7.1总体分布参数的假设检验
总体参数的假设检验
社会学研究数据分析
要点一
总结词
社会学研究中的假设检验主要用于探究社会现象、行为和 社会关系等。
要点二
详细描述
在社会学研究中,假设检验被广泛应用于社会调查、实验 研究和准实验研究中。研究者通过收集和分析数据,检验 关于社会现象、行为和社会关系的假设。例如,可以检验 教育程度与收入水平的关系、政策实施对居民生活的影响 等假设。这有助于深入了解社会现象,为政策制定和社会 发展提供科学依据。
P值是假设检验中的重要指标,表示观察到的数据或更极端情况出现的 概率。P值越小,表明观察到的数据越不可能发生,从而支持拒绝原假 设。
P值的解读
在解读P值时,应注意其与临界值的关系。通常,当P值小于显著性水 平(如0.05)时,我们拒绝原假设。
03
决策与P值
虽然P值提供了一定的决策依据,但不应过分依赖P值进行决策。在某
两个总体参数的假设检验
两个总体参数的假设检验的定义
对两个总体的参数提出假设,并利用样本数据对该假设进 行检验,以判断两个参数之间是否存在显著差异。
提出假设
根据研究目的或问题,提出关于两个总体参数的假设。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
计算检验统计量的值
根据样本数据计算检验统计量的值。
做出决策
将计算出的检验统计量的值与临界值进行比较,做出接受 或拒绝假设的决策。
非参数假设检验
03
符号检验
总结词
假设检验的基本方法
假设检验的基本方法假设检验是统计学中常用的一种方法,用于检验某个假设是否成立。
它可以帮助我们判断样本数据与总体数据之间的关系,从而做出合理的推断和决策。
在进行假设检验时,我们需要遵循一定的步骤和方法,以确保结果的可靠性和准确性。
首先,假设检验的基本步骤包括,建立假设、选择显著性水平、计算统计量、做出决策。
建立假设是假设检验的第一步,通常分为原假设和备择假设。
原假设是对总体参数的某种断言,而备择假设则是对原假设的补充或对立假设。
选择显著性水平是指在假设检验中规定的判断标准,通常取0.05或0.01。
计算统计量是根据样本数据计算出的用于检验假设的统计量,它可以帮助我们判断样本数据与假设之间的差异程度。
最后,根据计算出的统计量和显著性水平,我们可以做出接受原假设或拒绝原假设的决策。
其次,假设检验的方法主要包括,参数检验和非参数检验。
参数检验是指对总体参数进行假设检验,常用的方法有Z检验、t检验、F检验等。
Z检验适用于大样本的均值差异检验,t检验适用于小样本的均值差异检验,F检验适用于方差的检验。
非参数检验是指对总体分布形式进行假设检验,常用的方法有秩和检验、符号检验、卡方检验等。
非参数检验不对总体参数作出假设,适用于总体分布未知或不满足正态分布的情况。
最后,假设检验的应用范围非常广泛,可以用于医学、经济、社会科学等领域。
在医学领域,假设检验可以用于药物疗效的评价和临床试验结果的分析;在经济领域,假设检验可以用于市场调查和投资决策的制定;在社会科学领域,假设检验可以用于调查问卷的分析和社会现象的研究。
总之,假设检验是统计学中非常重要的方法,它可以帮助我们进行科学的推断和决策。
在实际应用中,我们需要根据具体情况选择合适的假设检验方法,并严格遵循假设检验的基本步骤,以确保结果的可靠性和准确性。
希望本文对假设检验方法有所帮助,谢谢阅读!。
《概率论与数理统计》第七章假设检验.
