流体动力学基础

合集下载

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

流体动力学基础

流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。

本文将介绍流体动力学的基础概念、基本方程以及常用方法。

一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。

2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。

常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。

3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。

流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。

二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。

对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。

2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。

对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。

3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。

三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。

2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。

3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。

第三章 流体动力学基础

第三章 流体动力学基础

1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学
按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2

6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点

1.3、流体动力学

1.3、流体动力学
热加工炉工作系统示意简图
物料



燃料

热加工炉
烟 囱
管 路
送风机
排风机
1
§1.3、流体动力学基础





大 守
能 量










流体运动

微分方程组

方 程


如何应用连续
能 量 方 程
总 方程、能量方程、

三 大
动量方程求解流 体动力学问题


量 方
程 定解条件

2
§1.3、流体动力学基础
动能增量ΔE:
E E22 E11
dQdt
g
u22 2
u12 2
dA1
dQdt
u22 2g
u12 2g
(3)
上三式代入功能原理:
p1 Z1
dA2 p2 Z2
WP WG E22 E11
0
dQdt Z1
Z2
p1
p2 dQdt
dQdt
u22 2g
u12 2g
0
28
各项除以γdQdt,按断面分别列于等式两端得:
(2)按欧拉自变量(即描述流动所需的空间坐标数目)分类 一元流动:只有一个坐标自变量 B(x,τ) 二元流动:有两个坐标自变量 B(x,y,τ) 三元流动:三个坐标自变量 B(x,y,z,τ)
11
3、流体流动是如何分类的?
(3)按运动要素是否随时间变化 稳定流动(恒定流):欧拉法所描述的流场中每一空间点上的所有 运动参数均不随时间变化的流动。 非稳定流动(非恒定流):欧拉法所描述的流场规律与时间有关的 流动。

液压流体力学第五章流体动力学基础

液压流体力学第五章流体动力学基础
液压流体力学
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。

流体动力学基础工程流体力学

流体动力学基础工程流体力学
31
固定的控制体
对固定的CV,积分形式的连续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一起运动时,连续性方程形式不变,只
要将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32
连续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
t CV
t
,所以由于密度 的变
化单位时间内微元六面体内增加的质量为dxdydz t。
微元控制体内流体质量增长率: dxdydz t
48
(3)根据质量守恒定律
流体运动的连续方程式为:
dxdydz uxdydz dx uydxdz dy uzdxdy dz 0
令β=1,由系统的质量不变可得连续性方程
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vndA
0
30
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vn
dA
0
系统质量变化率 控制体内质量变化率 流出控制体的质量流率
上式表明:通过控制面净流出的质量流量等于控 制体内流体质量随时间的减少率。
在推导上式的时候,未作任何假设,因此只要满 足连续性假设,上式总是成立的
CV
B V n dA
CS
D* (t )
CV B n
质量体
控制体 任一物理量 控制体表面外法向单位向量
18
雷诺输运定理
将拉格朗日法求系统内物理 量的时间变化率转换为按欧 拉法去计算的公式

