2011年中考数学实数专题总复习1

合集下载

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

中考数学复习第1课时《实数及其运算》说课稿

中考数学复习第1课时《实数及其运算》说课稿

中考数学复习第1课时《实数及其运算》说课稿一. 教材分析《实数及其运算》是中考数学复习的第1课时,主要内容包括实数的定义、分类、性质以及实数的运算规则。

这部分内容是初中数学的基础,对于学生后续的学习具有重要意义。

在教材中,实数分为有理数和无理数两大类,有理数包括整数和分数,无理数主要包括π和开方开不尽的数。

实数的运算包括加减乘除和乘方等,运算规则遵循数学的基本规律。

二. 学情分析学生在学习《实数及其运算》时,已经掌握了有理数的运算规则,对无理数的概念和性质有一定的了解。

但部分学生对无理数的理解不够深入,容易与有理数混淆。

此外,学生在实数的运算方面容易出错,如不熟悉运算顺序、忽视运算律等。

因此,在教学过程中,需要帮助学生巩固实数的定义和性质,提高运算能力,培养学生严谨的数学思维。

三. 说教学目标1.知识与技能:使学生掌握实数的定义、分类和性质,了解实数的运算规则,提高实数运算能力。

2.过程与方法:通过自主学习、合作探讨和教师引导,培养学生独立解决问题的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气,使学生认识到数学在生活中的重要性。

四. 说教学重难点1.教学重点:实数的定义、分类、性质和运算规则。

2.教学难点:无理数的概念和性质,实数的运算顺序和运算律的应用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨和教师引导相结合的方法,充分发挥学生的主体作用,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、黑板和教学道具等,直观展示实数及其运算的过程,帮助学生形象地理解实数的概念和性质。

六. 说教学过程1.导入新课:通过复习有理数的运算规则,引出实数的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究实数的定义、分类和性质,培养学生独立解决问题的能力。