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
两个总体参数的假设检验
Part
03
假设检验的注意事项
样本量
样本量过小
01
如果样本量过小,会导致检验结果不稳定,无法准确
推断总体参数。
样本量过大
两个总体参数的假设 检验
• 假设检验的基本概念 • 两个总体参数的假设检验 • 假设检验的注意事项 • 假设检验的实例分析 • 总结与展望
目录
Part
01
假设检验的基本概念
定义
01
假设检验是一种统计推断方法 ,通过对样本数据的分析,对 总体参数做出假设,并通过检 验假设是否成立来得出结论。
02
在假设检验中,通常会先提出 一个关于总体参数的假设,然 后通过样本数据对该假设进行 验证。
03
假设检验的目的是根据样本数 据对总体参数做出合理的推断 ,并尽可能减少因错误判断而 导致的误差。
目的
判断总体参数是否符合预期
通过假设检验,可以判断总体参数是否符合预 期,从而为进一步的研究或决策提供依据。
两个总体比例的比较
总结词
Fisher's exact test
详细描述
Fisher's exact test用于比较两个总体的分类比例是否存在显著差异,特别是当样本量较小时。它基于 Fisher's exact probability distribution,通过计算概率值来评估实际观测频数与期望频数之间的差异是 否具有统计学显著性。
两个总体方差的比较
01 总结词
Levene's test
07 假设检验
2=02
202
2
2=()02 2>02 2=()02 2<02
2 n 1 S
2 0
单个正态总体均值已知的方差检验——2检验
问题:总体 X~N(,2),已知 假设
H0 : ; H1 : ;
2 2 0 2
构造2统计量 2
概率论与数理统计
第七章 假设检验
主要内容
假设检验的基本概念 正态总体参数的假设检验 *多个正态总体均值的比较——单因素方差 分析 *2拟合优度检验
§7.1 假设检验的基本概念
一、统计假设与统计假设检验 统计假设:通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种假设。 同一问题中的统计假设有两个:原假设和备择假设
基本原则——小概率事件在一次试验中是不可能发生的。 思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
• 假设检验的推理用到概率性质的反证法:先假设
H0正确,看由此可以推出什么结果。如果样本观 测值导致了一个不合理现象的出现,则有理由否 定原假设H0,而接受备择假设H1;否则,只能将 原假设H0当做真的保留下来。
故T统计量的观测值为
x 99.978 100 T 0.0545 S n 1.212 9
因为0.0545<1.86 ,即观测值落在接受域内 所以接受原假设,即可认为这天的包装机工作正常。
单边检验
H0:=0;H1:0
拒绝域为
X 0 P t (n 1) S n
X
第七章假设检验教案资料
第七草假设检验第七章假设检验一、教材说明本章主要介绍统计假设检验的基本概念和基本思想、正态总体参数的统计假设的显著性检验方法.01、本章的教学目的与要求(1)使学生了解假设检验的基本概念;(2)使学生了解假设检验的基本思想;(3)使学生掌握假设检验的基本步骤;(4)使学生会计算检验的两类错误,搞清楚两类错误的关系;(5)使学生掌握正态总体参数的假设检验,主要是检验统计量及其分布,检验拒绝域的确定;(6)使学生灵活运用所学知识解决实际问题。
2、本章的重点与难点本章的重点是正态总体参数的各种假设检验中的检验统计量及其分布,难点是假设检验拒绝域的确定。
二、教学内容下面主要分3节来讲解本章的主要内容。
§ 7.1假设检验的基本概念对总体分布或分布中的某些参数作出假设,然后利用样本的观测值所提供的信息,运用数理统计的分析方法,检验这种假设是否成立,从而决定接受或拒绝“假设:这一统计推断过程,称为假设检验。
1.引例我们先举一个简单的实例来说明假设检验的基本思想及推理方法例1:某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.且知标准差为0.015千克.当机器正常时,其均值为0.5千克,某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为(千克):0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?分析:用和分别表示这一天袋装糖重总体X的均值和标准差,则X ~ N( ,0.0152),其中未知。