第三章 流体动力学基础 4流体动力学基础

第三章 流体动力学基础 4流体动力学基础

3 流体运动学基础一、学习目的和任务1.理解拉格朗日(Lagrange)方法和欧拉(Euler)方法的基本思想。

2.掌握流体动力学中的若干基本概念。

3.掌握流体运动的连续性方程的积分形式及其应用。

4.了解连续性方程的微分形式和圆柱坐标系、球面坐标系中的连续性方程。

5.了解流体微元的运动分析的基本方法,理解亥姆霍兹速度分解定理。

6.理解流体微元运动的四种形式。

二、重点、难点1.重点欧拉(Euler)方法、连续性方程的积分形式、亥姆霍兹速度分解定理、微元运动的四种形式。

2.难点连续性方程、亥姆霍兹速度分解定理。

流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。

运动是物体的存在形式,是物体的本质特征。

流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。

而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。

因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。

3.1 描述流体运动的二种方法为研究流体运动,首先需要建立描述流体运动的方法。

从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。

流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。

对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。

拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。

欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。

下面分别介绍这二种方法。

3.1.1拉格朗日(Lagrange)方法这是一种基于流体质点的描述方法。

通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。

无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。

这是因为在初始时刻(t=t0),每个质点所占的初始位置(a,b,c)各不相同,所以可以据此区别。

流体动力学基础

流体动力学基础

例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。 2)各段水平管中水流速度 vc ,vd ,ve 。 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
第二章 流体动力学基础
1、理解理想流体和定常流动(稳定流动)的概念 2、掌握运用连续性方程和伯努利方程 3、了解黏滞定律、泊肃叶定律、斯托克斯定律 4、了解测量液体黏度的实验方法。
第一节、理想流体的定常流动 第二节、伯努利方程 第三节、伯努利方程的应用 第四节、黏性流体的流动 第五节、泊肃叶定律和斯托克斯定律
a
h
c
hd :
d
1 2 1 2 Pd v d Pb v b , 其中Pb =P0 2 2 1 2 1 2 gh d P0 v d P0 v b 2 2 2 v b2 v d hc = 30cm 2g
e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
a
h c
d e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接 到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。
a h c d e
解(1)
b
QV Sb vb, 其中S b =Se,vb = 2gh

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学-第四章 流体动力学基础

流体力学-第四章 流体动力学基础

Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS

流体动力学基础

流体动力学基础

(4-7) )
r ur 1 r ∂u r r 2 f − ∇p + ν ∇ u = + (u ∇)u (4-8) ) ρ ∂t 粘性流体运动微分方程,又称纳维 斯托克斯方程( 纳维-斯托克斯方程 方程) 粘性流体运动微分方程,又称纳维 斯托克斯方程(N-S方程) 方程
用矢量表示
§4.2
4.2.1
元流的伯努利方程
1 ∂p du z Z− = ρ ∂z dt
(1)物理意义:作用在单位质量流体上的质量力与 物理意义: 表面力之代数和等于其加速度。 表面力之代数和等于其加速度。 (2)适用条件:理想流体。 适用条件:理想流体。
4.1.2
粘性流体运动微分方程
∂u x ∂u x ∂u x ∂u x 1 ∂p 2 X− + ν∇ u x = + ux + uy + uz ρ ∂x ∂t ∂x ∂y ∂z ∂u y ∂u y ∂u y ∂u y 1 ∂p 2 Y− + ν∇ u y = + ux + uy + uz ρ ∂y ∂t ∂x ∂y ∂z ∂u z ∂u z ∂u z ∂u z 1 ∂p 2 Z− + ν∇ u z = + ux + uy + uz ∂t ∂x ∂y ∂z ρ ∂z
理想流体运动微分方程的伯努利积分 理想流体运动微分方程的伯努利积分
Euler方程三式分别乘以流线上两邻点坐标增量 、dy、 方程三式分别乘以流线上两邻点坐标增量dx、 、 方程三式分别乘以流线上两邻点坐标增量 dz,然后相加得: ,然后相加得:
1 ∂p ∂p ∂p ( Xdx + Ydy + Zdz ) − ( dx + dy + dz ) ρ ∂x ∂y ∂z du y du x du z = dx + dy + dz dt dt dt 引入限定条件: 引入限定条件:

流体力学 流体动力学基础

流体力学 流体动力学基础

x xa,b, c,t
y ya,b, c,t
(3—1)
z za,b, c,t

式中a,b,c,t 统称为拉格朗日变量,不同的运动质点, 起始坐标不同。
用拉格朗日法分析流体运动,在数学上将会遇到困难。 除少数情况外(如研究波浪运动),在流体运动中多采用欧拉 法。
5
二、欧拉法 定义:
uy
u y y
uz
u y z
fz

p
z

uz t
ux
uz x
uy
uz y
uz
uz z
(3—17)

上面二式即是理想流体运动的微分方程式,也叫做欧拉 运动微分方程式。
式中x,y,z,t为四个变量, , ux , u y,uz 为x,y,z,t的函
数,是未知量。 f x, f y , f z 也是x,y,z的函数,一般是已知的。
一、理想流体的伯努利方程
在稳定条件下
ux uy uz p 0 t t t t
将式(3—16)中各式分别乘以 dx, dy, dz 。相加得
(
fxdx
f ydy

fzdz)
1

( p x
dx
p y
dy
流经过流断面的体积流量Q除以过流断面面积A,即

Q Au ndA
A
A
(3—11)
即为断面平均速度。
五、一元流动、二元流动、与三元流动
定义:
运动要素是一个坐标的函数,称为一元流动。 运动要素是二个坐标的函数,称为二元流动。 运动要素是三个坐标的函数,称为三元流动。
16
§3-4 连续方程式

