终稿-小学奥数教师版-4-1
(word完整版)小学数学奥数解题方法讲义40讲(四)(2021年整理精品文档)
(word完整版)小学数学奥数解题方法讲义40讲(四)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学数学奥数解题方法讲义40讲(四))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学数学奥数解题方法讲义40讲(四)的全部内容。
(一)(二)(三)(四)第三十一讲分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。
分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用.分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。
例1 一块正方体木块,体积是1331立方厘米.这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。
例2 一个数的平方等于324,求这个数.(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。
例3 相邻两个自然数的最小公倍数是462,求这两个数。
(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。
*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。
小学四年级奥数全册精品讲义
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
四年级 奥数 讲义 4 学子 教案库1、基础 教师
第二讲 加法原理本讲主要教学目标有①使学生掌握加法原理的基本内容;②掌握加法原理的运用以及与乘法原理的区别;③培养学生对分类讨论问题的能力,了解分类主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯.答案提示:分三类计数。
1×1的有:9个; 2×2的有:4个; 3×3的有:1个; 所以一共有9+4+1=14个。
专题精讲教学目标无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有m 1种不同做法,第二类方法中有m 2种不同做法 ,…,第k 类方法中有m k 种不同的做法,则完成这件事共有N= m 1 + m 2 +…+m k 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.想挑 战 吗?数一数,下图中有多少个正方形?Ⅰ、分类讨论问题中加法原理应用【例1】(★)小宝去给小霞买生日礼物,商店里卖东西中,有不同的玩具8种,不同的课外书书20本,不同的纪念品10本,那么,小宝买一种礼物可以有多少种不同的选法?分析:小宝买一种礼物有三类方法,根据加法原理小明借一本书有8+20+10=38种方法.[拓展]如果小宝要选两种不同类的礼物有多少种选法?分析:两种不同类的礼物可以有玩具+课外书、课外书+纪念品、纪念品+玩具三类组合,各类组合分别有8×20=160种、20×10=200种、8×10=80种,一共有440种选法.思考:小宝如果要选三种不同类的礼物有多少种选法,需要使用加法原理吗?【例2】(★★)小明、小华、小红3人去公园游玩,想排成一行拍照留念,但为了节约,相同的人员组合只拍一张(例如小明和小华两人不管谁站左边,只拍一张)。
小学数学奥数方法讲义40讲(全)
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)1966+1976+1986+1996+2006=1966×5+10×(1+2+3+4)=9830+100=99301966+1976+1986+1996+2006=1986×5=9930例7你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)*例8把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。
如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。
因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一个数大1、2、7、8、9,所以,这六个数中的第一个数是:=135二136三137四142五143六144(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分别是上横行与下横行三个数的中间数。
*例9有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以,8-1+3=10 即锯去一个顶点后还有10个顶点。
北师大版小学数学第一册全册教案4-1
北师大版小学数学第一册全册教案49+8 8+9 3+8 6+8 8+2三、实践应用,拓展延伸1、p103 独立完成思考,解决问题。
题2 组织学生交流图意和算法。
题3 先说一说计算方法,再进行计算,也可以先计算,再说一说方法。
2、组织学生到生活中寻找蕴含的数学问题。
种树问题游戏问题银行问题选一些挑战性问题大家进行讨论,并加以解决,使之深刻感受生活与数学的联系。
3、课外作业。
课外研究:7+ 6+ 5+有什么办法计算更快课后评析:练习四教学目标:能正确熟练地计算9和几、8和几、7和几、6和几的进位加法。
教学重点、难点:进位加法的思考过程。
教学准备:小黑板、投影、卡片。
教学过程:一、复习1、说说数的组成。
2、说说进位加法的计算方法。
(拆数凑+再加)二、练习第1题1、独立计算。
2、说说你是怎么算的?三、练习第2、3题1、让学生算出得。
2、观察算式,说说每一竖列的算式有什么规律。
3、交流规律。
四、练习第4题1、指导学生看懂题意,明确做题方法。
2、学生完成练习。
3、交流结果。
五、练习第5、7题1、学生完成第5题,评出夺得红旗者,给予表扬。
2、仔细观察算式,说说你发现了什么?3、完成第7题,评出做得又对又快者,给予奖励。
六、练习第6题1、指导学生弄懂题意。
2、学生完成后交流结果。
七、练习第8题1、让学生观察图,理解图的意思。
2、列式计算。
3、说说你是怎样列式的。
八、开放练习1、第9题,让学生填写,鼓励学生对后2题写出多种答案。
2、教学游戏。
(1)、拿出准备好的卡片,老师拿出一个得数,小朋友找出这个得数的算式。
(同桌合作)(2)、同桌间一生拿结果,一生找算工。
九、总结。
买铅笔教学目标:1、学会“十几减8、9”的退位减法。
2、初步培养学生思维的灵活性和独立性。
教学重点:学会“十几减8、9”的退位减法。
教学难点:探讨“十几减8、9”的退位减法的计算方法。
教学准备:铅笔、投影。
教学过程:一、模拟表演,提出问题请表演的小朋友上台表演,师口述内容,生表演,一只大兔子开了一家文具店,小老鼠和袋鼠也在文具店里,这时来了一只小兔,它对大兔说:“我买9支铅笔”。
小学奥数四年级1-4讲
例5:明明做两位数乘两位数的题时,把乘数的个位数4错当成1,乘得的结果是525,实际应为600,这两个两位数各是多少?