3.合作探讨:分组讨论实数的运算规则,让学生在合作中思考,提高学生的团队协作能力。

中考数学总复习1.实数的概念

中考数学总复习1.实数的概念

3 ⎩ ⎩1.实数的概念一、知识要点1. 实数的分类(两种分类方式——①按定义分类;②按性质分类):⎧ ⎧ ⎧正整数 ⎫ ⎧ ⎧ ⎧正整数⎪ ⎪ ⎨零⎪ ⎪⎪ ⎪正有理数⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪正实数⎨ ⎩正分数 负整数 小数或 小数; 正无理数 ⎪ ⎨ ⎩ ⎬⎪ ⎩ (1) )实数⎨ ⎪⎪ ⎨ ⎪ ⎪ ⎪ 实数⎨零 ⎪ ⎧⎪ ⎪ ⎩ ⎩ ⎪⎭ ⎪负实数⎪负有理数⎨ ⎪  小数. ⎪⎩ ⎨ ⎬ ⎩⎪ ⎩ ⎭ ⎪⎩⎪负无理数 ()2 数轴上的点与 一一对应;在平面直角坐标系中,平面上的点与 一一对应. (3) 常见无理数的 4 种形式:①字母型:如π和 ;②构造型:如 0.101001…和 ;③根式型:如 和 ;④三角函数型:如sin150和 等.2. 数轴:数轴的三要素是、 和 ......... 在数轴上右边的数总是 左边的数;3. 相反数:实数 a 的相反数为. 若a ,b 互为相反数,则a + b = ............ 在数轴上表示互为相反数的两个点(原点除外)分别在两侧,且与原点的 .................................4. 倒数:非零实数 a 的倒数为 . 若a ,b 互为倒数,则ab = ................ 5. 绝对值: ⑴性质:正数的绝对值是 ,负数的绝对值是 ,0 的绝对值是 .... 即a = ⎧⎪ ⎨ (a > 0)(a = 0)⑵几何意义:一个数的绝对值就是数轴上表示这个数的点 ................................... ⑶任何数的绝对值都是,即 a0 ;若a ,b 互为相反数,则 a b ;⎪ (a < 0) ⎧3 a 3 ① ( ) 若 a = b ,则a b 或 a + b = .6. 科学计数法:把一个数表示成 的形式,其中1≤ a <10 的数,n 是整数. 其方法是:①确定 a , a 是只有一位整数的数;②确定 n ,当原数的绝对值≥10 时,n 为正整数,n 等于原数中整数部分的数位减去;当原数的绝对值<1 时,n 为负整数,如 0.00305=,-0.000236=.7. 若 x 2=a ,则x 叫作 a 的 ,记作,a 叫作 x 的 ........... 任何正数 a 都有个平方根,它们互为,其中正的平方根 叫,没有平方根,0 的算术平方根为 ........8.若 x 3=a ,则 x 叫作 a 的 ,记作 ;a 叫作 x 的.任何实数a 都有立方根,记为 .............9. 非负数: a 0;a 20; a 0 ;性质是:若几个非负数的和等于 0,则这几个非负数同时为 ...........10.绝对值是它本身的数是;相反数是它本身的数是 ;倒数是它本身的数是 ; 平方是它本身的数是 ;立方是它本身的数是 ;平方根是它本身的数是;算术平方根是它本身的数是;立方根是它本身的数是 .............................二、例题分析【例 1】在 2 , ②3.14, ③π, ④( 2- 3)0 , ⑤ 1 -2 , ⑥0.010⋅⋅⋅, ⑦0.10110111⋅⋅⋅, ⑧tan 450,2 21⑨ 中 , 是 无 理 数 的 是 ( 只 写 序 号 ).π【例 2】(1)在数轴上表示-2 的点,离原点的距离等于 ....................(2)实数 a ,b 在数轴上的对应点如图所示,则下列不等式中错.误.的是( ).A. ab > 0B. a + b < 0C. a < 1bD.a -b < 0 ab(3) 在数轴上的点 A 、B 位置如图所示,则线段 AB 的长度为 ................. AB-5 0 2(4)实数 x 、y 在数轴上的位置如图所示,则 x ,y ,0 的大小是 ...............................x y()5 如图所示,数轴上 A ,B 两点表示的数分别为-1和 ,点 B 关于点 A 的对称点为 C ,则点 C 所表示的数为 ................C A 0 B【例 3】(1)如果规定向东走 80m 记为 80m ,那么向西走 60m 记为.(2) -2 的相反数是 .............(3)对于式子“ -(-8) ”,有下列理解:①可表示-8 的相反数;②可表示-1与-8 的乘积;③可表示-8 的绝对值;④运算结果等于 8.其中理解正确的是 (只写序号). 【例 4】(1) - 1 的倒数为 ;2的倒数为;(2)若 x = (-2) ⨯ 3 ,则x 的倒数是 .................【例 5】(1)-5 的绝对值是 ;- 的绝对值是; 3 -27 的绝对值是 .....................(2)式子“ | 6 - 3 |”在数轴上的几何意义是:“数轴上表示 6 的点与表示 3 的点之间的距离”.类似地,3 2b +1 9 9 b -3 式 子 “| a + 5 |” 在 数 轴 上 的 几 何 意 义 是 “ ”. (3)①如果 a 与 1 互为相反数,则| a + 2 | =. ②若 a = 3 ,则a 的值是 .................(4) 若 m - n = n - m , 且 m = 4 , n = 3 , 则 (m + n )2 = . (5)若 a = 5,b = -2,且ab > 0,则a + b = .(6)如果实数 a 在数轴上的位置如图所示,那么|1- a | + a 2 =----------------- 1 0 a 1【例 6】(1)16 的平方根是 ,16 的算术平方根是 , 16 的平方根是 ;16 的算术平方根 ;-8 的立方根是 .....................(2) 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是 .........................(3)下列运算正确的是( ). A.= ±3 B. - 3 = -3 C. - = -3 D. - 32 = 9(4)在实数﹣2,0,2,3 中,最小的实数是( ).A.-2B.0C.2D.3 (5)若 ab ≠ 0 ,则a +b 的取值不可能是().bA.0B.1C.2D.-2【例 7】(1)目前,我国人口总数大约是 13.7 亿,用科学记数法表示为 人.(2) 港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示是 元,精确到万位是 .................(3) “鸟巢”的建筑面积达 25.8 万平方米,用科学记数法表示约为 平方米.(4) 太阳内部高温核聚变反应释放的“辐射能”功率为3.8⨯1023千瓦,而到达地球的仅占 20 亿分之一,到达地球的“辐射能”功率为 千瓦(用科学计数法表示) (5)已知空气的单位体积质量为1.24⨯10-3g /cm 3,1.24 ⨯10-3用小数表示为 g /cm 3.(6) “黄金分割比”是= 0.61803398…,将“黄金分割比”精确到 0.001 的近似数是.2(7) 下列说法正确的是( )A.近似数 3.9×10 3 精确到十分位B.按科学计数法表示的数 8.04×10 5 其原数是 80400C.把数 50430 精确到千位是 5.0×10 4D.用四舍五入得到的近似数 8.1780 精确到 0.001 【例 8】(1)若 a - 2 + + (c - 4)2= 0 则 a - b + c = .(2) 等腰三角形一边长为 a ,一边长b ,且(2a -b )2+ 9 - a 2 = 0 ,则它的周长为 .....................(3) 已知 a + 3 += 0 ,则实数a + b 的相反数 .........................5 -1 aa +b(- 2)2873 3 3 3(4) a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则2m2 +1+ 4m - 3cd = ......................(5) = 0,则a +b = ......................三、课后作业1.在22,π,0,,sin60°,(cos60°)-1,2-, 2.313131…,0.010010001…,3- 64 中,无7 2理数有个 .2.下列说法不正确的是( ).A.没有最大的有理数B.没有最小的有理数C.有最大的负数D.有绝对值最小的有理数8⨯1+( 2)0 的结果为( ).3.计算2A.B.C.3 D.54.下列各组数中是互为相反数的一组是( ).A.- 2与B. - 2与3- 8C. - 2与-1D. - 2 与225.如图A,B,C 三点所表示的数分别为a,b,c ,根据图中各点位置,下列各式正确的是( ).A. (a -1)(b -1) > 0B. (b -1)(c -1) >0C. (a +1)(b +1) < 0D. (b +1)(c +1) < 0C O A B-1 0 a 16.数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是这种说明问题的方式体现的数学思想方法叫做( ).A.代人法 B.换元法 C.数形结合D.分类讨论7.如果将三个数“ - 3,7,”表示在数轴上,其中被如图所示的墨迹覆盖的数是.8.如右图所示的数轴上,点B 与点C 关于点A 对称,A、B 两点 B A C对应的实数是3 和-1,则点C 所对应的实数是( ).-1 0 3A. 1+B. 2+C. 2 -1D. 2 +19.一个正方形的面积是15,估计它的边长大小在( ).A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A.精确到十分位B.精确到个位C.精确到百位D.精确到千位11.某市 2014 年实现生产总值(GDP)1545.35 亿元,用科学记数法表示是元.112 ”,(a - 3b)2 +a2 - 4a + 212.近似数 13.7 万是精确到位.3 + 1 b - c 2 12 3 3 64 x 2 a -1 13. -5 的倒数是 , -3 的绝对值是,绝对值大于 1 小于 4 的整数的和是 .................14. 已知一个正数的平方根是3x - 2 和5x + 6 ,则这个数是 ,若 a > 0 且a x = 2 ,a y = 3 ,则a x - y的值为 ................. 的 立 方 根 是 ;若 = 5, 则 x = ; 若 3 15. 已知一个正数的平方根是3x - 2 和 x + 6 ,则这个数是 ..................... 16. 已知, + a + b +1 = 0 ,则 a b = . 17. 把 7 的平方根和立方根按从小到大的顺序排列为.1 -1= 5,则x = ...........18.计算: ( ) 3- (3 - 3)0 - 4 sin 60︒+ 12 =.19.已知 a = 3 ,且(4 tan 45︒ - b )2+ = 0 ,以a ,b ,c 为边组成的三角形面积等于 .................20.计算: 2-1﹣3tan30° +(2 + 2)0 + .参考答案:三、例题分析 【例 1】①③⑦⑨;【例 2;(1) 2; (2)C ; (3)7; (4)0<x <y ; (5) -2- ; 【例 3】 (1)-60m ; (2) -2; (3)①②③④;x 3336【例 5】(1) 5, - 2 ,3;;(2)数轴上表示 a 的点与数轴上表示-5 的点之间的距离; (3) ①1; ② ±3 ; (4) 1 或 49; (5)-7; (6)1;【例 6】(1) ±4,4,±2,2,-2; (2)a 2+1; (3)C ;(4) A ;(5) B ;【例 7】(1) 1.37×109;(2) 7.26×1010,7260000 万元;(3) 2.581.37×105;B ;(4) 1.9×1014;(5) 0.00124; (6) 0.618; (7) C ;【例 8】(1) 3; (2)15; (3)4; (4) 5 或-11; 8(5) ;3四、课后作业 1.5;2. C ;3. C ;【例 4】(1)-2, 3 ,(2) - 1;7 3 7 7. 7 ;4. A ;5. D ;6. C ;8. D ; 9. B ; 10. C ;11.1.54535×1011; 12.千; 13.- 1,3,0;5 49214., , 3 4 , ±5 ,5;4 315.25; 16.1;17. - < < 7 ; 18.2;19.6;20.3 + 2 3 ;2。

