祁县四中2018-2019学年高二上学期第二次月考试卷数学

合集下载

祁县二中2018-2019学年高二上学期第二次月考试卷数学

祁县二中2018-2019学年高二上学期第二次月考试卷数学

祁县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40C .60D .202. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)3. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案4. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .25. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]6. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 7. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.158. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)9. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .10.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)11.下列函数中,为奇函数的是( )A .y=x+1B .y=x 2C .y=2xD .y=x|x|12.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其中为自然对数的底数)的解集为 .14.命题p :∀x ∈R ,函数的否定为 .15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .16.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 . 17.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________. 18.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .三、解答题19.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.20.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点. (1)求证:BD 1∥平面A 1DE ; (2)求证:A 1D ⊥平面ABD 1.21.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.22.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线.(2)若,求的值.23.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.24.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.祁县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.2.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B3.【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

祁县中学校2018-2019学年高二9月月考数学试题解析

祁县中学校2018-2019学年高二9月月考数学试题解析

祁县中学校2018-2019学年高二9月月考数学试题解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 2. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .42C .8D .473. 已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是 图乙中的( )4. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 5. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如右图所示,则 f (0)的值为( )A.32- B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.6. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 7. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 8. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 9. 已知集合{}{}2|10,,|03,A x x x R B x x x R =-≥∈=≤<∈,则AB =( )A .{}|13,x x x R <<∈B .{}|13,x x x R ≤≤∈C .{}|13,x x x R ≤<∈D .{}|03,x x x R <<∈ 10.设a ,b ∈R ,i 为虚数单位,若2+a i 1+i =3+b i ,则a -b 为( )A .3B .2C .1D .011.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( ) A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 12.执行如图所示的程序框图,输出的值是( )A .5B .4C .3D .2二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 . 14.已知函数22tan ()1tan xf x x=-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 15.定义在R 上的可导函数()f x ,已知()f x ye=′的图象如图所示,则()y f x =的增区间是 ▲ .6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与__________,a c ⋅的最大值为 . 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 70分。

祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

21.已知椭圆 C1:
+
=1(a>b>0)的离心率 e=
,且经过点(1,
),抛物线 C2:x2=2py(p>0)
的焦点 F 与椭圆 C1 的一个焦点重合. (Ⅰ)过 F 的直线与抛物线 C2 交于 M,N 两点,过 M,N 分别作抛物线 C2 的切线 l1,l2,求直线 l1,l2 的交 点 Q 的轨迹方程; (Ⅱ)从圆 O:x2+y2=5 上任意一点 P 作椭圆 C1 的两条切线,切点为 A,B,证明:∠APB 为定值,并求出这 个定值.
1 ³ 2 ,所以 a £ 1 ,故选 D. x
8. 【答案】 C 【解析】解:设椭圆的长半轴为 a,双曲线的实半轴为 a1,(a>a1),半焦距为 c, 由椭圆和双曲线的定义可知, 设|MF1|=r1,|MF2|=r2,|F1F2|=2c, 椭圆和双曲线的离心率分别为 e1,e2
第 7 页,共 18 页
精选高中模拟试卷
祁县第四中学校 2018-2019 学年高二上学期第二次月考试卷数学 班级__________ 一、选择题
1. 如果定义在 R 上的函数 f ( x ) 满足:对于任意 x1 x 2 ,都有 x1 f ( x1 ) x 2 f ( x 2 )
姓名__________
分数__________
11.若 A(3,﹣6),B(﹣5,2),C(6,y)三点共线,则 y=( B.﹣13
12.若 l、m、n 是互不相同的空间直线,α、β 是不重合的平面,则下列结论正确的是( A.α∥β,l⊂α,n⊂β⇒l∥n C.l⊥n,m⊥n⇒l∥m B.α∥β,l⊂α⇒l⊥β D.l⊥α,l∥β⇒α⊥β
二、填空题
24.已知函数

第 4 页,共 18 页

山西省祁县中学2018-2019学年高二4月月考数学(理)试题Word版含解析

山西省祁县中学2018-2019学年高二4月月考数学(理)试题Word版含解析

山西省祁县中学2018-2019学年高二4月月考数学(理)试题一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 复数2+3i的共轭复数是()A. -2+3iB. 2-3iC. -2-3iD. 3-2i【答案】B【解析】由共轭复数可知,复数实部不变,虚部为以前的相反数,即为共轭复数,所以复数2+3i的共轭复数是2-3i,选B.2. 下列函数中,x=0是其极值点的函数是( )A. f(x)=-cosxB. f(x)=-x3C. f(x)=sinx-xD. f(x)=【答案】A【解析】由题意得,选项A,且,且在区间上>0,在区间上<0,符合。

选项B,,函数在R上单调递减,无极值点。

选项C,,函数f(x)=sinx-x在区间R上单调递减,无极值点。

选项D,函数在x=0处无定义。

选A.3. 下面使用类比推理,得到的结论正确的是( )A. 直线a,b,c,若a//b,b//c,则a//c.类比推出:向量,若,则.B. 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a//b.C. 以点为圆心,为半径的圆的方程为.类比推出:以点为球心,为半径的球面的方程为.D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.【答案】C【解析】对于A,时,不正确;对于B,空间中,直线,若则或或相交,故不正确;对于D,方程有实根,但不成立,故D不正确。

故选C.【点睛】归纳推理与类比推理不一定正确,我们在进行类比推理时,一定要注意对结论进行进一步的论证,如果要证明一个结论是正确的,要经过严密的论证,但要证明一个结论是错误的,只需要举出一个反例.4. 已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有( )A. 125个B. 60个C. 100个D. 48个【答案】C【解析】由题意得,,的选择一共有=4,的选择一共有,c的选择共种,根据分步计数原理,不同的二次函数共有N==100种。