问题:已知总体X^N( , 2),且°0.015,根据样本值判断0.5还是0.5。
提出两个对立假设H。
:0 0.5 (原假设或零假设)和已:0(备择假设).再利用已知样本作出判断是接受假设H °(拒绝假设比),还是拒绝假设H。
(接受假设H)如果作出的判断是接受H。
,贝U 0即认为机器工作是正常的,否则,认为是不正常的.因为X是的无偏估计量,所以,若H0为真,则|x 0不应太大,X —X—— ~N(0,1),衡量x 0的大小可归结为衡量——吉的大小。
概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章
概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章第七章假设检验7.1 设总体2(,)N ξµσ~,其中参数µ,2σ为未知,试指出下⾯统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H µσ==;(2)0:0,1H µσ=>;(3)0:3,1H µσ<=;(4)0:03H µ<<;(5)0:0H µ=.解:(1)是简单假设,其余位复合假设 7.2 设1225,,,ξξξ取⾃正态总体(,9)N µ,其中参数µ未知,x 是⼦样均值,如对检验问题0010:,:H H µµµµ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c µ=-≥,试决定常数c ,使检验的显著性⽔平为0.05解:因为(,9)N ξµ~,故9(,)25N ξµ~ 在0H 成⽴的条件下,00053(||)(||)53521()0.053cP c P c ξµξµ-≥=-≥??=-Φ=55()0.975,1.9633c cΦ==,所以c =1.176。
7.3 设⼦样1225,,,ξξξ取⾃正态总体2(,)N µσ,20σ已知,对假设检验0010:,:H H µµµµ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>,(1)求此检验犯第⼀类错误概率为α时,犯第⼆类错误的概率β,并讨论它们之间的关系;(2)设0µ=0.05,20σ=0.004,α=0.05,n=9,求µ=0.65时不犯第⼆类错误的概率。
解:(1)在0H 成⽴的条件下,200(,)nN σξµ~,此时00000()P c P ξαξ=≥=10,由此式解出010c αµ-=+在1H 成⽴的条件下,20(,)nN σξµ~,此时101010()(P c P αξβξµ-=<=<=Φ=Φ=Φ由此可知,当α增加时,1αµ-减⼩,从⽽β减⼩;反之当α减少时,则β增加。
统计学,刘照德07-1第七章 假设检验
一、假设检验的概念
称为 t检验。 • 3. 显著性水平,即指原假设为真时拒绝原假 设的概率,通常很小,而1-就很大。若总体没 有发生显著性变化,则样本统计量应该落在以总 体待估参数为中心的概率为1-的区域内。该区域 称为抽样分布的接受域;否则,总体就发生了显 著性变化,样本统计量应该落在概率 为1-的区域 外,该区域被称为抽样分布的拒绝域。因此,被 称为显著性水平。常用的值有0.01, 0.05, 0.10。而 接受域和拒绝域的分界点的数值就称为临界值。
1.建立假设 H0:μ=μ0=5 H1:μ≠μ0= 5,
一、假设检验的概念
1. 假设是指对总体参数的数值所作的一种 陈述。总体参数包括总体均值、总体比例(成 数)、总体方差等。 原假设是指待检验的假设,研究者想收集 证据予以反对的假设,表示为H0 。通常有 , 或三种形式。【例7-1】中H0:μ=5。 备择假设是指与原假设对立的假设,研究 者想收集证据予以支持的假设,表示为H1 。 其通常对应原假设也有三种形式:,或三种 。【例7-1】中H1:μ≠5。
一、假设检验的概念
• 根据不同的显著性水平值,可得到不同的统 计量临界值。这些临界值可通过查表得到。【例 7-1】=0.05,查表得拒绝域:t t / 2 2.064