2011年最新中考数学知识点总结[1]

2011年最新中考数学知识点总结[1]

2011年中考数学知识点总结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

初三中考数学总复习资料(备考大全)

初三中考数学总复习资料(备考大全)

2011年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初三数学总复习——实数及其运算 (1)

初三数学总复习——实数及其运算 (1)
3.下列各式,运算结果为负数的是( D A.-(-2)-(-3) B.(-2)×(-3) - - C.(-2) 2 D.(- 3) 3 )
D )
4.-23×(-2)2+2 的结果是( B ) A.18 B.-30 C.0
D.34
5.下列计算正确的是(
B
)
3 A. -27 =3 B.(π-3.14)0= 1 1- C.( ) 1=-2 D. 16 =± 4 2

注:常用倒数实例
n 1 n n 1 n 1
(α为锐角)
(n≥0)
tanα·tan(90°-α)=1
2.实数中的几个重要概念:
④.绝对值
去绝对值符号 (即化简绝对 几何意义:数轴上表示数 a的点到原点的距离叫做 值 )的方法 :首先确定绝对值符号 数a的绝对值 ,用 ︱a︱表示 代数意义 :一个正数的绝对值是它本身 ;一个负数 里代数式值的正负 ,然后按绝对 的绝对值等于它的相反数 ;0的绝对值是 值的代数意义进行化简 .0
. . ...
1 2
2
0
3 4 5


例题讲解
, 2 , 3 将 sin 30 到大的顺序排列,正确的结果是

0 2


0

3
这三个实数按从小 ( C )
3
2 3 B. sin 30 3 2 C. 3 2 sin 30 0 3 0 2 D. 2 3 sin 30
3 1)数a的绝对值记作 ︱a ︱;
若a>0,则︱a︱= a ; 2) 若 a<– 0,则 ︱a ︱ = -a1 ; -3 2 –1 0 若a =0,则︱a︱= 0 ;

中考数学总复习第1课 实数

中考数学总复习第1课 实数
2.在做实数运算题时,要先理清运算顺序再计算,在计 算的过程中要注意各项符号的处理.
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.

【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )

2011年中考数学试题精选汇编《实数》

2011年中考数学试题精选汇编《实数》
A.-4 B.-1 C.- D.
【答案】B
7.(2011山东济宁,1,3分)计算―1―2的结果是
A.-1 B.1 C.-3 D.3
【答案】C
8.(2011四川广安,2,3分)下列运算正确的是()
A. B.
C. D. [来源:学科网]
【答案】C
9.(2011重庆江津,1,4分)2-3的值等于( )
A.1 B.-5 C.5 D.-1·
2011年中考数学试题精选汇编
《实数》
一、选择题
1.(2011福建泉州,1,3分)如在实数0,- , ,|-2|中,最小的是().
A. B.- C.0D.|-2|
【答案】B
2.(2011广东广州市,1,3分)四个数-5,-0.1, , 中为无理数的是().
A.-5B.-0.1C. D.
【答案】D
3.(2011山东滨州,1, 3分)在实数π、 、 、sin30°,无理数的个数为( )
16.(2011广东汕头,11,6分)计算:
【解】原式=1+ -4
=0
17.(2011浙江省嘉兴,17,8分)(1)计算: .
【答案】原式=4+1-3=2
18.(2011浙江丽水,17,6分)计算:|-1|- -(5-π)0+4cos45°.
【解】原式=1- ×2 -1+4× =1- -1+2 = .
A.3B.30C.1D.0
【答案】C
26.(2011湖南湘潭市,1,3分)下列等式成立是
A. B. C. ÷ D.
【答案】A
27.(2011台湾全区,2)计算 之值为何?
A.9 B.27 C.279 D.407
【答案】C
28.(2011台湾全区,12)12.判断312是96的几倍?