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学测试

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学测试

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .23. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .4. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]5. 函数y=a x +1(a >0且a ≠1)图象恒过定点( ) A .(0,1) B .(2,1) C .(2,0) D .(0,2)6. 在等比数列{a n }中,已知a 1=9,q=﹣,a n =,则n=( )A .4B .5C .6D .77. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 8. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 9. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ 10.如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 311.i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i12.实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a二、填空题13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 15由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.16.不等式的解集为 .17.已知角α终边上一点为P (﹣1,2),则值等于 .18.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .三、解答题19.已知S n 为等差数列{a n }的前n 项和,且a 4=7,S 4=16. (1)求数列{a n }的通项公式; (2)设b n =,求数列{b n }的前n 项和T n .20.设不等式的解集为.(1)求集合; (2)若,∈,试比较与的大小。

祁县第二中学校2018-2019学年高二上学期第二次月考试卷数学

祁县第二中学校2018-2019学年高二上学期第二次月考试卷数学

祁县第二中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .2. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .12 3. “24x ππ-<≤”是“tan 1x ≤”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 4. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .5. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .36. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .47. 已知等差数列的公差且成等比数列,则( )A .B .C .D .8. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .9. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}10.复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)11.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .3012.函数f (x )=cos 2x ﹣cos 4x 的最大值和最小正周期分别为( )A .,πB .,C .,πD .,二、填空题13.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .14.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.已知角α终边上一点为P (﹣1,2),则值等于 .17.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .三、解答题19.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.20.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.21.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望.22.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式;(2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *都成立的最大正整数m .23.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.24.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象ππ1(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.祁县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.2. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质. 3. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 4. 【答案】C【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1, 故平面AA 1O 1⊥面AB 1D 1,交线为AO 1,在面AA 1O 1内过B 1作B 1H ⊥AO 1于H , 则易知A1H 的长即是点A 1到截面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=,AO 1=3,由A 1O 1•A 1A=h •AO 1,可得A 1H=,故选:C .【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.5.【答案】C【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C6.【答案】A【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.7.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A8.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.9.【答案】B【解析】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x ﹣2)(x+1)<0, ∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}. 故选:B10.【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A .【点评】本题考查了复数的运算法则、几何意义,属于基础题.11.【答案】D 【解析】试题分析:分段间隔为50301500,故选D. 考点:系统抽样 12.【答案】B【解析】解:y=cos 2x ﹣cos 4x=cos 2x (1﹣cos 2x )=cos 2x •sin 2x=sin 22x=,故它的周期为=,最大值为=.故选:B .二、填空题13.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.14.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1co s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6. 16.【答案】.【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.17.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.18.【答案】 {x|﹣1<x <1} .【解析】解:∵A={x|﹣1<x <3},B={x|x <1}, ∴A ∩B={x|﹣1<x <1},故答案为:{x|﹣1<x<1}【点评】本题主要考查集合的基本运算,比较基础.三、解答题19.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.20.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…21.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为.【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.22.【答案】【解析】解:(1)由题意知:S n =n 2﹣n ,当n ≥2时,a n =S n ﹣S n ﹣1=3n ﹣2, 当n=1时,a 1=1,适合上式, 则a n =3n ﹣2;(2)根据题意得:b n ===﹣,T n =b 1+b 2+…+b n =1﹣+﹣+…+﹣=1﹣,∴{T n }在n ∈N *上是增函数,∴(T n )min =T 1=,要使T n >对所有n ∈N *都成立,只需<,即m <15,则最大的正整数m 为14.23.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】(2 ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-,因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,AC =因此以AC 为直径圆的半径12r AC ===,E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为===当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 24.【答案】【解析】解:(Ⅰ)①处应填入.=.∵T=,∴,,即.∵,∴,∴,从而得到f (x )的值域为.(Ⅱ)∵,又0<A <π,∴,得,.由余弦定理得a 2=b 2+c 2﹣2bccosA==(b+c )2﹣3bc ,即,∴bc=3.∴△ABC 的面积.【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.。

祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学

祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学

祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A.B.18 C.D.2.执行如图所示的程序框图,输出的z值为()A.3 B.4 C.5 D.63.若动点A,B分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.44.已知命题“p:∃x>0,lnx<x”,则¬p为()A.∃x≤0,lnx≥x B.∀x>0,lnx≥x C.∃x≤0,lnx<x D.∀x>0,lnx<x5.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2) C.(1,+∞)D.(0,1)6.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥β,m⊥β,则m∥α;其中正确命题的序号是()A.①②③④B.①②③ C.②④D.①③7.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.8.直线2x+y+7=0的倾斜角为()A.锐角 B.直角 C.钝角 D.不存在9.=()A.﹣i B.i C.1+i D.1﹣i10.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C 与B1C1所成的角为()A.30°B.45°C.60°D.90°11.计算log25log53log32的值为()A.1 B.2 C.4 D.812.已知平面向量(12)=,a,(32)=-,b,若k+a b与a垂直,则实数k值为()A.15-B.119C.11D.19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.二、填空题13.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则=.14.定义:[x](x∈R)表示不超过x的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是.(填上所有正确命题的编号)15.设函数,若用表示不超过实数m的最大整数,则函数的值域为.16.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).17.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为.x-=垂直的直线的倾斜角为___________.18.(文科)与直线10三、解答题19.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.20.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.21.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.22.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.23.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.24..(1)求证:(2),若.祁县第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.2.【答案】D【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20,a=1,当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21,a=2当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23,a=3当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26,a=4当S=26,a=4,满足退出循环的条件,则z==6故输出结果为6故选:D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.4.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.5.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.6.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.7.【答案】C【解析】解:由于q=2,∴∴;故选:C.8.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.9.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.10.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣AB1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,1CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.11.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.12.【答案】A二、填空题13.【答案】.【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.14.【答案】②③④【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.15.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.16.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.17.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.18.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.三、解答题19.【答案】【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x1<x2),=,令,设,t∈(0,1)且h(1)=0则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0即,又,∴f'(x0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.20.【答案】【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…由消y并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.21.