第三讲 流体动力学基础

第三讲  流体动力学基础

流体静压力矢量: F= -∫ApdAn
三、 流体静压力的两个重要特性。 1、流体静压力的方向总是沿受作用面法线方向。
2、平衡流体内任一点处的静压强的数值与其作用 面的方向无关,它只是该点空间坐标的函数。
10
§2-2 流体的平衡微分方程(欧拉平衡微分方程)
1 p f z
1、流量 单位时间内通过某一过流断面的流体量。体积流量qv或Q表示,质量流量 qm 。 qv vdA v A 体积流量(m3/s): A
质量流量(kg/s):
qm ρ vdA ρv A
A
2、净通量 在流场中取整个封闭曲面作为控制面,封闭曲面内的空间称为控制体。 流过全部封闭控制面A的流量称为净流量,或净通量。
动量修正系数是无量纲数,它的大小取决于总流过水断面的流速分布, 分布越均匀,β 值越小,越接近于1.0。
41
层流流速分布
湍流流速分布
断面流速分布 圆管层流 圆管紊流 旋转抛物面 对数规律
动能修正系数
动量修正系数 β =4/3 β =1.02~1.05
=2.0 =1.05~1.1
42
§3-3 连续方程式(一元流动)
绝对真空 p=0
15
第三章
流体动力学基础
16
3-1描述流体运动的两种方法
流体运动实际上就是大量流体质点运动的总和。
描述流体的运动参数在流场中各个不同空间位置上随时 间 连续变化的规律。
拉格朗日法(Lagrange):流体质点 着眼点不同
跟踪追迹法
欧拉法( Euler):空间 设立观察站法
17
一、 拉格朗日法与质点系
32
流线的性质:
1. 在某一时刻,过某一空间点只有一条流线。流线不能 相交,不能突然转折。三种例外: 驻点 相切点

流体动力学基础

流体动力学基础

1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。

①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。

wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。

解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。

流体动力学基础

流体动力学基础

(2-64)
②.偏心环状缝隙流 当两圆柱不同心,而偏心时,设偏心距为e, 两圆柱同心时的缝隙为δ,如图2-31。
则偏心环缝的流量为(详见P45页推导):
d 3 p d q (1 1.5 2 ) 12l 2
式中,ε=e/δ为偏心比。 所以,当v=0时,是压差流;
q C g A0 2p /
式中,Cg为流量系数,它是实际流量qr与理想流量qt之比 值。即:
Cg=qr / qt =Cc•Cυ
Cc为孔口收缩系数(Cc=A2/A0)。
不同的孔口有不同的Cg值。 1)薄壁孔(孔口的长径比): 图2-25a,此时,可定无沿程损失,只有
进口处的局部损失,
弯曲、管道截面积变化、液压元件等)而产生的 阻力损失,称为局部压力损失,其计算公式为:
p m
2
2
式中,ξ为局部损失系数(查表2-5、2-6、2-7 可得,P35~36),υ为液体过流断面上平均速度, ρ为液体密度。
(4)管道系统总压力损失Δp总和:
Δp总=∑Δpl+∑Δpm =∑λ(L/d)(ρυ2/2)+∑ξ(ρυ2/2) (举例,例2-7,P37~38) (习题3:练习2-5、2-6、2-7、2-8)
压差流的流量计算公式为(详细推导见42-43页):
q1
b 3 p 1 2l
(2-57)
②.剪切流(图2-28) 缝隙两端无压差,设上平板以速度 沿正向运动,下平板不动。缝隙中 流体在上平板带动下层层移动,称 这种流动为剪切流。 剪切流的流量计算公式为(详细推 导见43页):
当δ/d<<1时,可将环状缝隙展开成平面计算, 流量的计算为(此时,b=πd,由式(2-57)得):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档