2011年中考数学试题汇编---实数

2011年中考数学试题汇编---实数

选择题(每小题x 分,共y 分)(2011?绥化市)12. 下列各式:①01a = ②235a a a ⋅= ③2124-=- ④4(35)(2)8(1)0--+-÷⨯-= ⑤2222x x x +=,其中正确的是( D )A .①②③B .①③⑤C .②③④D .②④⑤(2011?大连)3 ( B )A .2B .3C .4D .5(2011?十堰市)1.下列实数中是无理数的是( A )A . B. C.31 (2011?佛山)3、下列说法正确的是( B)A 、a 一定是正数B 、20113是有理数C 、是有理数D 、平方等于自身的数只有1 (2011?佛山)2、计算332(2)+-的值是(A ) A 、0B 、12C 、16D 、18(2011?鸡西市)1.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –41 ④ –(3-5)+(–2)4÷8×(–1)=0 ⑤x 2+x 2=2x 2, 其中正确的是( D )A ①②③B ①③⑤C ②③④D ②④⑤(2011?扬州市)2.下列计算正确的是( C )A .236a a a =·B .()()2222a b a b a b +-=-C .()2326ab a b = D .523a a -= (2011?铜仁)1.-2的相反数是( D ) A 、 21 B 、 21- C 、-2 D 、2 (2011?邵阳市)1.-(-2)=A .-2B .2C .±2D .4 【答案】:B(2011?A 、 91037.1⨯B 、71037.1⨯C 、81037.1⨯D 、101037.1⨯ (2011?陕西省)1.32-的倒数为【 C 】正面A . 23-B .23C .32D . 32- (2011?南充市)5.下列计算不正确的是( A )(A )-23+21=-2 (B)( -31)2=91 (C ) ︳-3︳=3 (D)12=23(2011?江西省)1.下列各数中,最小的是( D ).A. 0B. 1C.-1D.(2011?潜江市)3.第六次人口普查的标准时间是2010年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)DA .1013310.⨯B .1013410.⨯C .910331⨯.D .910341⨯.(2011?潜江市)1.31-的倒数是B A .31 B .-3 C .3 D .31- (2011?呼和浩特市)4、用四舍五入法按要求对0.05049分别取近似值,其中错误..的是 ( C )A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D.0.050(精确到0.001) (2011?呼和浩特市)1、如果a 的相反数是2,那么a 等于 ( A )A. —2B. 2C. 21D. 21-(2011?河南省) 1. -5的绝对值【 A 】 (A )5 (B )-5 (C )15 (D )15- (2011?桂林市)2.在实数2、0、1-、2-中,最小的实数是(D ).A .2B .0C .1-D .2-(2011?桂林市)1.2011的倒数是( A ).A .12011B .2011C .2011-D .12011- (2011?达州)1、5-的相反数是 B A 、5- B 、5 C 、5± D 、15-1. (2011山东滨州,1,3分)在实数π、13、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4【答案】B(2011?安徽省)4.设1a =,a 在两个相邻整数之间,则这两个整数是………………………………【 C 】A.1和2B.2和3C.3和4D.4 和5(2011?安徽省) 1.-2,0,2,-3这四个数中最大的是……………………………………………………【 A 】A.-1B.0C.1D.2(2011?天津)(4) C(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问(2011?宁波)1.下列各数中是正整数的是 B(A)1- (B) 2 (C)0.5(2011?北京市)1. 34-的绝对值是( D ) A. 43- B. 43 C. 34- D. 34 〔2011?浙江省台州市〕1.在12、0、1、-2这四个数中,最小的数是【 D 】 A .12B .0C .1D .-21. (2011?威海市)在实数0,-2中,最小的是AA .-2B .C .0 D〔2011?温州市〕1、计算:2)1(+-的结果是( B )A 、-1B 、1C 、-3D 、3(2011?苏州市)1.12()2⨯-的结果是BA .-4B .-1C .14-D .32 (2011●嘉兴)1.-6的绝对值是( B )(A )-6 (B )6 (C )61 (D )61-1. (2011?乐山)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为C(A )4℃ (B )9℃ (C )-1℃ (D )-9℃(2011?黄冈市)10.计算()221222-+---1(-)A A .2 B .-2 C .6 D .10(2011?黄石市)2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为( C )A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t-11)℃(2011●河北省)1.计算30的结果是CA .3B .30C .1D .0〔2011?湖北省武汉市〕1.有理数-3的相反数是A????A.3.? B.-3. ???C.31 ?D.31-. (2011●嘉兴)9.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( D )(A )2010(B )2011 (C )2012 (D )2013(2011?益阳市)1.2-的相反数是AA . 2B .2-C . 12D . 12- 〔2011?浙江省义乌〕1. -3的绝对值是AA .3B .-3C .-D .〔2011?盐城市〕1.-2的绝对值是CA .-2B .- 12C .2D .12 〔2011?芜湖市〕1.8-的相反数是( D )A .8- B.18- C. 18D. 8 〔2011?芜湖市〕2.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( C )A .63.110⨯西弗 8.33.110⨯西弗 C .33.110-⨯西弗 D .63.110-⨯西弗(2011?泰安市)4.第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人。

中考数学《实数》专题含解析

中考数学《实数》专题含解析

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简:=.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b=.14.已知互为相反数,则a:b=.15.若的值在x与x+1之间,则x=.16.,则x y=.17.计算:=.18.化简二次根式:=.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a>﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为 1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简:=.【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b=.【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x=2.【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y=﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算:=.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式:=﹣2.【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解:=3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵÷3=671,∴x=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。

2011中考数学复习课件1、实数的有关概念(浙教版)

2011中考数学复习课件1、实数的有关概念(浙教版)

此内容为本课时的难点.为此设计了[归类探究]中的例6;[限时集训]中
的第15,16,17,18,19(包括预测变形1,2,3,4)题.
考点管理
1.实数的概念及分类
按定义分类:
按正负分类:
无理数: 无限不循环小数 叫做无理数.
有理数:有限小数或无限循环小数 称为有理数.
2.数轴 定义:规定了 原点、正方向 和 单位长度 的直线叫做数轴. 大小比较: (1)在数轴上表示两个数,右边的数总比左边 的数大. (2)正数 大于0;负数小于 0;正大于 一切负数;两个负数比较, 绝对值大的反而小 . 注意:数轴上的点与实数一一对应. 3.相反数 定义:只有 符号不同 的两个数叫做互为相反数,0的相反数是 0 . 表示:实数a的相反数是 -a . 性质:a,b互为相反数,则a+b=0 . 几何意义: 从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(2)[2010· 泰安]|-5|的倒数是
D ( )
【解析】(1)--12=12,选A. (2)1|-5|=15,选D. 【点悟】 (1)只有符号不同的两个数互为相反数,即a的相反数为-a; (2)一个负数的绝对值等于它的相反数,结果为正. 类型之三实数的大小比较与数轴 2011· 预测题]实数x,y在数轴上的位置如图1-1所示,则( B)
算术平方根:正数的正的平方根和零的平方根统称为算术平方根,一
个数a的算术平方根记为x=a (a≥0). 立方根:如果一个数x的立方等于a,即x3=a ,那么这个数就叫做a的
立方根(也叫三次方根),记为x=3a.
定义:正数和零叫做非负数(记为a≥0). 常见非负数:|a|,a2,a(a≥0). 9.非负数 定义:正数和零叫做非负数(记为a≥0). 常见非负数:|a|,a2,a(a≥0).