练习:
1.小明在计算除法时,把除数540末尾的“0”漏写了,结果得到商是60,正确的商应该是多少?
(1)3、8、18、33、53、78、()。
(2)0、1、3、8、21、()。
(3)
例5:根据前面两个圈里三个数的关系,想一想,在第三个圈里的()应填什么数?
5 4 9
15 12 12 9(27)(24)20 18 ຫໍສະໝຸດ 510 20 8 16()()
12 8 20
10 20 8 16()()
9 12 15
学习应用题的关键在于掌握数量关系,了解应用题的条件和问题之间的联系,找出解答方法
例1:一桶水,连桶重250千克,用去一半水后,连桶还有145千克,问桶里原有多少千克水?水桶重多少千克?
例2:百货商店运来300双球鞋,分别装在2个木箱和6个纸箱里,如果2个纸箱同1个木箱装的球鞋一样多,每个木箱和每个纸箱各装多少双球鞋?
第四讲错中求解
例1:小虎在计算除法时,把除数65写成56,结果得到商是13,还余52,正确的商是多少?
例2:小明在计算有余数的除法时,把被除数137错写成173.这样商比原来多了3,而余数正好相同。请你算出这道题的除数和余数各是多少?
例3:甲乙两学生同算两数之和,甲得685,计算正确;乙得460,计算错误,乙之所以算错的原因是将其中一个加数末尾的0漏掉了。两个加数各是多少?
例1: 9 13 7=100
14 2 5=
把“ ”分别填在适当的圆圈中(运算符号只能用一次)并在方框中填上适当的整数,可以使上面的两个等式成立,这时,方框中的数是几?
小学四年级奥数教程——第一讲整理版
= 21×20÷2 = 210
⑵2+4+6+8+ ?+ 48+50 =(2+50) ×25÷2
= 52×25÷2 = 650 注意:利用等差数列求和公式之前 ,一定要判断题目中的各个 加数是否构成等差数列。
练一练:
⑴计算1+2+3+4+5 + ?+ 49+50的和 解: 原式 =(1+50) ×50÷2
= 51×50÷2 = 1275 ⑵计算1+3+5+7+ ?+ 97+99的和 解: 原式 =(1+99) ×50÷2 = 100×50÷2 = 2500 ⑶第一行放了1颗糖 ,第二行放了2颗糖 ,第三行放了3颗糖 ,依 此类推 ,第四十行放了40颗糖 ,第一~四十行一共放了多少颗 糖? 1+2+3+4+5 + ?+ 40 =( 1+40) ×40÷2 = 41×40÷2 = 820(颗)
= 1006 解法二:(2+4+6+ ?+ 2012)-( 1+3+5+ ?+ 2011)
=(2-1) +(4 -3) + ? +( 2012-2011)
= 1×1006 = 1006
练一练:
⑴ (7+9+ 11+ ?+ 25)-(5+7+9+?+ 23)
解法一 :(25-7) ÷2+ 1
= 18÷2+ 1 =9+ 1
= 90÷6+ 1
= 15+ 1 = 16 总和 =( 1+91) ×16÷2 = 92×16÷2
= 736
练一练:
⑵在1—400中 ,所有不是9的倍数的数的和是多少?