4. 检验规则,第一种是根据拒绝域,将检验统计量 的值与水平的临界值进行比较,得出拒绝或不拒绝原 假设H0的结论,称为临界值规则,【例7-1】解答用了 临界值规则。第二种是将检验统计量值对应的概率p与 显著性水平进行比较,若P<α,则检验统计量落入拒 绝域,拒绝H0;否则,不能拒绝H0,称这种检验规则为 P-值规则,计算机软件中通常用P-值规则。
一、假设检验的概念
• 而那些“不明确的陈述”是指新的、可能的、猜 测的,处于备择假设的位置。例如某公司,以前 生产的产品的废品率不低于18%,是明确的陈述 18 % ;该公司对生产设备进行 ,因此, H 0: 改造后,生产的产品的废品率下降是不明确的陈 述,因此,H1:π<18%。 • 假设检验是指利用样本统计量的取值,来检 验事先对总体参数或总体分布所作的假设是否成 立的一种统计推断方法。
东华大学《概率论与数理统计》课件 第七章 假设检验
1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知
正态总体下参数的假设检验
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假
09假设检验
显著性水平与检验形式
在抽样分布曲线上,显著性水平既可以放在曲
线的一端(单侧检验),也可以分在曲线的两端
(双侧检验)。
α
2
2
α
Байду номын сангаас
图 9- 1
正态抽样分布上α=0.05的三种不同位置
11
显著性水平与检验形式 在确定检验形式时,凡是检验是 否与假设的总体一致的假设检验,α 被分散在概率分布曲线的两端,因此 称为双侧检验。
第二节 总体平均数的假设检验
7.2.1 基本思想 7.2.2 检验步骤 7.2.3 几种具体检验方法
20
总体平均数检验的基本思想
总体平均数的显著性检验是指对样本平均 数与总体平均数之间的差异进行的显著性 检验。但是提出的假设一定针对总体。
检验的思路是:假定研究样本是从平均数 为μ的总体随机抽取的,而目标总体的平 均数为μ0,检验μ与μ0之间是否存在差异。
差异的假设。 H1:备择假设(alternative hypothesis),或称研 究假设、对立假设;是与零假设相对立的假设,即 存在差异的假设。
5
假设检验的基本思想 进行假设检验时,一般是从零 假设出发,以样本与总体无差异的 条件计算统计量的值,并分析计算 结果在抽样分布上的概率,根据相 应的概率判断应接受零假设、拒绝 研究假设还是拒绝零假设、接受研 究假设。
Z
X - m0
n
69 - 66 11.7 18
1.09
32
⑶.确定显著性水平和检验形式
显著性水平为α=0.05,双侧检验
⑷.做出统计结论
查表得Z0.05/2=1.96,而计算得到的Z=1.09
|Z|<Z0.05/2,(则概率p>0.05)
总体分布参数汇总
H0为相等、H1为不相等的假设检验 为双侧检验,观测值g ( )较大或较小时 放弃H0; H0为相等、H1为大于的假设检验为单 侧检验,观测值g ( )较大时放弃H0; H0为相等、H1为小于的假设检验为 单侧检验,观测值g ( )较小时放弃H0。
2.一个正态总体均值或方差的假设检验
设总体X服从N(μ,σ2)分布,X的一个 样本为X1、X2、…、Xn、均值为 X、修正 方差为S*2、离均差平方和为SS,样本 的观测值为x1,x2,…,xn ,均值的观测值 为 x,修正方差的观测值为s*2,离均差 平方和的观测值为ss,显著性水平为α, 则有:
例 某工厂在正常情况下生产的电灯泡的寿命 X(小时)~N(1600,802).从该工厂生产的一批灯 泡中随机抽取10个灯泡,测得它们寿命为: 1450,1480,1640,1610.1500, 1600,1420,1530,1700.1550 如果标准差不变,试检验这批灯泡的寿命
均值μ(1)也是1600,(2)大于1600,(3)小于 1600.
记作:
(1) H 0为 1600 ,H1为 1600 ; (2) H 0为 1600 ,H1为 1600 ; (3) H 0为 1600 ,H1为 1600 .
⑴ 在原假设为真时,决定放弃原假设, 称为第一类错误,其出现的概率通常记作α; ⑵ 在原假设不真时,决定接受原假设, 称为第二类错误,其出现的概率通常记作β。 通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设
结论3) 若未知,对于给定的数值 , 作一个正态总体方差的假设检验时,
2 0
H 0为
2
2
,而H 1分别为
2 0
(1) , (2) , (3) .