2011届中考数学备考复习课件:1.1《实数的概念》

2011届中考数学备考复习课件:1.1《实数的概念》

.(09湛江 例1.( 湛江)如图,一只蚂蚁从 点沿数 .( 湛江)如图,一只蚂蚁从A点沿数 轴向右直爬2个单位到达点 个单位到达点B, 轴向右直爬 个单位到达点 ,A 点表示 − 2, 点所表示的数为m 设B点所表示的数为 点所表示的数为 的值; (1)求m 的值; ) m − 1 + (m + 6)0 的值。 的值。 (2)求 )
实数的运算: 8.实数的运算:先乘除后加减有括号先算括号 里面的;同一级运算按照从左至右的顺序进行。 里面的;同一级运算按照从左至右的顺序进行。 9.近似数、有效数字与科学计数法: 近似数、有效数字与科学计数法: a × 10 n 的形式( (1)把一个数写成 的形式(其中 1 ≤ a < 10 n是整数),这种记数法叫科学计数法。 是整数),这种记数法叫科学计数法。 ),这种记数法叫科学计数法 近似数: (2)近似数:一般地一个近似数四舍五入到哪一 就说这个近似数精确到哪一位。 位,就说这个近似数精确到哪一位。 (3)有效数字:一个近似数,从左边第一个不是 有效数字:一个近似数, 的数字起到精确到的数位止, 0的数字起到精确到的数位止,所有的数字都叫做 这个数的有效数字。 这个数的有效数字。
从一做起 做到第一
第一章第1课时
实数的概念
要点、 要点、考点聚焦 基础训练 典型例题解析
1、实数的分类 、
整数 有理 数 实数 无理 数 分数 负整数 正分数 负分数 有限小数或循环小数
正无理数 负无理数
无限不循环小数
2.数轴:规定了原点、 2.数轴:规定了原点、正方向和单位长度的直线 数轴 叫做数轴(画数轴时, 叫做数轴(画数轴时,要注意上述规定的三要素缺 一个不可) 实数与数轴上的点是一一对应的。 一个不可),实数与数轴上的点是一一对应的。数 轴上的点所表示的数,从左到右逐渐增大。 轴上的点所表示的数,从左到右逐渐增大。 只有符号不同的两个数,称为互为相反数, 3.只有符号不同的两个数,称为互为相反数, 零的相反数是零,从数轴上看, 零的相反数是零,从数轴上看,互为相反数的 两个数所对应的点关于原点对称. 两个数所对应的点关于原点对称.互为相反数 的两个数和为0 的两个数和为0。 绝对值:从数轴上看, 4.绝对值:从数轴上看,一个数的绝对值就是 表示这个数的点与原点的距离. 表示这个数的点与原点的距离.

2011年第一轮中考实数复习

2011年第一轮中考实数复习

实数知识梳理一、实数的分类 ①按定义分②按正负分类二、实数的有关概念及性质 1、数轴① 数轴的三要素为:原点、正方向、单位长度 . ② 实数与数轴上的点建立了一一对应的关系.③ 利用数轴上的点比较实数的大小,在数轴上右边的点所表示的数总比左边点所表 示的数大。

2、相反数①定义: a 的相反数是-a ,这里a表示任意的一个数,可以是正数、负数、或者0;0的相反数是0。

② 性质:如果a 、b 互为相反数,则a+b=0,反之也成立。

③对称性:数轴上表示相反数的两个点关于原点对称.(常用来比较数的大小) 3、倒数① 定义:a (a ≠0)的倒数是a1,0没有倒数,倒数等于大本身的数是±1。

②性质:如果a 、b 互为倒数,则ab=1,反之也成立。

4、绝对值①定义:一个数a 的绝对值就是数轴上表示数a 的点到原点的距离,记作 |a |当a ≥0时, |a|=a, 当a ≤0时,|a|=-a (a=0的情况可以归入a ≥0,也可以归入a ≤0) ②性质:|a|≥0,即非负性.③归纳:常见的非负数有: |a |≥0,a 2≥0,a ≥0. 5、平方根、算术平方根和立方根①平方根:正数a 的平方根有两个。

即±a a 0的平方根是0;负数没有平方.②立方根:一个正数只有一个正的立方根,而负数有一个负的立方根,立方根等于本身的数有0、+1、-1。

7、近似数、有效数字和科学记数法 一般的,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

一个近似数,从左边第一个不是零的数起,直到精确到的数字止,所有数字都叫做这个近似数的有效数字。

把一个数写成a ×10n形式,其中a 的取值范围是1≤a <10.这种记数方法叫做科学记数法。

三、实数的运算法则及运算率 在实数范围内可以进行加、减、乘、除、乘方和开方的运算,在进行运算时,要先乘方、开方,再乘除,最后加减 ;对同一级运算,一般按从左到右的顺序进行,如果有括号,先算括号里面的.其中零不能做除数,负数不能开方。

2011年中考数学基础知识复习提纲

2011年中考数学基础知识复习提纲

中考数学第一轮基础知识要点总结实数⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 练习:(略)数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a 。