分析: 1—400中 ,所有“不是9的倍数的数的和 ” ,可以先求出 1—400各数的和 ,再去掉所有9的倍数的数的和 ,就能得到所 要求的结果 。而在所有9的倍数的数中 ,最小的是9,最大的 是396,相邻两数都相差9 。即这些数依次是9 、18 、27、?396。 显然 ,它们成等差数列 。项数是( 396-9) ÷9+ 1 =44 ( 1+2+3+?+ 400)-(9+18+27+?+ 396)
四年级奥数讲义教案库第1讲竞赛班教师版
第一讲速算与巧算1. 掌握常用的运算律并能熟练运用;2. 掌握周期性数字的特征;3. 掌握从简单情况找规律的思想方法。
在计算的过程中,运算律的应用是最常用的技巧。
经常用到的运算律有:⑴加法交换律:a b b a +=+⑵加法结合律:()()a b c a b c ++=++⑶乘法交换律:a b b a ⨯=⨯⑷乘法结合律:()()a b c a b c ⨯⨯=⨯⨯⑸乘法分配律:()a b c a b a c ⨯+=⨯+⨯(反过来就是提取公因数) ⑹减法的性质:()a b c a b c --=-+ ⑺除法的性质:()a b c a b c ÷⨯=÷÷ ()a b c a c b c +÷=÷+÷ ()a b c a c b c -÷=÷-÷教学目标巧用运算律 经典精讲去括号对运算符号的影响:⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算。
此外,下面的三个结论也是很有用的:和不变性质:如果一个加数增加一个数,另一个加数减少同一个数,它们的和不变;积不变性质:如果一个因数扩大几倍,另一个因数缩小相同的倍数,它们的积不变;商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。
【例1】(2007年“走进美妙的数学花园”初赛)计算:11353715⨯-⨯【分析】根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,进行适当变换,再提取公因数,进而凑整求和。
完整word版)四年级奥数教材
完整word版)四年级奥数教材第一课时:等量代换例1:在群宴上,XXX让XXX给大家倒酒。
XXX把720毫升酒倒入6个小杯和1个大杯,正好倒满。
如果大杯的容量是小杯的3倍,那么小杯和大杯各能装多少毫升酒呢?思路点拨:一个大杯的容量可以替换成3个小杯。
因此,把720毫升酒倒入6个小杯和1个大杯,可以替换成把720毫升酒倒入(18个小杯)个小杯。
尝试解答:每个小杯可以装多少毫升酒呢?720 ÷ 18 = 40所以,每个小杯可以装40毫升酒,而大杯可以装120毫升酒。
例2:XXX在宴会上为每个文官奖励4只羊,每个武官奖励2头猪。
如果6只同样的小猪和18只同样的小羊总共价值648文钱,且2只小猪和3只小羊的价钱相等。
那么每只小猪和每只小羊各值多少文钱呢?思路点拨:已知2只小猪和3只小羊的价钱相等,可以替换成6只小猪的价钱等于9只小羊的价钱。
尝试解答:设每只小猪的价钱为x,每只小羊的价钱为y。
则有以下两个方程:6x = 9y6x + 18y = 648解方程得到:x = 36,y = 24因此,每只小猪值36文钱,每只小羊值24文钱。
例3:宴会结束后,XXX带XXX到一个藏宝室,让他任选一样宝剑或宝刀。
XXX问XXX:“3把同样的宝刀和20把同样的宝剑,一共价值134两银子;同样的3把宝刀和16把宝剑,一共价值118两银子。
宝刀和宝剑的单价各是多少两银子?”思路点拨:把两组条件进行比较,可以发现,第一组比第二组多两银子,是因为第一组比第二组多了把宝剑的价钱。
尝试解答:设宝刀的单价为x,宝剑的单价为y。
则有以下两个方程:3x + 20y = 1343x + 16y = 118解方程得到:x = 10,y = 4因此,宝刀的单价为10两银子,宝剑的单价为4两银子。
大胆闯关:1、XXX把40个同样质量的苹果和5个同样质量的西瓜一起称了一下,一共重12千克。
每个西瓜的质量是每个苹果质量的8倍。
那么每个苹果和每个西瓜各重多少克呢?设每个苹果的质量为x克,每个西瓜的质量为8x克。
小四奥数(教师用)
数学SHU XUE适用于小学四年级奥数戴氏教育集团武胜总校编制目录第1讲找规律(一) (1)第2讲找规律(二) (3)第3讲简单推理 (6)第4讲应用题(一) (9)第5讲算式谜(一) (12)第6讲算式谜(二) (15)第7讲最优化问题 (18)第8讲巧妙求和(一) (21)第9讲变化规律(一) (24)第10讲变化规律 (27)第11讲错中求解 (30)第12讲简单列举 (33)第13讲和倍问题 (36)第14讲植树问题 (39)第15讲图形问题 (42)第16讲巧妙求和 (46)第17讲数数图形(一) (49)第18讲数数图形(二) (52)第19讲应用题 (55)第20讲速算与巧算 (58)第21周速算与巧算(二) (61)第22周平均数问题 (63)第23周定义新运算 (66)第24周差倍问题 (68)第25周和差问题 (71)第26周巧算年龄 (74)第27周较复杂的和差倍问题 (78)第28周周期问题 (81)第29周行程问题(一) (84)第30周用假设法解题 (87)第31周还原问题 (90)第32周逻辑推理 (93)第33周速算与巧算(三) (97)第34周行程问题(二) (99)第35周容斥原理 (103)第36周二进制 (106)第37周应用题(三) (109)第38周应用题(四) (112)第39周盈亏问题 (115)第40周数学开放题 (118)师第1讲找规律(一)考点归纳观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
典型例题【例1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
【word直接打印】小学奥数-四年级-奥数题及答案一图文百度文库
