如图2,若管内污水的面宽 AB=60 cm,则污水的最大深度为 cm cm cm; 4、已知、是同圆的两段弧,且=2,则弦AB与CD之间的关 系为( ).A.AB=2CD;B.AB<2CD;C.AB>2CD;D.不能确 定
C
●
O
A
D
希望同学们认真复习,完成自己的目标分数,加油 希望同学们认真复习,完成自己的目标分数,加油!
新人教九年级上册第24章24.1.1《圆》说课稿
新人教九年级上册第24章24.1.1《圆》说课稿一、教材分析1.教材的地位和作用圆是在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识的综合性较强。
本节课的内容是对已学过的旋转及轴对称等知识的巩固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的基础。
2.教学目标课程标准对圆这一章的要求是:“……在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察,操作,推理,想像等探索过程……”。
根据这一要求和本课时内容的地位和作用以及九年级学生的认知结构,我确定了以下教学目标:【知识与技能】通过观察、操作、归纳等理解圆的定义,理解弦、弧、直径、等圆、等弧等相关概念;并通过对“草坪问题”的讨论等活动提高学生运用圆的相关知识解决生活中实际问题的能力。
【过程与方法】采取课件与导学案相结合,学生自主学习与小组合作相结合的教学方法,让学生体会圆的不同定义,感受圆和实际生活的联系,培养学生把实际问题转化为数学问题的能力。
【情感态度与价值观】在解决问题的过程中体会圆的知识在生活中的普遍性,以及圆在生活和生产中的地位和作用,增强学生学习数学的兴趣。
3.教材重、难点的处理根据教学内容和学生实际,遵循课程标准,在认真钻研教材的基础上,本节课我确定了以下教学重点和难点:重点:1.圆的两种定义和圆的有关概念的学习。
2.能够解释和解决一些生活中关于圆的问题。
难点:圆的第二种定义。
为了突破难点,将抽象的文字叙述转化为图形,我设计了学生自己动手画圆及观看老师演示等方法,最后辅之以相关练习题,使学生得以巩固。
二、学情分析九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。
但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
人教版九年级数学上册2第2课时圆锥的侧面积和全面积课件
新知探究
例1 一个圆锥的侧面展开图是一个圆心角为120°,弧长为20 的
扇形,试求该圆锥底面的半径及它的母线的长. 解:设该圆锥的底面的半径为r,母线长为a.
2 r 20
可得 r=10.
又 20 120 a
180
可得 a=30.
新知探究
例2 蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭 建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要 多少平方米的毛毡? (π取3.142,结果取整数).
新课导入
复习回顾:上节课我们学习了弧长计算公式和扇形面积计算公式, 你们还记得它们是怎样的吗?
弧长 l n 2πR nπR ,
360
180
(其中n表示弧所对的圆心角的度数,R表示弧所在圆的半径)
扇形面积 S n πR2 , 360
(其中n表示扇形圆心角的度数,R表示扇形所在圆的半径)
新课导入
△A‘B’C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)
的面积为
.
新知探究
如图,沿圆锥的一条母线将圆锥侧面剪开并展平,容易得到,圆锥 的侧面展开图是一个扇形,
(1)设圆锥的母线长为l,底面圆的半径为r,如图所示,那么这个
扇形的半径为_____l___; (2)扇形的弧长其实是底面圆周展开得到的,所以扇形弧长为 __2_π_r_; (3)因此圆锥的侧面积为____π_rl___,圆锥的全面积为__π_r_(__l_+_r_)_.
第二十四章 圆
24. 4 弧长和扇形面积 第2课时 圆锥的侧面积和全面积
学习目标-新课导入-新知探究-课堂小结-课堂训练
学习目标
1.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面 积的计算方法,并会应用公式解决问题. (重点) 2.探索圆锥侧面积和全面积的计算公式并应用它解决现实生活中的 一些实际问题. (重点、难点)
金乡县六中九年级数学上册第二十四章圆专题课堂(十一)圆中常见的辅助线归类课件新版新人教版6
类型二:遇直径添加直径所对的圆周角 5.(2019·聊城)如图,BC 是半圆 O 的直径,D, E 是 BC 上两点,连接 BD,CE 并延长交于点 A, 连接 OD,OE.如果∠A=70°,那么∠DOE 的度 数为( C ) A.35° B.38° C.40° D.42°
第5题图
6.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙ O 外一点,点 C 在⊙O 上,AC 与⊙O 相切于点 C,∠CAB=90°,若 BD=6,AB=4,∠ABC =∠CBD,则弦 BC 的长为_2__6_____.