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,.22.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 23.【答案】 【解析】【分析】(1)因为直线l 过点A (4,0),故可以设出直线l 的点斜式方程,又由直线被圆C 1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线l 1与l 2的点斜式方程,由于两直线斜率为1,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 1与l 2的方程.【解答】解:(1)由于直线x=4与圆C 1不相交;∴直线l 的斜率存在,设l 方程为:y=k (x ﹣4)(1分)圆C 1的圆心到直线l 的距离为d ,∵l 被⊙C 1截得的弦长为2 ∴d==1(2分) d=从而k (24k+7)=0即k=0或k=﹣∴直线l 的方程为:y=0或7x+24y ﹣28=0(5分) (2)设点P (a ,b )满足条件,由题意分析可得直线l 1、l 2的斜率均存在且不为0, 不妨设直线l 1的方程为y ﹣b=k (x ﹣a ),k ≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)24.【答案】【解析】解:(1)∵,∴a n+1=f(a n)=,则,∴{}是首项为1,公差为3的等差数列;(2)由(1)得,=3n﹣2,∵{b n}的前n项和为,∴当n≥2时,b n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,而b1=S1=1,也满足上式,则b n=2n﹣1,∴==(3n﹣2)2n﹣1,∴=20+4•21+7•22+…+(3n﹣2)2n﹣1,①则2T n=21+4•22+7•23+…+(3n﹣2)2n,②①﹣②得:﹣T n=1+3•21+3•22+3•23+…+3•2n﹣1﹣(3n﹣2)2n,∴T n=(3n﹣5)2n+5.。

最新山西省祁县中学20182019学年高二数学11月月考试题 文-word文档

最新山西省祁县中学20182019学年高二数学11月月考试题 文-word文档

山西省祁县中学2019-2019学年高二数学11月月考试题 文(扫描版)祁县中学2019年高二年级11月月考数学(文)答案一、选择题DBDDAC CCCBAC二、填空题13.若24x ≠,则2x ≠且2x ≠- 14.(x -1)2+y 2=215.3x +2y -7=0或4x +y -6=0 16.36π三、解答题17. 解:(1)设圆A 的半径为R ,因为圆A 与直线l 1:x+2y+7=0相切,∴,∴圆A 的方程为(x+1)2+(y ﹣2)2=20.(2)①当直线l 与x 轴垂直时,易知x=﹣2符合题意;②当直线l 与x 轴不垂直时,设直线的方程为y=k (x+2),即kx ﹣y+2k=0.连接AQ ,则AQ ⊥MN ,∵,∴,则由得,∴直线l 为:3x ﹣4y+6=0,故直线l 的方程为x=﹣2或3x ﹣4y+6=0.18. 解:(1)由题意知BC 的斜率为-2,又点B(4,4),∴直线BC 的方程为y -4=-2(x -4),即2x +y -12=0.解方程组⎩⎪⎨⎪⎧ y =0,x -2y +2=0,得⎩⎪⎨⎪⎧ x =-2,y =0,∴点A 的坐标为(-2,0).又∠A 的内角平分线所在直线的方程为y =0,∴点B(4,4)关于直线y =0的对称点B′(4,-4)在直线AC 上,∴直线AC 的方程为y =-23(x +2),即2x +3y +4=0. 解方程组⎩⎪⎨⎪⎧ 2x +y -12=0,2x +3y +4=0,得⎩⎪⎨⎪⎧ x =10,y =-8,∴点C 的坐标为(10,-8). (2)∵|BC|=-2+-8-2=65,又直线BC 的方程是2x +y -12=0,∴点A 到直线BC 的距离是d =-+0-12|22+12=165,∴△ABC 的面积是S =12×|BC|×d=12×65×165=48. 19.解:(1)若p 为真则()()222log 612log 32;x x x +≥++得22612032061232x x x x x x +>⎧⎪++>⎨⎪+≥++⎩即22320 61232x x x x x ⎧++>⎪⎨+≥++⎪⎩,解得: 15x -<≤. 若非q 为真,则232222,32,13,x x x x x x -≥-≥∴≤-≥得或所以()p q ∧⌝为真命题,则x 的取值范围为[]3,5.(2)因为()p q ∧⌝为真命题是不等式2240x ax a -+->成立的充分条件所以[]3,5x ∈时不等式2240x ax a -+->恒成立.20. (1)证明:∵E 为BC 的中点,1EC CD ==,∴DCE ∆为等腰直角三角形,∴211121=⨯⨯=∆DCE S ,而PA 是三棱锥DCE P -的高, (2)在PA 上存在中点G ,使得PCD EG 平面//.理由如下:取PD PA ,的中点H G ,,连结CH GH EG ,,.………9分∵H G ,是PD PA ,的中点, ∴AD GH //,且AD GH 21=, 21. (1)如图,由已知AD∥BC,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD⊥平面PDC ,直线PD ⊂平面PDC ,所以AD⊥PD. 在Rt△PDA 中,由已知,得AP =,故cos∠DAP==. 所以,异面直线AP 与BC 所成角的余弦值为.(2)证明:由(1)知AD⊥PD.又因为BC∥AD,所以PD⊥BC.又PD⊥PB,PB∩BC=B ,所以PD⊥平面PBC.(3)解:过点D 作DF∥AB,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD∥BC ,DF∥AB,故BF =AD =1.由已知,得CF =BC -BF =2.又AD⊥DC,所以BC⊥DC.在Rt△DCF 中,可得DF =2,在Rt△DPF 中,可得sin∠DFP=.所以直线AB 与平面PBC 所成角的正弦值为.22.解:(1)由已知可得直线l :323-=x y ,∴椭圆的右焦点)02(, ∴362=a , ∴6=a ,2=b ,椭圆C 的方程为12622=+y x . (4分) (2)由DN DM λ=知,D ,M ,N 三点共线,又点D 在x 轴上,∴直线MN 有以下两种情况: ①当直线MN 与x 轴重合时,M ,N 为椭圆长轴的两个端点,由DN DM λ= 得,625±=λ; (6分)②当直线MN 与x 轴不重合时,设MN :3+=my x ,由⎪⎩⎪⎨⎧=++=126322y x my x 消去x 得, 036)3(22=+++my y m ,设M(11y x ,),N(22y x ,), 则36221+-=+m m y y ①33221+=m y y ②, (7分) 由0)3(12)6(22>+-=∆m m 得232>m (8分) 又DN DM λ=,∴)3()3(2211y x y x ,,-=-λ,且0>λ,1≠λ,∴21y y λ=③, 由①②③得=+λλ1=+1221y y y y =+21221)(y y y y 336102+-m ,∵232>m ∴1012<+<λλ,解得,625625+<<-λ且1≠λ (11分)综上所述,实数λ的取值范围是],,6251()1625[+- (12分)。