【word直接打印】小学奥数-四年级-奥数题及答案一图文百度文库一、拓展提优试题1.是三位数,若a是奇数,且是3的倍数,则最小是.2.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.3.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.6.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.7.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.8.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…9.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?10.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.11.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.12.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此13.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…14.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.15.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.【参考答案】一、拓展提优试题1.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.2.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.3.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√第一句第二句第三句以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.6.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.7.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.8.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.9.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.10.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.11.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.12.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.13.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.14.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.15.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.。
奥数赠品小学数学奥数讲义完整版
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
小学奥数教师版(合辑)5-1-4-1 幻方(一).教师版
1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)知识点拨教学目标5-1-4-1.幻方(一)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
(.1.1-私密整理)小学奥数知识点(大纲视图版)
小学奥数知识点梳理概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则形如:abc =100a+10b +c① 如果c|a 、c |b ,那么c|(a±b )。
② 如果bc|a ,那么b |a ,c|a 。
小学奥数课本四年级上册04-01(上)
第一讲速算与巧算(三)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7 计算 9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法1:1999+999×999=1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999=1999+999×(1000-1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.习题一1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算 3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?第二讲速算与巧算(四)例1 比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2 不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250— 3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250— 5)=240×250+5×5.恒等变形以后的各式有相同的部分 240 × 250,又有不同的部分 1×9, 2×8,3×7, 4 ×6, 5×5,由此很容易看出 245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3 求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为 320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x—1,x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5 将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.习题二1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?第三讲定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1设a、b都表示数,规定a△b=3×a—2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2= 3×3-2×2=9-4= 52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3解出x=2.