第七章 假设检验
第七章假设检验【教学要求】要求掌握假设检验的的基本思想和基本步骤;能够理解假设检验的两类错误及其关系;熟练掌握总体平均数、总体成数和总体方差的各种假设检验方法;利用P-值进行假设检验【知识点】假设检验、两类错误、总体平均数、总体成数、总体方差【本章重点】理解假设检验的基本思想和基本步骤;能够理解假设检验的两类错误及其关系;熟练掌握总体平均数、总体成数和总体方差的各种假设检验方法。
【本章难点】总体平均数、总体成数和总体方差的各种假设检验方法。
【教学内容】7.1 假设检验的基本思想(小概率事件在一次实验中不会发生)前一章中我们讨论了如何根据样本去得到总体的分布所含参数的优良估计.以这样得到的估计值作为参数的已知值得到的一个总体必须跟真实的总体作比较,考察它们之间是否在统计的意义上相合。
显然,这种比较只能在样本的基础上进行。
怎么比较才能得到一个有较大把握的结论呢?这就是我们这章所要讲的统计假设检验问题。
一、假设检验的一个实际问题问题7.1.1 一种零件采用自动生产线生产,零件的寿命(单位:小时)服从正态分布(2000,4000)N。
现在工厂改良了生产技术,假设零件的寿命仍服从正态分布且方差不变。
为检验零件的寿命是否有提高,质检人员在某天生产的零件中随机抽取40个进行检验,测得平均寿命为2020小时。
试问在新技术下生产的零件寿命是否得到了提高?现在的问题就是要判断新技术下零件的平均寿命2000μ>?还是与以前一样依然是2000小时?如果是前者,我们说新产品寿命有显著提高;若是后者,就是说没有。
我们把任意一个有关未知分布的假设称为统计假设或简称假设。
上面的问题中我们把两种情况用假设来表示。
假设2000μ=表示新技术下零件寿命没有显著增加;假设2000μ>表示新技术下零件寿命有显著提高。
我们把第一个假设作为原假设,用符号0:2000H μ=表示;第二个假设作为备择假设,用符号1:2000H μ>表示。
7.1 参数的点估计
总体矩,样本矩回顾:
设 X 是总体,X1,X2,…,Xn是来自 X 的一个样本:
则总体 X 的 k 阶原点矩,记作 k E(X k )
总体 X 的 k 阶中心矩,记作 Vk E[X E(X )]k
样本的 k 阶原点矩,记作
Ak
1 n
n i 1
Xik
样本的 k 阶中心矩,记作
ˆ max{ xi }
小结
两种点估计方法:
矩估计法 最大似然估计法
用矩估计法估计参数通常比较方便,便于实 际应用,但所得估计的优良性有时比较差。
最大似然估计法使用时常常要进行比较复杂 的计算,然而得到的估计在许多情况下具有优良 性,它是目前仍然得到广泛使用的一种方法。
7.1.3 点估计标准
要了解这批灯泡的质量就要估计μ 和σ2的值。
例子:某电话交换台在1小时内接到的呼叫次数为Y Y~P(λ ),但 λ 未知. 某人想知道该电话交换台在1小时内呼叫10次 的概率,必须先估计λ 的值。
问题产生背景
在总体分布类型已知的情况下,如何从样本估 计总体分布中的未知参数就成为数理统计的基 本问题之一。
aˆ X 3B2 , bˆ X 3B2
例7.1.4 设总体X的均值μ 及方差σ 2都存在,且 有σ 2 >0,但μ ,σ 2 均未知. X1,X2,…,Xn 是来自总 体X的样本,求μ,σ2的矩估计量.
解 先求总体的一阶和二阶原点矩:
1 E(X ) ,
2 E(X 2 ) D(X ) E(X )2 2 ,
无偏性表示 ˆ 围绕被估参数 而摆动,以 致平均误差为零,即用ˆ 估计 没有系统
性误差。
例7.1.10 若X ~ U [0 , θ], 证明:
07第七章 假设检验
{Z z0.01}是
一小概率事件
拒绝域 W Z : Z z0.01 2.33 .
X 给定显著水平 =0.01,若使得 P k =, n X 21 则有 P k , ( 2) n 由式()得:k z . 1
20
四、求解参数假设检验问题的步骤
1、根据实际问题的要求,提出原假设 H 0 及备选 假设 H1 . 选择 H 0 , H1 使得两类错误中导致后果严重的 错误成为第一类错误. 2、给出显著水平 拒绝域.
,选择合适的统计量,确定
3、根据样本值,求出检验统计量的值,作出决策.