2018-2019学年山西省祁县中学高二上学期期末模拟二考试数学(理)试题 Word版

2018-2019学年山西省祁县中学高二上学期期末模拟二考试数学(理)试题 Word版

祁县中学2019年高二年级1月模拟(2)数学(理)试题 命题人:一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线的倾斜角为( )A.6π错误!未找到引用源。

B. 3π错误!未找到引用源。

C. 65π错误!未找到引用源。

D. 32π错误!未找到引用源。

2.命题“对任意,都有”的否定为( )A. 存在,都有B. 对任意,使得C. 存在,使得D. 不存在,使得3.圆柱的底面半径为1,母线长为2,则它的侧面积为( )A. B.C. 错误!未找到引用源。

D.错误!未找到引用源。

4.设l ,m ,n 表示三条不同的直线,,,表示三个不同的平面,给出下列四个命题:若,,,则;若,n 是l 在内的射影,,则;若,,则其中真命题的个数为( )A. 2B. 1C. 0D. 35.直线:与直线:垂直,则直线在x 轴上的截距是( )A.B. 2C.D. 46.已知平面及平面同一侧外的不共线三点A ,B ,C ,则“A ,B ,C 三点到平面的距离都相等”是“平面平面”的( )A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分又不必要件7.在空间四边形OABC 中,,,,点M 在线段OA 上,且,N为BC 的中点,则等于( )A. 错误!未找到引用源。

B. 错误!未找到引用源。

C.D.8.圆上到直线的距离等于1的点有( )A. 1个B. 3个C. 2个D. 4个9.已知椭圆1422=+y x 错误!未找到引用源。

和点),(2121A 错误!未找到引用源。

、),(121B 错误!未找到引用源。

,若椭圆的某弦的中点在线段AB 上,且此弦所在直线的斜率为k ,则k 的取值范围为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.D.10.已知椭圆1163222=+y x 错误!未找到引用源。

内有一点,,是其左、右焦点,M 为椭圆上的动点,则的最小值为( )A. 4错误!未找到引用源。

祁县第四中学2018-2019学年高二上学期第二次月考试卷数学

祁县第四中学2018-2019学年高二上学期第二次月考试卷数学

祁县第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2 B .12πcm 2 C .16πcm 2 D .20πcm 22. 双曲线的渐近线方程是( )A .B .C .D .3. 集合{}1,2,3的真子集共有( ) A .个 B .个 C .个 D .个4. 抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )A .B .C .D .5. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣16. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10 7. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥18. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2039.某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为()A.B.C.D.10.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()A. C. D.时,函数f(x)的最大值与最小值的和为()A.a+3 B.6 C.2 D.3﹣a11.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()A.S18=72 B.S19=76C.S20=80 D.S21=8412.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数二、填空题13.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为(用数字作答)14.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为.14.已知集合,若3∈M,5∉M,则实数a的取值范围是.15.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .17.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.三、解答题19.已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <1.20.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)21.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.22.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.23.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.24.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]2. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .3. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+44. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 5. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91526. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④7. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1208. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)9. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .12.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题13.已知数列的前项和是, 则数列的通项__________14.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .15.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .16.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .17.设函数f (x )=若f[f (a )],则a 的取值范围是 .18.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .三、解答题19.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.20.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.21.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.22.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.23.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.24.已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.2.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.3. 【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1 故答案是:A【点评】考察复合函数的转化,属于基础题.4. 【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log x x y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=xx y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 5. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .6. 【答案】D【解析】【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB=当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D7. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .8. 【答案】A【解析】解:若命题p :“∀∈[1,e],a >lnx ,为真命题, 则a >lne=1,若命题q :“∃x ∈R ,x 2﹣4x+a=0”为真命题,则△=16﹣4a ≥0,解得a ≤4, 若命题“p ∧q ”为真命题, 则p ,q 都是真命题,则,解得:1<a ≤4.故实数a 的取值范围为(1,4]. 故选:A .【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p ,q 的等价条件是解决本题的关键.9. 【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b . 故选C10.【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 11.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.12.【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.二、填空题13.【答案】【解析】 当时,当时,,两式相减得:令得,所以答案:14.【答案】 ﹣1或0 .【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.15.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.16.【答案】3,﹣17.【解析】解:由f′(x)=3x2﹣3=0,得x=±1,当x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)的极小值、极大值分别为f(﹣1)=3,f(1)=﹣1,而f(﹣3)=﹣17,f(0)=1,故函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.17.【答案】或a=1.【解析】解:当时,.∵,由,解得:,所以;当,f(a)=2(1﹣a),∵0≤2(1﹣a)≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.18.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.三、解答题19.【答案】【解析】解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b从而f′(x)=6y=f′(x)关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f′(x)=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2﹣12x+1f′(x)=6x2+6x﹣12=6(x﹣1)(x+2)令f′(x)=0,得x=1或x=﹣2当x∈(﹣∞,﹣2)时,f′(x)>0,f(x)在(﹣∞,﹣2)上是增函数;当x∈(﹣2,1)时,f′(x)<0,f(x)在(﹣2,1)上是减函数;当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数.从而f(x)在x=﹣2处取到极大值f(﹣2)=21,在x=1处取到极小值f(1)=﹣6.20.【答案】【解析】解:(1),=5…且,代入回归直线方程可得∴=0.6x+3.2,x=6时,=6.8,…(2)X的取值有0,1,2,3,则,,,…【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.21.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.22.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…∵函数y=f(x)的图象与g(X)的图象关于x轴对称,∴.…(Ⅱ)∵f(x﹣1)>f(5﹣x),∴,即,解得1<x<3,所以x的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.23.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0 ∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.24.【答案】【解析】解:(Ⅰ)联立,解得其交点坐标为(4,2).…因为直线l与直线2x﹣2y﹣5=0平行,所以直线l的斜率为1.…所以直线l的方程为y﹣2=1×(x﹣4),即x﹣y﹣2=0.…(Ⅱ)点P(2,2)到直线l的距离为.…【点评】本题考查直线方程的求法,点到直线距离公式的应用,考查计算能力.。