③这个运算有交换律和结合律吗?例5 x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.(1△2)*3=a*3,按“*”的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出 k的值.解:因为1*2=m×1+n×2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4=8△4=k×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k×9×4=36k所以m=l,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.习题三计算:① 10*6 ② 7*(2*1).3.有一个数学运算符号°,使下列算式成立:5.对于任意的整数x、y,定义新运算“△”,如果1△2=2,则2△9=?7.“*”表示一种运算符号,它的含义是:9.规定a△b=a+(a+1)+(a+2)+…+(a+b-1),(a、b均为自然数,b>a)如果x△10=65,那么x=?10.我们规定:符号。
完整word版,四年级奥数教材
目录◆第一讲找规律(一)◆第二讲找规律(二)◆第三讲长方形和正方形(一)◆第四讲长方形和正方形(二)◆第五讲算式谜(一)◆第六讲算式谜(二)◆第七讲植树问题(一)◆第八讲植树问题(二)◆能力测试(一)◆第九讲和差问题(一)◆第十讲和倍问题(一)◆第十一讲和倍问题(二)◆第十二讲差倍问题◆第十三讲年龄问题(一)◆第十四讲年龄问题(二)◆第十五讲还原问题(一)◆第十六讲还原问题(二)◆能力测试(二)◆第17讲周期问题(一)◆第18讲周期问题(二)◆第19讲假设问题(一)◆第20讲假设问题(二)◆第21讲计数问题(一)◆第22讲计数问题(二)◆第23讲容斥问题(一)◆第24讲容斥问题(二)◆能力测试(一)◆第25讲行程问题(一)◆第26讲行程问题(二)◆第27讲平均数问题◆第28讲推理问题(一)◆第29讲推理问题(二)◆第30讲巧算(一)◆第31讲巧算(二)◆第32讲巧算(二)◆第33讲巧算(三)◆第34讲等量代换◆第35讲拼拼算算◆能力测试(二)第一讲找规律(一)事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。
在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律,求得相应的数。
例题与方法例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。
(1)1,5,9,13,( ),21,25。
(2)3,6,12,24,( ),96,192。
(3)1,4,9,16,25,( ),49,64,81。
(4)2,3,5,8,12,17,( ),30,38。
(5)21,4,16,4,11,4,( ),( )。
(6)1,6,5,10,9,14,13,( ),( )。
例2.根据下表中数的排列规律,在空格里填上适当的数。
(1)(2)例3.下面每个括号里两个数按一定规律组合,在里填上适当的数。
小四奥数(教师用).doc
教学目标训练抽象与多复杂结合问题的思维教学难重点__________________________________________________________________________________________________授课内容等差数列解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例题1小王看一木书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他何天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。
要求这本书共有务少页也就是求出这列数的和。
解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78) X304-2=1470(页)答:这本书共有1470页。
引申1、文丽学英语单词,第一天学会了3个,以后每天都比而一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数二(21-3)+2+1=10。
所以,文丽在这些天中共学会了(3+21) X 104-2=120(个)答:文丽在这些天中共学会了120个英语单词。
2、李师傅做一批零件,第一天做了25个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?答:(25+63) X204-2=880 (个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。
例题2建筑工.地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交: 两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边. 边边顶点直角锐角钝角顶角顶角边边角角角顶角边知识点拨(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等. 直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角腰腰下底上底(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.半径直径半圆直径弧半径半径高宽长底面底面底面(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例 1】请看下图,共有个圆圈。