21
提出 假设
根据统计调查的目的, 提出 原假设H0 和备选假设H1 作出 决策
因此,衡量 x 0 的大小,可归结为衡量 x 0 的大小.
8
n
选择适当的正数k,使样本的观察值 x满足 x 0 U k n 时,就接受原假设H 0 . 否则,即当 U k时,就拒绝原假设H 0 .
应该用什么原则来确定这个量的合理界限?即怎样求k?
注意到,
不等式 x 0
2
拒绝 域
2
假设检验的步骤
Step1 提出假设. Step2 构造拒绝域,依据假设和常用的统计量. Step3 进行检验.
注意:不否定H0并不是肯定H0一定对,而只是说差 异还不够显著,还没有达到足以否定H0的程度.
所以假设检验又叫 “显著性检验” 如果显著性水平α取得很小,则拒绝域也会比较小, 其产生的后果是: H 0难于被拒绝. 如果在α很小的情况下, H0仍被拒绝了, 则说明实 际情况很可能与之有显著差异.
可用x与0的差距 x 0 来判断原假设H 0是否成立.
《概率论与数理统计》课件第七章 参数估计
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10
比
11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.
故
D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2
时
3
令
1
当
6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题
参数假设检验的前提条件
参数假设检验的前提条件1.总体分布的假设:在参数假设检验之前,需要对总体的分布形式进行假设。
常见的假设有正态分布、均匀分布等。
这一假设是进行参数假设检验的基础。
2.样本的独立性:参数假设检验需要保证样本之间的独立性,即样本的观测值之间相互独立。
这是为了避免样本之间相互影响导致结果的不准确。
3.样本的随机性:为了保证结果的可靠性,需要通过随机抽样的方式获取样本。
随机抽样可以有效减少样本选择的偏差,提高样本的代表性。
4.样本容量的要求:样本容量一般要求足够大,以满足中心极限定理的前提条件。
中心极限定理指出,当样本容量足够大时,样本均值的分布会近似于正态分布,从而可以使用正态分布进行推断。
5.参数的可估计性:参数假设检验的前提条件还要求参数能够被估计。
如果参数无法被估计,那么就无法进行参数假设检验。
6.方差齐性的假设:在一些参数假设检验中,还需要对总体的方差进行假设。
如果总体方差已知,则可以直接进行参数假设检验;如果总体方差未知,则需要通过样本方差进行估计。
除了以上的前提条件,还需要对假设进行明确,包括原假设和备择假设的设定。
原假设是对总体参数的其中一种断言,备择假设则是对原假设的否定。
在参数假设检验中,通常需要计算统计量的值,并与临界值进行比较,以判断是否拒绝原假设,并做出相应结论。
总之,参数假设检验的前提条件包括总体分布的假设、样本的独立性和随机性、样本容量的要求、参数的可估计性以及方差齐性的假设。
只有在满足这些前提条件的基础上,才能进行可靠的参数假设检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.一个正态总体均值或方差的假设检验
设总体X服从N(μ,σ2)分布,X的一个 样本为X1、X2、…、Xn、均值为、修正 方差为S*2、离均差平方和为SS,样本 的观测值为x1,x2,…,xn ,均值的观测值 为 x,修正方差的观测值为s*2,离均差 平方和的观测值为ss,显著性水平为α, 则有:
结论1)若σ2已知,对于给定的数值μ0, 作一个正态总体均值的假设检验时, H0为μ=μ0,而H1分别为 ①μ≠μ0,②μ>μ0,③μ<μ0。 X 0 可设 U , 它的观测值
出厂检验问题的数学模型
对总体X ~ f ( x ; p) p (1 p) , x 0,1 提出假设
x 1 x
H 0 : p 0.04 ;
要求利用样本观察值
H1 : p 0.04
( xi 3 or 1 )
i 1 12
( x1 , x2 , , x12 )
对提供的信息作出接受 H 0 (可出厂) , 还 是接受 H1 (不准出厂) 的判断.