祁县高中2018-2019学年高二上学期第二次月考试卷数学

祁县高中2018-2019学年高二上学期第二次月考试卷数学

祁县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92 D .4 2. 如图,程序框图的运算结果为( )A .6B .24C .20D .1203. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)4. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣5. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20176. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .7. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8. 直线的倾斜角是( )A .B .C .D .9. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]10.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)11.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 12.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 二、填空题13.已知i 是虚数单位,复数的模为 .14.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 . 15.阅读右侧程序框图,输出的结果i 的值为 .16.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .18.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),(1)求{a n }的通项公式;(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .20.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤21.已知函数f (x )=cosx (sinx+cosx )﹣.(1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.22.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.23.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.24.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.祁县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

祁实验中学2018-2019学年高二上学期第二次月考试卷数学

祁实验中学2018-2019学年高二上学期第二次月考试卷数学

祁县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .22. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .3. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .64. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a5. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣16. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 7. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或108. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.239. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .10.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .811.已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1] C .(﹣∞,0) D .(﹣∞,0]12.命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=二、填空题13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.14.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .15.求函数在区间[]上的最大值 .16.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.其中真命题是(写出所有真命题的序号)17.在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB 的距离是.18.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。

祁县民族中学2018-2019学年高二上学期第二次月考试卷数学

祁县民族中学2018-2019学年高二上学期第二次月考试卷数学

祁县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣2 2. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 3. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件4. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个5. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 6.设双曲线=1(a >0,b >0)的渐近线方程为y=x ,则该双曲线的离心率为( )A.B .2C.D.7. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2D .3﹣a8. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .9. 如图所示,函数y=|2x ﹣2|的图象是( )A .B .C .D .10.已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 11.若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0 C .1D .﹣1或112.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或2二、填空题13.在矩形ABCD 中,=(1,﹣3),,则实数k= .14.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .15.已知x 是400和1600的等差中项,则x= .16.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .17.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)18.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .三、解答题19.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?20.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.(Ⅰ)求线段AD的长;(Ⅱ)比较∠ADC和∠ABC的大小.21.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y =的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.23.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.(1)求证:数列{b n}为等差数列;(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;(3)证明:1+++…+≤2﹣1(n∈N*)24.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.祁县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,2.【答案】D3.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A4. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .2. 不等式x (x ﹣1)<2的解集是()A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}3. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫⎪⎝⎭时,的取值范围是( )A .B .C .D .()0,1(⎫⎪⎪⎭(4. 函数f (x )=有且只有一个零点时,a 的取值范围是()A .a ≤0B .0<a <C .<a <1D .a ≤0或a >15. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .6. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=()A .B .C .0D .﹣7. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为()2+a i1+iA .3B .2C .1D .08. (﹣6≤a ≤3)的最大值为( )A .9B .C .3D .9. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( )A .①对②错B .①错②对C .①②都对D .①②都错10.lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件11.以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .二、填空题13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .14.已知复数,则1+z 50+z 100= .15.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 . 16.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .17.已知函数,且,则,的大小关系()f x 23(2)5x =-+12|2||2|x x ->-1()f x 2()f x设,则三、解答题19.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围. 20.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.22.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1-F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.2F m P Q 、22211PQ F P F Q =+m 23.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50150200女30 170 200合计80320400(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力祁县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:设函数y=f (x )﹣g (x )=x 2﹣lnx ,求导数得=当时,y ′<0,函数在上为单调减函数,当时,y ′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x 2>lnx 恒成立,问题转化为求两个函数差的最小值对应的自变量x 的值. 2. 【答案】B【解析】解:∵x (x ﹣1)<2,∴x 2﹣x ﹣2<0,即(x ﹣2)(x+1)<0,∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}.故选:B 3. 【答案】C 【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =045α=0,12π⎛⎫⎪⎝⎭直线的倾斜角的取值范围是且,所以直线的斜率为2:0L ax y -=03060α<<045α≠且或,故选C.00tan 30tan 60a <<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.4. 【答案】D【解析】解:∵f (1)=lg1=0,∴当x ≤0时,函数f (x )没有零点,故﹣2x +a >0或﹣2x +a <0在(﹣∞,0]上恒成立,即a >2x ,或a <2x 在(﹣∞,0]上恒成立,故a >1或a ≤0;故选D .【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题. 5. 【答案】A【解析】解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1∴y=f (2﹣x )=,根据一次函数的性质,结合选项可知,选项A 正确故选A . 6. 【答案】D【解析】解:∵函数f (x )(x ∈R )满足f (x+π)=f (x )+cosx ,当0≤x <π时,f (x )=1,∴f ()=f ()=f ()+cos =f ()+cos +cos =f ()+cos +cos=f()+cos+cos=f ()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D .【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用. 7. 【答案】【解析】选A.由=3+b i 得,2+a i1+i2+a i =(1+i )(3+b i )=3-b +(3+b )i ,∵a ,b ∈R ,∴,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A.{2=3-b a =3+b)8. 【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.9.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.10.【答案】A【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A.【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.11.【答案】D12.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a ,则b=a ,=,故选B .【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用. 二、填空题13.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.14.【答案】 i .【解析】解:复数,所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1. 15.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S 位置是关键.考查空间想象能力、计算能力. 16.【答案】 .【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),∴a+b ﹣1=0,即a+b=1,∴ab ≤=当且仅当a=b=时取等号,故ab 的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题. 17.【答案】]12()()f x f x 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.18.【答案】9【解析】由柯西不等式可知三、解答题19.【答案】【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…21.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P (X=0)=(1﹣)(1﹣)==;P (X=1)==;P (X=2)==.∴X 的分布列为:X 0 1 2PEX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用. 22.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若为直线,代入得,即, m 1=x 13422=+y x 23±=y )23,1(P )23,1(-Q直接计算知,,,不符合题意 ; 29PQ =225||||2121=+Q F P F 22211PQ F P F Q ¹+1=x ②若直线的斜率为,直线的方程为m k m (1)y k x =-由得 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x 0)124(8)43(2222=-+-+k x k x k 设,,则, 11(,)P x y 22(,)Q x y 2221438k k x x +=+222143124k k x x +-=⋅由得,22211PQ F P F Q =+110F P FQ ×=即,0)1)(1(2121=+++y y x x 0)1()1()1)(1(2121=-⋅-+++x k x k x x 0)1())(1()1(2212212=+++-++k x x k x x k 代入得,即 0438)1()143124)(1(222222=+⋅-+++-+kk k k k k 0972=-k 解得,直线的方程为 773±=k m )1(773-±=x y 23.【答案】(1)的单调递增区间为,单调递减区间为;(2)或;(3)()f x (0,)+∞(,0)-∞1a >0a <证明见解析.【解析】试题解析: (1).'()1xf x e =-令,得,则的单调递增区间为;]'()0f x >0x >()f x (0,)+∞令,得,则的单调递减区间为.'()0f x <0x <()f x (,0)-∞(2)记,则,()()()F x f x g x =-21()2x x F x e x a a e=--+-.1'()2x x F x e e =+-∵,∴,1220x x e e +-≥-='()0F x ≥∴函数为上的增函数,()F x (,)-∞+∞∴当时,的最小值为.[]0,2x ∈()F x 2(0)F a a =-∵存在,使得成立,[]0,2x ∈()()f x g x <∴的最小值小于0,即,解得或.1()F x 20a a -<1a >0a <(3)由(1)知,是函数的极小值点,也是最小值点,即最小值为,0x =()f x (0)1f a =+则只有时,函数由两个零点,不妨设,1a <-()f x 12x x <易知,,10x <20x >∴,1222()()()()f x f x f x f x -=--2222()()x x e x a ex a -=-+-++2222x x e e x -=--令(),()2x x h x e e x -=--0x≥考点:导数与函数的单调性;转化与化归思想.24.【答案】【解析】(Ⅰ)根据题中的数据计算:()224005017030150 6.2580320200200⨯⨯-⨯K ==⨯⨯⨯因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为,故抽出的8人中,男士有5人,女士有3人.分别设为,选81=8010,,,,,1,2,3a b c d e 取2人共有,,,,,,,,,,,{},a b {},a c {},a d {},a e {},1a {},2a {},3a {},b c {},b d {},b e {},1b,,,,,,,,,,,,{},2b {},3b {},c d {},c e {},1c {},2c {},3c {},d e {},1d {},2d {},3d {},1e ,,,,28个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个{},2e {},3e {}1,2{}1,3{}2,3基本事件,故所求概率为.189=2814P =。