【考点】几何图形的认识【难度】1星【题型】填空【解析】此题中,各圆大小各异,不如按照从左到右的顺序来数.共有25个圆圈.【答案】25个【例 2】下图中哪些是三角形?哪些是长方形?哪些是平行四边形?哪些是菱形?【考点】几何图形的认识【难度】3星【题型】解答【解析】三角形有2个:4和7;长方形有2个:1和2(正方形也属于长方形);平行四边形有4个:1、2、3、6(正方形、长方形、菱形也属于长方形);菱形有2个:1和6(正方形也属于菱形).【答案】三角形有2个:4和7;长方形有2个:1和2平行四边形有4个:1、2、3、6菱形有2个:1和6【例 3】数一数,图中共有多少个角?【考点】几何图形的认识【难度】2星【题型】解答【解析】锐角、直角各4个,共8个角.【答案】8个【例 4】长方形有四个角,剪掉一个角,还剩几个角?【考点】几何图形的认识【难度】2星【题型】解答【解析】共有三种情况,如下图,分别剩下5、4、3个角.【答案】3或4或5个有三种情况【例 5】如下图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,共有多少个小洞孔?【考点】几何图形的认识【难度】2星【题型】解答【解析】对已经过五次操作且剪去左下角的纸片做一次反操作,得到的纸片有1个洞孔;再进行一次反操作,得到的纸片上有1×4=4个洞孔.按照这个方法继续做反操作,我们发现规律:从第二次开始,每经过一次反操作,得到的纸片上的洞孔数是反操作前洞孔数的4倍.因此,在进行了五次反操作以后,纸片上的洞孔数应为1×4×4×44=256(个).【答案】256模块二、几何图形的简单组合【例 6】一个等腰三角形的两条边的长度分别是3和4,那么这个三角形的周长可能是多少?另外一个等腰三角形的两条边的长度分别是4和9,这个三角形的周长可能是多少?【考点】几何图形的简单组合【难度】3星【题型】解答【解析】第一个三角形:如果腰为3,则周长为433=10++.++;如果腰为4,则周长为443=11第二个三角形:如果腰为4,此时44+<9,两边之和小于第三边,无法构成三角形,假设不成立,舍;如果腰为9,则周长为994=22++.【答案】(1)10、11;(2)22【巩固】周长是12,各边长都是整数的等腰三角形有几种?长方形有几种?【考点】几何图形的简单组合【难度】3星【题型】解答【解析】根据三角形的两边之和大于第三边的得到两腰的和要大于6,并且为偶数,所以两腰的和可以为8、+++共有3种.÷,因为6=15=24=3310,有2种情况;长方形的长加宽为122=6【答案】2、3【巩固】用7根长度都是1寸的火柴棍拼成了一个三角形.请问:这个三角形的三条边长分别是多少?【考点】几何图形的简单组合【难度】3星【题型】解答【解析】通过尝试得到:3寸、3寸、1寸或3寸、2寸、2寸.【答案】3、3、1或3、2、2【例 7】 有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【考点】几何图形的简单组合 【难度】3星 【题型】解答 【解析】 将边长是3的边重合,是一个平行四边形,同理可以将边长是4和5的重合,所以共有3种. 【答案】3种【巩固】 用两个完全相同的、各边长分别为5、12、13的直角三角形纸片,可以拼成多少种不同的平行四边形?【考点】几何图形的简单组合 【难度】3星 【题型】解答 【解析】 将边长是5的边重合,是一个平行四边形,同理可以将边长是12和13的重合,分别得到一个平行四边形和一个长方形,因为长方形是特殊的平行四边形,所以共有3种 .【答案】3种【例 8】 用12个边长为1的小正方形拼一个大长方形,这个长方形的周长最短是多少? 【考点】几何图形的简单组合 【难度】3星 【题型】解答 【解析】 拼成的图形长和宽最接近时,新的图形周长最短.即新图形边长为3和4时,周长最短,为()342=14+⨯ 【答案】14【例 9】 把一个正方形分割为三种面积不同的小正方形,并且小正方形的个数是8.如何分? 【考点】几何图形的简单组合 【难度】4星 【题型】解答 【解析】 如下图所示.【答案】答案如图【例 10】 一个正方体的8个顶角被截去后,得到一个新的几何体.这个新的几何体有几个面?几个顶点?几条棱?【考点】几何图形的简单组合 【难度】3星 【题型】解答 【解析】 这个正方体的8个顶点被截去后,多了8个面,因此共有6+8=14个面;多了(3-1)×8=16个点,因此共有8+16=24个点;多了3×8条棱,因此共有12+3×8=36条棱.【答案】14个面,24个顶点、36条棱模块三、基本图形的周长及面积计算【例 11】 一个正方形的面积和它的周长的数值相等,那么这个正方形的边长是__________ 【考点】基本图形的周长及面积计算 【难度】1星 【题型】填空 【关键词】希望杯,4年级,初赛, 16题 【解析】 正方形的面积是边长×边长,而正方形的周长是边长×4,由它们相等知边长等于4。
【答案】4【例 12】 正方形的一条对角线长13厘米,这个正方形的面积是 平方厘米。
【考点】基本图形的周长及面积计算 【难度】2星 【题型】填空 【关键词】希望杯,五年级,初赛,第9题,4分【解析】 13×13÷2=84.5 【答案】84.5【例 13】 用20厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。
其中,面积最小的,长______厘米,宽______ 厘米;面积最大的长______ 厘米,宽______ 厘米。
【考点】基本图形的周长及面积计算 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛, 18题 【解析】 长+宽=10厘米,长×宽=面积,和一定,差小积大,所以长5厘米、宽5厘米时,面积最大为5×5=25平方厘米;长为9厘米,宽为1厘米时,面积最小为9×1=9平方厘米。
【答案】长为9厘米,宽为1厘米时,面积最小; 所以长5厘米、宽5厘米时,面积最大【例 14】 在长方形ABCD 中,5=BE ,4=EC 4=CF 1=FD ,那么△AEF 的面积是________.【考点】基本图形的周长及面积计算 【难度】3星 【题型】填空 【关键词】迎春杯,五年级,初试,3题 【解析】 易知BC=9,CD=5,长方形ABCD 的面积为9×5=45,而三角形ABE的面积为:5×5÷2=12.5,三角形CEF的面积为:4×4÷2=8;三角形ADF的面积为:9×1÷2=4.5.,所以三角形AEF 的面积是()()544112.5 4.58=20+⨯+--- 【答案】20【例 15】 右图中平行四边形的面积是21080m ,则平行四边形的周长为__________m .【考点】基本图形的周长及面积计算 【难度】2星 【题型】填空 【关键词】迎春杯,五年级,初赛,2题 【解析】 平行四边形的两条边长分别为10801860()m ÷=和108022.548()m ÷=,周长为(6048)2216()m +⨯=.【答案】216【例 16】 如图,平行四边形ABCD 被分成三角形ADF 和梯形ABCF 两部分,它们的面积相差14平方厘米,已知AE =7厘米,那么FC =___________厘米。