习惯上称观测值g(x1,x2,…,xn)所 满足的不等式为假设检验方案,称 这个不等式所确定的观测值g 的取 值范围为假设检验的放弃域。 放弃域由两个区间构成的假设检 验被形容为双侧检验,放弃域由一个 区间构成的假设检验被形容为单侧检 验。后面将要讲述的内容可以粗糙地 概括为:
H0为相等、H1为不相等的假设检验 为双侧检验,观测值g ( )较大或较小时 放弃H0; H0为相等、H1为大于的假设检验为单 侧检验,观测值g ( )较大时放弃H0; H0为相等、H1为小于的假设检验为 单侧检验,观测值g ( )较小时放弃H0。
假设检验的两类错误
⑴ 在原假设为真时,决定放弃原假设,
称为第一类错误,其出现的概率通常记作α;
⑵ 在原假设不真时,决定接受原假设, 称为第二类错误,其出现的概率通常记作β。
假设检验的两类错误
所作判断 接受 H0 真实情况
H0 为真 H0 为假
正确 第二类错误
(取伪)
拒绝 H0
第一类错误
(弃真)
正确
2 2
右侧检验
(V V )
P(V V )
根据样本值计算,并作出相应的判断.
假设检验的步骤如下:
⑴ 提出H0和H1; ⑵ 指定概率α;
⑶ 寻求统计量g(X1,X2,…,Xn)及其分布; ⑷ 在H0为真时构造小概率事件并推导 g( )所满足的不等式;
⑸ 当统计量的观测值g(x1,x2,…, )满足 不等式时放弃H0、否则接受H0。
2 0
H 0为
2
2
,而H 1分别为
2 0
(1) , (2) , (3) .
2 0 2 2Biblioteka 0 2 2 0可设 它的观测值
2
2
SS
2 0
,
ss
2 0
,
当H0为真时, ~ (n 1),
2 2
(1)P{
2
当
2
2 0.5
均值μ也是1600,或大于1600,或小于1600.
以上有三种不同的形式,在统计学中通常 记作:
(1) H 0为 1600 H1为 1600 , ; (2) H 0为 1600 H1为 1600 , ; (3) H 0为 1600 H1为 1600 , .
由于是根据总体的一个样本的观测值及小 概率原理对所提出的假设进行检验并决定接 受或放弃所提出的假设, 因此假设检验 的 结果,会出现以下两类错误:
(3) P{
2
2 1
(n 1)} ,
当
2 2
2 1
(n 1)时拒绝 0 , H
2 0
认为 .
结论2)若σ2未知,对于给定的数值μ0, 作一个正态总体均值的假设检验时, H0为μ=μ0,而H1分别为 ①μ≠μ0,②μ>μ0,③μ<μ0。 X 0 可设 T ,
S* n
它的观测值
x 0 t , s* n
当H0为真时, T ~ t (n 1),
(1) P{ T t10.5 (n 1)} , 当t t10.5 时拒绝 0,认为 0 ; H
n x 0 u ,
n
当H0为真时, U ~ N (0,1),
(1) P{ U u10.5 } , 当u u10.5 时拒绝 0,认为 0 ; H (2) P{U u1 } ,
当u u1 时拒绝 0,认为 0 ; H (3) P{U u1 } , 当u u1 时拒绝 0,认为 0 . H
内 容
检验 种类
参数假 设检验 非参数 检 验
双侧检验 单侧检验
分布检验 符号检验 秩和检验
不学
u 检验—利用正态分布检验 2 检验—利用 2 分布检验
t 检验—利用 t 分布检验 F 检验—利用 F 分布检验
若对参数 一无所知
若对 参数 有所 了解 但有怀 疑猜测 需要证 实之时
用参数估计 的方法处理
过增大样本容量的方法来减少 .
通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设 检验又称为显著性检验, 概率α称为显著性水平 ,α可以等 于0.01或0.05或其他的数值,在未加说明时 α =0.05。
以下所讲述的假设检验,都是 显著性检验。 如果α=0.05,则称μ与μ0有显著的差异或 差异显著;如果水平α=0.01,则称μ与μ0有 极显著的差异或差异极显著。
推断原理,即“小概率原理”
某产品出厂检验规定: 次品率p不 超过4%才能出厂. 现从一万件产品中任意 抽查12件发现3件次品, 问该批产品能否出 厂?若抽查结果发现1件次品, 问能否出厂? p 0.04, p 0.04 代入 解 假设 3 3 9 P (3) C12 p (1 p) 0.0097 0.01 12 这是 小概率事件 , 一般在一次试验中 是不会发生的, 现一次试验竟然发生, 故认 为原假设不成立, 即该批产品次品率p 0.04 则该批产品不能出厂.