3. 实数的分类: 和 统称实数. 4.=0a (其中a 0 且a 是 )=-pa (其中a 0)练习:(略)整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ²a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 练习:(略)因式分解1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ , ⑶ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a⑵ =++222b ab a ,⑶ =+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 练习:1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.分解因式2232ab a b a -+= . 6.将3214x x x +-分解因式的结果是 .分式1. 分式:整式A 除以整式B ,可以表示成 AB 的形式,如果除式B 中含有 ,那么称A B 为分式.若 ,则 A B 有意义;若 ,则 A B 无意义;若 ,则 AB =0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.例1:(1) 当x 时,分式x-13无意义; (2)当x 时,分式392--x x 的值为零.例2:⑴ 已知 31=-x x ,则221xx + = . ⑵已知113x y -=,则代数式21422x xy y x xy y----的值为 . 例3:先化简,再求值:(1)(212x x --2144x x -+)÷222x x-,其中x =1.⑵221111121x x x x x +-÷+--+,其中1x =. 练习:(略)二次根式1.二次根式的有关概念⑴式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式. ⑵简二次根式:被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式.(3)同类二次根式:化成最简二次根式后,被开方数 的几个二次根式,叫做同类二次根式.2.二次根式的性质:⑴ ;⑵ ()=2a (a ≥0); =2a ;⑶ =ab (0,0≥≥b a );⑷=ba(0,0>≥b a ). 练习:(略)方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号. 例1:当m 取什么整数时,关于x 的方程1514()2323mx x -=-的解是正整数? 例2:解下列方程:()()()(1) 3175301x x x --+=+; (2)121253x x x-+-=-. 例3:解下列方程组:(1){4519323a b a b +=--= (2){2207441x y x y ++=-=-例4:某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?例5:某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. ① 求该同学看中的随身听和书包单价各是多少元?② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?一元二次方程的常用解法(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,2(40)2b x b ac a-=-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 例1:选用合适的方法解下列方程: (1))4(5)4(2+=+x x ; (2)x x 4)1(2=+;(3)22)21()3(x x -=+; (4)31022=-x x .例2:已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值. 练习:(略)一元二次方程根的判别式关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.例1:解方程12112-=-x x 会出现的增根是( ) A .1=x B.1-=x C. 1=x 或1-=x D.2=x例2:如果分式12-x 与33+x 的值相等,则x 的值是( )A .9B .7C .5D .3 例3:如果3:2:=y x ,则下列各式不成立的是( )A .35=+y y x B .31=-y x y C .312=y x D .4311=++y x 例4:若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.2例5:在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.例6:某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元. (1)求甲、乙两个木工小组每天各修桌凳多少套.(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:① 由甲单独修理;② 由乙单独修理;③ 由甲、乙共同合作修理. 你认为哪种方案既省时又省钱?试比较说明. 练习:1.若关于x 方程2332+-=--x mx x 无解,则m 的值是 . 2.分式方程3111122=---x x 的解是 . 3.以下是方程1211=--xxx 去分母、去括号后的结果,其中正确的是( ) A .112=--x B.112=+-x C.x x 212=+- D.x x 212=-- 4.分式方程21124x x x -=--的解是( ) A .32-B .2-C .52-D .325.分式方程1421-=+-x x x 的解是( ) A.71=x , 12=x B. 71=x ,12-=x C. 71-=x , 12-=x D. 71-=x 12=x6.今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1) 已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?(2) 在实际工作中,甲、乙两组合做完成这项工程的65后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.不等式的基本性质(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb).例1:1.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )2.解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,3.解不等式组314,2 2.x x x ->⎧⎨<+⎩,并把它的解集表示在数轴上.例2:绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?例3:某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价) 【中考演练】1.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的12.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),A .B .C .D .且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为a cm,则a的取值范围是.2.海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2005年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被____条.3.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市元.4.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品,已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.(1)如果他们一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元,①请写出y (元)关于x (支)的函数关系式,并求出自变量x的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?平面直角坐标系1. 根据点所在位置填表(图)2. x0.3. P(x,y)关于x轴对称的点坐标为__________,关于y轴对称的点坐标为________,关于原点对称的点坐标为___________.练习: ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______.(2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____.一次函数1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2. 一次函数y kx b =+的图象是经过 和 两点的 . 3. 求一次函数的解析式的方法是 ,其基本步骤是:⑴ ; ⑵ ;⑶ ;⑷ . 4.一次函数y kx b =+的图象与性质例1:已知一次函数物图象经过A(-2,-3),B(1,3)两点.⑴ 求这个一次函数的解析式.⑵ 试判断点P(-1,1)是否在这个一次函数的图象上. ⑶ 求此函数与x 轴、y 轴围成的三角形的面积.例2:某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.⑴ 第20天的总用水量为多少米3?⑵ 当x ≥20时,求y 与x 之间的函数关系式.⑶ 种植时间为多少天时,总用水量达到70003k >0b >0k >0 b <0k <0 b >0天)ab +练习:1.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .32.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费. ⑴ 写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式: ① 当用水量小于或等于3000吨时 ; ② 当用水量大于3000吨时 .⑵ 某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元. ⑶ 若某月该单位缴纳水费1540元,则该单位用水多少吨?3.中国电信公司最近推出的无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟)为0.2元;3分钟后每分钟收0.1元,则一次通话实际那为x 分钟(x >3)与这次通话的费用y (元)之间的函数关系是( )A .y =0.2+0.1xB .y =0.1xC .y =-0.1+0.1xD .y =0.5+0.1x 4. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是( ) A.45.2分钟 B.48分钟 C.46分钟 D.33分钟5. 某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨, 该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x 吨,求总费W(元)与x(吨)的函数关系式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.反比例函数1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【典例精析】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式; (2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2:如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.练习:1.某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,2.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 3.反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 4.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.二次函数1. 二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.【例题讲解】例1:1. 抛物线()22-=x y 的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3. 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个例2:1. 二次函数y =2x 2-4x +5的对称轴方程是x =___;当x = 时,y 有最小值是 . 2. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米, 现在它的示意图放在平面直角坐标系中(如右图),则此 抛物线的解析式为 .3. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )2例3:1. 二次函数的解析式:(1)一般式: ;(2)顶点式: ;2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 例4:橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外? 练习题:1.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线21212++-=x x y 的一部分,根据关系式回答: ⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?2.如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.3.如图,过原点的一条直线与反比例函数y =kx(的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点 的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )4. 二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是( ) A .3 B .5 C .-3和5 D .3和-55.下列图中阴影部分的面积与算式122)21(|43|-++-的结果相同的是( )6.反比例函数y =xk的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OPA 为直角三角形,求出此时P 点的坐标.7.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′点的坐标;(2)求折痕CE 所在直线的解析式.要点归纳:1.二次函数c bx ax y ++=2通过配方可得224(24b ac b y a x a a-=++, ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 2. 每件商品的利润P = - ;商品的总利润Q= ³ .例1:近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y (米)与售价x (元/米)之间存在着如图所示的一次函数关系,且40≤x ≤70.(1)根据图象,求y与x之间的函数解析式;(2) 设该销售公司一天销售这种型号电缆线的收入为w元. ① 试用含x 的代数式表示w;② 试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高?最高是多少元?x x BF ACD E xG练习题:1. 如图所示,在直角梯形ABCD 中,∠A =∠D =90°,截取AE =BF =DG =x.已知AB =6,CD =3,AD =4;求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.2. 某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式;(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.3. 如图,已知矩形OABC 的长OAOC =1,将△AOC 沿AC 翻折得△APC. (1)填空:∠PCB = 度,P 点坐标为 ; (2)若P 、A 两点在抛物线y =-43x 2+bx +c 上,求b 、c 的值,并说明点C 在此抛物线上;﹡(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.统计知识1.平均数的计算公式___________________________. 2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________. 4.极差是__________________,方差的计算公式_____________________________. 标准差的计算公式:_________________________.【典例精析】例1 我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围? (2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例; (3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例2 我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下:(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只? (2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?【中考演练】1.班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的 .(中位数,平均数,众数)2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分. 3.某次射击训练中,一小组的成绩如下表所示:若该小组的 平均成绩为7.7环,则成绩为8环的人数是 .4.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):5. 衡量一组数据波动大小的统计量是( )A .平均数B .众数C .中位数D .方差 6.某人今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是( ) A .66 B .67 C .68 D .787.甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S 甲2=2.4,•S 乙2=3.2,则射击稳定性是( )A .甲高B .乙高C .两人一样多D .不能确定8. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:园樱桃的总产量与按批发价格销售樱桃的总收入分别是( ) A .200kg ,3000元 B .1900kg ,28 500元 C .2000kg ,30 000元 D .1850kg ,27 750元9.在“心系灾区”⑴ .10.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.【考点精析】1. 总体是指_________________________,个体是指_____________________, 样本是指________________________,样本的个数叫做___________.2. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________. 4. 得到频数分布直方图的步骤_________________________________________. 5. 数据的统计方法有____________________________________________. 【典例精析】例1:某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A B C D ,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)求出D 级学生的人数占全班总人数的百分比;兴趣爱好图1 图2。