祁县一中2018-2019学年高二上学期第二次月考试卷数学

祁县一中2018-2019学年高二上学期第二次月考试卷数学

祁县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .2. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣83. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D4. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )5. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一6. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .137. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±38. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内9. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .411.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)12.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个二、填空题13.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 . 15.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .16.在(1+x )(x 2+)6的展开式中,x 3的系数是 .17.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .18.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题19.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x ≥a}.(Ⅰ)求A ∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.20.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.21.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.23.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围24.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.祁县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.2.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.3.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.4.【答案】【解析】选B.取AP的中点M,则P A=2AM=2OA sin∠AOM =2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.5.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.6.【答案】D【解析】考点:等差数列.7.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.8.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m ∥l 且n ∥l 由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾又因为点P 在平面内 所以点P 且平行于l 的直线有一条且在平面内所以假设错误. 故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.9. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .10.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确. 故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题.11.【答案】B【解析】解:∵f (x )是偶函数 ∴f (﹣x )=f (x )不等式,即也就是xf (x )>0①当x >0时,有f (x )>0∵f (x )在(0,+∞)上为减函数,且f (2)=0 ∴f (x )>0即f (x )>f (2),得0<x <2; ②当x <0时,有f (x )<0∵﹣x >0,f (x )=f (﹣x )<f (2), ∴﹣x >2⇒x <﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2) 故选B12.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3}, ∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.二、填空题13.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆1362722=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()()()4340153401522222=++---+-=a ,故2=a ,5492=-=b ,故所求双曲线的标准方程为15422=-x y .故答案为:15422=-x y . 考点:双曲线的简单性质;椭圆的简单性质.14.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.15.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.16.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.17.【答案】x+4y﹣5=0.【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,∴k==﹣,∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),即为x+4y﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.故答案为:x+4y﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.18.【答案】3三、解答题19.【答案】【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},∴∁U B={x|x≥4},又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},∴A∩(∁U B)={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,∴a的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.20.【答案】【解析】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴y=f(x)是周期函数,且T=4是其一个周期.(2)令x∈[﹣2,0],则﹣x∈[0,2],∴f(﹣x)=﹣2x﹣x2,又f(﹣x)=﹣f(x),∴在x∈[﹣2,0],f(x)=2x+x2,∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,∴当x∈[2,4]时,f(x)=x2﹣6x+8.(3)当x∈[0,2]时,f(x)=2x﹣x2.∴f(0)=0,f(1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.21.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.22.【答案】(1)a ≤2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<.试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.23.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人, 一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.24.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.。

祁县第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

祁县第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

祁县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)2.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.133.定义运算,例如.若已知,则=()A.B.C.D.4.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日5.定义:数列{a n}前n项的乘积T n=a1•a2•…•a n,数列a n=29﹣n,则下面的等式中正确的是()A.T1=T19B.T3=T17C.T5=T12D.T8=T116.定义在R上的偶函数()f x满足(3)()f x f x-=-,对12,[0,3]x x∀∈且12x x≠,都有1212()()f x f xx x->-,则有()A.(49)(64)(81)f f f<<B.(49)(81)(64)f f f<<C. (64)(49)(81)f f f<<D.(64)(81)(49)f f f<<7.设函数f(x)=,f(﹣2)+f(log210)=()A.11 B.8 C.5 D.28.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()A.(1,4] B.(0,1] C.[﹣1,1] D.(4,+∞)9. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β10.已知函数f (x )=,则的值为( )A .B .C .﹣2D .311.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=12.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥ 二、填空题13.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答).14.已知线性回归方程=9,则b= .15.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .17.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.18.在(1+x )(x 2+)6的展开式中,x 3的系数是 .三、解答题19.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n+1﹣a n =2,数列{b n }的前n 项和S n =n 2+a n . (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .20.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.21.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.22.求同时满足下列两个条件的所有复数z :①z+是实数,且1<z+≤6;②z 的实部和虚部都是整数.23.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.24.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.祁县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.2.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.3.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.4.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.5.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C6.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]7.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a ≥0,解得a ≤4, 若命题“p ∧q ”为真命题, 则p ,q 都是真命题,则,解得:1<a ≤4.故实数a 的取值范围为(1,4]. 故选:A .【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p ,q 的等价条件是解决本题的关键.9. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D10.【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .11.【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 12.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.二、填空题13.【答案】27【解析】解:若A方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.14.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.15.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。

祁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

祁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

祁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( )A .2B .C .4D .2. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣33. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .4. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 5. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 6. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3B .6C .7D .87. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β D .若α⊥β,m ⊥β,m ⊄α,则m ∥α8. 已知集合,则A0或 B0或3C1或D1或39. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 10.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题11.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N B .(∁U M )∩N C .M ∩(∁U N ) D .(∁U M )∩(∁U N )12.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题13.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .14.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.15.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .16.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .17.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .18.若函数y=ln (﹣2x )为奇函数,则a= .三、解答题19.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.21.已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =a n b n ,求数列{c n }的前n 项和S n .22.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.23.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.f x为偶函数且图象经过原点,24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()其导函数()'f x的图象过点()12,.f x的解析式;(1)求函数()(2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.祁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:双曲线﹣=1(a >0,b >0)的一条渐近线方程为bx+ay=0,∵渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,∴=4,∴a 2=3b 2, ∴c 2=4b 2,∴e==.故选:D .【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.2. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1. 故选:A .3. 【答案】C【解析】解:由于q=2,∴∴;故选:C .4. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 5. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.6. 【答案】B【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,∴公差d==,∴a 7=a 1+6d=2+4=6 故选:B .7. 【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:D .8. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。