解:(1)BC 与⊙O 相切.证明:连接 OD.
∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD. 又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD= ∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即 OD⊥BC.又∵BC 过半径 OD 的外端点 D,∴BC 与⊙O 相切
(2)设 OF=OD=x,则 OB=OF+BF=x+2,根 据勾股定理得 OB2=OD2+BD2,即(x+2)2=x2 +12,解得 x=2,即 OD=OF=2,∴OB=2+2
所以 x-1=0或mx-2=0 , 解得 x1=1 , x2=2 .
m
当m为正整数1或2时 , x2为整数 , 即抛物线与x轴总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六.三角形的外接圆和内切圆
A A
O C B B 三角形外接圆的圆心叫三角形的外心
I
C 三角形内切圆的圆心叫三角形的内心。
实质
三角形的外心 三角形三边垂直平分线的交点
三角形的内心
三角形三内角角平分线的交点
性质
到三角形各顶点 的距离相等 到三角形各边的 距离相等
三角形的外心是否一定在三角形的内部?
A
与圆有关的位置关系
直线和圆的位置关系
三角形内切圆
圆
正多边形和圆
圆和圆的位置关系
等分圆
弧长 有关圆的计算
下午2时51分
扇形的面积 圆锥的侧面积和全面积
希望同学们认真听讲,积极思考, 反应迅速。 6
圆的定义(运动观点)
在一个平面内,线段OA绕它固 定的一个端点O旋转一周,另一 个端点A随之旋转所形成的图形 叫做圆。 固定的端点O叫做圆心,线段 OA叫做半径,以点O为圆心的圆, 记作☉O,读作“圆O”
点与圆的 圆外 位置关系
圆心角
角与圆 的关系 确定圆 确定圆 的条件 的条件
圆周角
定理
圆上
圆内
圆
知识树
外接圆
运动变 化观点 数形结 合思想
分类、方 程思想 辅助线 规律
圆
能力树
本章知识结构图
圆的基本性质
圆的对称性
弧、弦圆心角之间的关系 同弧上的圆周角与圆心角的关系
点和圆的位置关系 三角形的外接圆 切线
第24章 圆 复习课
下午2时51分
希望同学们认真听讲,积极思考, 反应迅速。
1
主要知识 圆的基本性质 与圆有关的位置关系
正多边形和圆 有关圆的计算
下午2时51分 希望同学们认真听讲,积极思考, 反应迅速。 2
圆的对称性
点与圆的 位置关系
角与圆 的关系 确定圆 的条件
圆 的 概 念
知识树
垂径 旋转 定理 中心 圆的对称性 轴
1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为 60°,OD⊥BC,D为垂足,且OD=10,则AB=_____,BC=_____; 2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与 CD之间的关系为( ); A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定
3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那 么∠BOC等于 ( );
A C D O m B n E
图1
A
O
图2
B
四、点和圆的位置关系
.o .p r
Op<r Op=r Op>r
.o
.p
.o .p
点p在⊙o内 点p在⊙o上 点p在⊙o外
不在同一直线上的三个点确定一个圆
(这个三角形叫做圆的内接三角形,这个圆叫做三角 形的外接圆,圆心叫做三角形的外心)
反证法的三个步骤: 1、提出假设 2、由题设出发,引出矛盾 3、由矛盾判定假设不成立,肯定结论正确
B 直角三角形的内切圆 半径与三边关系.
三角形的内切圆半径与圆面积.
abc r . A 2
D O ● B E
┓
1 S r a b c . 2A
D
●
┗ F
O
┓
F
C
B
E
C
• 1.如图:圆O中弦AB等于半径R,则这条弦所对的 60度 ,圆周角是______ 30或150度 . 圆心角是___
下午2时51分
希望同学们认真听讲,积极思考, 反应迅速。
39
八.正多边形和圆
E
中心角
D
O.