2011年中考数学第一轮总复习学案(实数第1课时)

2011年中考数学第一轮总复习学案(实数第1课时)

第____周 星期___第___节 本学期学案累计: 课时 上课时间:______ 签名:____ 我们的追求:让每位同学都得到发展 我们的约定:我的课堂,我作主!第一章 实数课时1.实数的有关概念【课前预测】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08乌鲁木齐)2的相反数是 .4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点呈现】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数.4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.(3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【考题例析】例1 ⑴(06成都)2--的倒数是( )A .2 B.12 C.12-D.-2 ⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4⑶(07扬州)如图,数轴上点P 表示的数可能是( )A.7B. 7-C. 3.2-D. 10-【考题训练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)3.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21± D .2 4.(08梅州)下列各组数中,互为相反数的是( ) A .2和21 B .-2和-21 C .-2和|-2| D .2和21 5.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.166.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( ) A .a > b B . a = b C . a < b D .不能判断3- 2- 1- O 1 2 3 P o b a。

湖北省2011年中考数学 专题1实数精品试题分类解析汇编

湖北省2011年中考数学 专题1实数精品试题分类解析汇编

某某2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(某某某某3分)有理数-3的相反数是A.3.B.-3.C.31D.31-. 【答案】A 。

【考点】相反数。

【分析】根据相反数的意义,只有符号不同的数为相反数,得-3的相反数是3。

故选A 。

2.(某某某某3分)A.675×104. B.67.5×105. C.6.75×106. D.0.675×107. 【答案】C 。

【考点】科学计数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

6750000一共7位,从而6750000=6.75×106。

故选C 。

3.(某某某某3的值为A.2B. -2C.2±D. 不存在【答案】A 。

【考点】算术平方根。

【分析】直接根据算术平方根的定义求解:因为4的算术平方根是2,所以=2。

故选A 。

4.(某某某某3分)某某市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示 为A. (11+t)℃B. (11-t)℃C. (t -11)℃D. (-t -11)℃【答案】C 。

【考点】列代数式。

【分析】由已知可知,最高气温-最低气温=温差,从而最低气温=最高气温-温差= t -11。

故选C 。

5.(某某某某3分)下列实数中是无理数的是A .2B .4C .13【答案】A 。

【考点】无理数。

【分析】根据无理数的概念对各选项进行逐一分析即可:解:A 、 2是开方开不尽的数,故是无理数,故本选项正确;B 、 4=2,2是有理数,故本选项错误;C 、 13是分数,分数是有理数,故本选项错误;D 、3.14是小数,小数是有理数,故本选项错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年中考数学实数专题复习一、实数的概念(一):【知识梳理】1.实数的有关概念(1)有理数: 和 统称为有理数。

(2)有理数分类①按定义分: ②按符号分:有理数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;有理数()()()()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(3)相反数:只有 不同的两个数互为相反数。