然而,发生冤案的可能性就相当大.有罪推理采取了将罪犯 绳之于法的强硬措施,同时就会使大量无辜者受冤枉.所谓 “宁可错杀一千,也不放过一个”,就是这种思维的极端化.
医生对就诊者某项疾病的评估.一般任何化验手段 检验疾病都不能达到100%准确.所以,对于SARS,禽流感, 艾滋病,霍乱,鼠疫等极严重的传染病的化验结果是否判断 为阳性,应该用更保守的假设检验,即检验: 零假设:就诊者为阳性; 对立假设:就诊者为阴性. 这种零假设属于宁可错判为阳性,也不能让感染者漏网. 此时用的就是”有罪推理”
§ 总体分布参数的假设检验 7.1
1.假设检验的基本概念 数理统计的基本任务是根据对样本的考察来 对总体的某些情况作出判断。
常把一个要检验的假设记作H0,称为原假设 (或零假设null hypothesis),与H0对立的假设 H1,称为备择假设(alternative hypothesis)
例 某工厂在正常情况下生产的电灯泡的寿命 X(小时)~N(1600,802).从该工厂生产的一批灯 泡中随机抽取10个灯泡,测得它们寿命为: 1450,1480,1640,1610.1500, 1600,1420,1530,1700.1550 如果标准差不变,试检验这批灯泡的寿命
别的保护. 因而,通常把有把握的、有经验的结论 作为原假设,或者尽可能使后果严重的 错误成为第一类错误.
假设检验步骤(三部曲)
根据实际问题所关心的内容,建立H0与H1
在H0为真时,选择合适的统计量V,由H1确 定拒绝域形式
给定显著性水平,其对应的拒绝域 双侧检验 (V V1 ) (V V ) 其中 (V V1 ) 左侧检验
(2) P{T t1 (n 1)} ,
当t t1 时拒绝 0,认为 0 ; H (3) P{T t1 (n 1)} , 当t t1 时拒绝 0,认为 0 . H
结论3) 未知,对于给定的数值 , 若 作一个正态总体方差的假设检验时,
但是,取H1为大于的假设检验必 须已知不可能小于,取H1为小于的假 设检验必须已知不可能大于,它们的 根据都只能是各个专业的理论与实践。
在无罪推理法庭体系中,法庭处理的就是以下的假 设检验问题: 零假设:被告无罪; 备择假设:被告有罪 此时假定被告无罪.只有检查官调查取得充分的证据确实 证明被告有罪,才拒绝零假设,判他有罪.否则,就是没有充分 的证据支持被告有罪.事实上,此时究竟犯罪嫌疑人是否无罪 并不确切知道,只能以证据不足释放.由于证据的取得方式 与证据的解释是差错,也可能发生误判.在判决中可能出现 两类错误: 第一类错误:无罪犯罪嫌疑人被错判有罪,构成冤案,反而 使犯罪人逃脱; 第二类错误:犯罪人被错放了 从以人为本权衡利弊,一般认为冤案(即第一类错误)的社会 影响更为严重.所以法制社会要控制第一类错误的概率在一 个相当小的显著水平以下.但是,这时,第二类错误就会攀升
(n 1)
2
2 2 10.5
2 0.5
或
2 10.5
} ,
时拒绝 0 , H
认为 ; 2 (2) P{ (n 1)} ,
2
当 (n 1)时拒绝 0 , H 2 2 认为 0 ;
2
2 0 2 1 2 1
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
任何检验方法都不能完全排除犯错 误的可能性.理想的检验方法应使犯两类 错误的概率都很小,但在样本容量给定的 情形下,不可能使两者都很小,降低一个, 往往使另一个增大.
假设检验的指导思想是控制犯第一类
错误的概率不超过, 然后,若有必要,通