半径R
(1).有关概念
(2).常用的方法
F (3).正多边形的作图
C
边心距r
边
O R A
下午2时51分
1 a 2
d
a B
1 2 2 2 ( a) d R 2
40
C
希望同学们认真听讲,积极思考, 反应迅速。
O
A
B
2:已知ABC三点在圆O上,连接ABCO, 如果∠ AOC=140 °,求∠ B的度数. D 解:在优弧AC上定一点D,连结AD、 CD. ∵ ∠ AOC=140 ° O A ∴ ∠ D=70 ° ∴ ∠ B=180 ° -70 ° =110 °
B
C
3.平面上一点P到圆O上一点的距离最长为 2或4cm 6cm,最短为2cm,则圆O的半径为_______.
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
三、圆周角定理及推论
D
B
●
C E O
C BA
O
O
A C
●
●
B
A
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半. 推论:直径所对的圆周角是 直角 . 90°的圆周角所对的弦是 直径 . 判断: (1) 相等的圆心角所对的弧相等. (×) (2)相等的圆周角所对的弧相等. (3) 等弧所对的圆周角相等. (× ) (√)
注意: “ 直径平分弦则垂直弦.” 这句话对吗?
(错 )
D
例⊙O的半径为10cm,弦AB∥CD,
AB=16,CD=12,则AB、CD间的
2cm 或14cm . 距离是___
1.两条弦在圆心的同侧
O
2.两条弦在圆心的两侧
A C O B D
A C
●
B D
●
二、圆心角、弧、弦、弦心距的关系 在同圆或等圆中,如果①两个圆心角,②两 条弧,③两条弦,④两条弦心距中,有一组量相 等,那么它们所对应的其余各组量都分别相等.
圆内接四边形的性质:
(1)对角互补;(2)任意一个外角都等于它的内
对角
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分 别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( ) A.点A在⊙O内部 C.点A在⊙O外部 B.点A在⊙O上 D.点A不在⊙O上
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM= _____ cm.
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直 于这条半径即可; 2、如果不明确直线与圆的交点,往往要 作出圆心到直线的垂线段,再证明这条 垂线段等于半径即可.
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
●
O D
d ┐ 相切
d
┐ 相离
1、直线和圆相交 2、直线和圆相切 3、直线和圆相离
d < r; d = r; d > r.
切线的判定定理 • 定理 经过半径的外端,并且垂直于这条半径的 直线是圆的切线. 如图 ∵OA是⊙O的半径, 且CD⊥OA, ∴ CD是⊙O的切线.
C
●
O
A
D
(1)定义
(2)圆心到直线的距离d=圆的半径r (3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
A
●
Aቤተ መጻሕፍቲ ባይዱ
●
O C B
┐
O
●
O C
B
C
B
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
切线长定理及其推论:
从圆外一点向圆所引的两条切线长 相等;并且这一点和圆心的连线平分 两条切线的夹角. P
A
1 2
∵PA,PB切⊙O于A,B
●
O
∴PA=PB ∠1=∠2
4.如图:AB是圆O的直径,BD是圆O的弦, BD到C,AC=AB,BD与CD的大小有什么关系?
为什么?
A
补充:
若∠B=70 °,则 40 ° ∠DOE=___.
E
O
C
D
B
5、如图,AB是圆O的直径,圆O过 AC的中点D,DE⊥BC于E. 证明:DE是圆O的切线.
C D E B
A
. O
七.圆与圆的位置关系
A P O B
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
A.①② B.②③ C.③④ D.①④
一、判断。 1、三角形的外心到三角形各边的距离相等; ( × ) 2、直角三角形的外心是斜边的中点. (√ ) 二、填空: 1、直角三角形的两条直角边分别是5cm和12cm,则它的外接 圆 6.5cm 2cm 半径 ,内切圆半径 ; 2:1 2、等边三角形外接圆半径与内切圆半径之比 . 三、选择题: C 下列命题正确的是( ) A、三角形外心到三边距离相等 B、三角形的内心不一定在三角形的内部 C、等边三角形的内心、外心重合 D、三角形一定有一个外切圆 四、一个三角形,它的周长为30cm,它的内切圆半径 30cm . 为2cm,则这个三角形的面积为______
求证:AB//CD
B D
A
o2
· · o1
T
C
下午2时51分
希望同学们认真听讲,积极思考, 反应迅速。
38
2.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C D A
O1
E O F
B
(1)说明D是AC的中点. (2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.