若a 、b 互为相反数,则 。

(4)数轴:规定了 、 和 的直线叫做数轴。

(5)倒数:乘积 的两个数互为倒数。

若a (a≠0)的倒数为1a.则 。

(6)绝对值:(7)无理数: 小数叫做无理数。

(8)实数: 和 统称为实数。

(9)实数和 的点一一对应。

2.实数的分类:实数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。

取近似数的原则是“四舍五入”。

(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。

()()()()()()()()()()()()⎧⎫⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩零(二):【课前练习】 1.|-22|的值是( )A .-2 B.2 C .4 D .-4 2.下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最大的负数D .有绝对值最小的有理数3.在(0022sin 4500.2020020002273π⋅⋅⋅、、、、这七个数中,无理数有( ) A .1个;B .2个;C .3个;D .4个 4.下列命题中正确的是( )A .有限小数是有理数B .数轴上的点与有理数一一对应C .无限小数是无理数D .数轴上的点与实数一一对应5.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万二:【经典考题剖析】1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m 处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:2.下列各数中:-1,0,169,2π,1.101001,12-, 45cos ,-60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …};整数集合{ …}; 自然数集合{ …};分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};3. 已知(x-2)2,求xyz 的值..4.已知a 与 b 互为相反数,c 、d 互为倒数,m 的绝对值是2求32122()2()m ma b cd m -+-÷ 的值5. a 、b 在数轴上的位置如图所示,且a >b ,化简a a b b a -+--三:【训练】2、一个数的倒数的相反数是115,则这个数是()A .65B .56C .-65D .-563、一个数的绝对值等于这个数的相反数,这样的数是( ) A .非负数 B .非正数 C .负数 D .正数4. 数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是 2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换元法C .数形结合D .分类讨论5. 若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.6.已知x y y x -=-,4,3x y ==,则()3x y += 7.光年是天文学中的距离单位,1光年大约是9500000000000km ,用科学计数法表 示 (保留三个有效数字)8.当a 为何值时有:①23a -=;②20a -=;③23a -=-9. 已知a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,求20022001200012()2()a b cd y x+-++的值.0ba10.(1)阅读下面材料:点 A、B在数轴上分别表示实数a,b,A、B两点之间的距离表示为|AB|,当A上两点中有一点在原点时,不妨设点A在原点,如图1-2-4所示,|AB|=|BO|=|b|=|a-b|;当A、B两点都不在原点时,①如图1-2-5所示,点A、B 都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b-a=|a-b|;②如图1-2-6所示,点A、B都在原点的左边,|AB|=|BO|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图1-2-7所示,点A、B在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a-b|综上,数轴上 A、B两点之间的距离|AB|=|a-b|(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.②数轴上表示x和-1的两点A和B之间的距离是________,如果 |AB|=2,那么x为_________.③当代数式|x+1|+|x-2|=2 取最小值时,相应的x 的取值范围是_________.二、实数的运算(一):【知识梳理】1.有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则:①同号两数相加,取________的符号,并把__________②绝对值不相等的异号两数相加,取________________的符号,并用____________________。

互为相反数的两个数相加得____。

③一个数同0相加,__________________。

(2)有理数减法法则:减去一个数,等于加上____________。

(3)有理数乘法法则:①两数相乘,同号_____,异号_____,并把_________。

任何数同0相乘,都得________。

②几个不等于0的数相乘,积的符号由____________决定。

当______________,积为负,当_____________,积为正。

③几个数相乘,有一个因数为0,积就为__________.(4)有理数除法法则:①除以一个数,等于_______________________.__________不能作除数。

②两数相除,同号_____,异号_____,并把_________。

0除以任何一个____________________的数,都得0(5)幂的运算法则:正数的任何次幂都是___________;负数的__________是负数,负数的__________是正数(6)有理数混合运算法则:先算________,再算__________,最后算___________。

如果有括号,就_______________________________。

2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号时,先算 里面,再算括号外。

同级运算从左到右,按顺序进行。

3.运算律(1)加法交换律:_____________。

(2)加法结合律:____________。

(3)乘法交换律:_____________。

(4)乘法结合律:____________。

(5)乘法分配律:_________________________。

4.实数的大小比较 (1)差值比较法:a b ->0a ⇔>b ,a b -=0a b ⇔=,a b -<0a ⇔< b (2)商值比较法:若a b 、为两正数,则a b >1a ⇔>b ;1;aa b b=⇔=a b <1a ⇔<b(3)绝对值比较法:若a b 、为两负数,则a >b a ⇔<b a b a b a =⇔=;;<b a ⇔>b(45.三个重要的非负数:(二):【课前练习】1. 下列说法中,正确的是( )A .|m|与—m 互为相反数B 11互为倒数C .1998.8用科学计数法表示为1.9988×102D .0.4949用四舍五入法保留两个有效数字的近似值为0.502. 在函数y =中,自变量x 的取值范围是( )A .x > C .x ≤1 D .x ≥13. =,结果是 。

______ 5.计算(1) 32÷(-3)2+|-16|×(-(2) 2二:【经典考题剖析】1.已知x 、y 是实数,2690,3,.y y axy x y a -+=-=若求实数的值2.请在下列6个实数中,计算有理数的和与无理数的积的差:24042,1)2π--3.比较大小:3与4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是 ;320的个位数字是 ; 5.计算:(1)34221(2)(1)()20.25413(2)⎡⎤-⨯---⎢⎥⎣⎦⎡⎤⨯+-⨯-⎣⎦;(2)10022()(2001tan 30)(2)3--++-三:【训练】1.某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小, 那么停靠站的位置应设在( )A .A 区;B .B 区;C .C 区;D .A 、B 两区之间2.根据国家税务总局发布的信息,2004年全国税收收入完成25718亿元,比上年增长25.7%,占2004年国内生产总值(GDP )的19%。

根据以上信息,下列说法:①2003年全国税收收入约为25718×(1-25.7%)亿元;②2003年全国税收收入约为257181+25.7%亿200m 100m A C B元;③若按相同的增长率计算,预计2005年全国税收收入约为25718×(1+25.7%)亿元;④2004年国内生产总值(GDP)约为2571819%亿元。

其中正确的有()A.①④;B.①③④;C.②③;D.②③④3.当0<x<1时,21,,x xx的大小顺序是()A.1x<x<2x;B.1x<2x<x;C.2x<x<1x;D.x<2x<1x4.设是大于1的实数,若221,,33a aa++在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上自左至右的顺序是()A.C 、B、A;B.B 、C 、A;C.A、B、 C;D.C、 A、 B5.现规定一种新的运算“※”:a※b=a b,如3※2=32=9,则12※3=()A.18;B.8;C.16;D.326.火车票上的车次号有两种意义。

相关文档
最新文档