2018-2019学年山西省祁县中学高二上学期期末模拟二考试数学(理)试题 解析版

2018-2019学年山西省祁县中学高二上学期期末模拟二考试数学(理)试题 解析版

绝密★启用前山西省祁县中学2018-2019学年高二上学期期末模拟二考试数学(理)试题一、单选题1.直线的倾斜角为()A.B.C.D.【答案】D【解析】【分析】由直线的方程可得斜率,由倾斜角和斜率的关系可得倾斜角.【详解】直线x+y﹣3=0可化为y x+3,∴直线的斜率为,设倾斜角为α,则tanα,又∵0≤α<π,∴α,故选:D.【点睛】本题考查直线的倾斜角,涉及倾斜角和斜率的关系,属于基础题.2.命题“对任意,都有”的否定为()A.存在,都有B.对任意,使得C.存在,使得D.不存在,使得【答案】C【解析】【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【详解】因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为:存在x0∈R,使得x02<0.故选:C.【点睛】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.圆柱的底面半径为1,母线长为2,则它的侧面积为()A.B.C.D.【答案】D【解析】【分析】根据圆柱的侧面积公式,计算即可.【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故选:D.【点睛】本题考查了圆柱的侧面积公式应用问题,是基础题.4.设l,m,n表示三条不同的直线,,,表示三个不同的平面,给出下列四个命题:若,,,则;若,n是l在内的射影,,则;若,,则其中真命题的个数为()A.2 B.1 C.0 D.3【答案】A【解析】【分析】①由二面角定义可知正确;②由三垂线定理可证;③可举反例说明错误.【详解】①由二面角定义可知若m⊥l,则α⊥β正确;②由三垂线定理知正确;③正方体从同一个顶点出发的三个平面两两垂直,可知命题错误.故选:A.【点睛】本题考查空间的线面位置关系,考查空间想象能力和逻辑推理能力.5.直线:与直线:垂直,则直线在x轴上的截距是()A.B.2 C.D.4【答案】C【解析】【分析】利用直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,求出a,再求出直线l1在x轴上的截距.【详解】∵直线l1:(a+3)x+y+4=0与直线l2:x+(a﹣1)y+4=0垂直,∴(a+3)+a﹣1=0,∴a=﹣1,∴直线l1:2x+y+4=0,∴直线l1在x轴上的截距是-2,故选:C.【点睛】本题考查直线垂直条件的运用,考查直线在x轴上的截距的定义和求法,属于基础题.6.已知平面及平面同一侧外的不共线三点A,B,C,则“A,B,C三点到平面的距离都相等”是“平面平面”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要件【答案】B【解析】【分析】根据充分必要条件的定义判断即可.已知平面α外不共线的三点A、B、C到α的距离都相等,且三点在α的同侧,则直线AB平行于α,直线BC平行于α,即平面ABC平行于α,反之根据面面平行的定义可知成立,故选:B.【点睛】本题考查了充分必要条件,考查线面,面面关系,是一道基础题.7.在空间四边形OABC中,,,,点M在线段OA上,且,N 为BC的中点,则等于()A.B.C.D.【答案】A【解析】【分析】由题意结合图形,直接利用,求出,然后即可解答.【详解】因为空间四边形OABC如图,,,,点M在线段OA上,且OM=2MA,N为BC的中点,所以.所以.故选:B.【点睛】本题考查空间向量的基本运算,考查计算能力.8.圆上到直线的距离等于1的点有()A.1个B.3个C.2个D.4个【解析】【分析】由圆的方程找出圆心A的坐标和半径r=3,然后由点到直线的距离公式求出圆心A到已知直线的距离为2,由AE﹣AD=DE,即3﹣2=1求出DE的长,得到圆A上的点到已知直线距离等于1的点有三个,如图,点D,P及Q满足题意.【详解】由圆的方程,得到圆心A坐标为(3,3),半径AE=3,则圆心(3,3)到直线3x+4y﹣11=0的距离为d2,即AD=2,∴ED=1,即圆周上E到已知直线的距离为1,同时存在P和Q也满足题意,∴圆上的点到直线3x+4y﹣11=0的距离为1的点有3个.故选:B.【点睛】本题考查了直线与圆的位置关系,以及点到直线的距离公式,考查了数形结合的数学思想,是一道中档题.9.已知椭圆和点、,若椭圆的某弦的中点在线段AB上,且此弦所在直线的斜率为k,则k的取值范围为()A.B.C.D.【答案】B【解析】【分析】由题意设出椭圆的某弦的两个端点分别为P(x1,y1),Q(x2,y2),中点为M(x0,y0),把P、Q的坐标代入椭圆方程,作差得到PQ的斜率与AB中点坐标的关系得答案.【详解】设椭圆的某弦的两个端点分别为P(x1,y1),Q(x2,y2),中点为M(x0,y0),则,,两式作差可得:,即,由题意可知,y0≤1,∴k(y0≤1),则k∈[﹣4,﹣2].故选:B.【点睛】本题考查椭圆的简单性质,训练了“中点弦”问题的求解方法,属于中档题.10.已知椭圆内有一点,,是其左、右焦点,M为椭圆上的动点,则的最小值为()A.4 B.C.D.6【答案】C【解析】【分析】借助于椭圆的定义把||+||转化为2a﹣(||﹣||),结合三角形中的两边之差小于第三边得答案.【详解】||+||=2a﹣(||﹣||)≥2a﹣||=826,当且仅当M,F2,B共线时取得最小值6.故选:C.【点睛】本题考查了与椭圆有关的最值的求法,考查了椭圆的定义的应用,考查了数学转化思想方法,是中档题.11.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A.B.C.D.【答案】D【解析】【分析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用双曲线的离心率公式求得e.【详解】直线F2A的直线方程为:y=kx,F1(0,),F2(0,),代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),设双曲线方程为:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴离心率e1,故选:D.【点睛】本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.12.在底面是边长为6的正方形的四棱锥P--ABCD中,点P在底面的射影H为正方形ABCD的中心,异面直线PB与AD所成角的正切值为,则四棱锥P--ABCD的内切球与外接球的半径之比为()A.B.C.D.【答案】D【解析】【分析】确定异面直线PB与AD所成角为∠PBC,取BC中点E,则tan∠PBC,求出PE=5,HP=4,可得四棱锥P﹣ABCD的表面积、体积,进而求出内切球的半径,利用勾股定理求出外接球的半径,即可求出四棱锥P﹣ABCD的内切球与外接球的半径之比.【详解】由题意,四棱锥P﹣ABCD为正四棱锥,P A=PB=PC=PD,∵AD∥BC,∴异面直线PB与AD所成角为∠PBC,取BC中点E,则tan∠PBC,∴PE=5,HP=4,从而四棱锥P﹣ABCD的表面积为S96,V48,∴内切球的半径为r.设四棱锥P﹣ABCD外接球的球心为O,外接球的半径为R,则OP=OA,∴(4﹣R)2+(3)2=R2,∴R,∴.故选D.【点睛】本题考查四棱锥P﹣ABCD的内切球与外接球的半径之比,考查四棱锥P﹣ABCD的表面积、体积,考查学生的计算能力,属于中档题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.若向量1,,且,则______.【答案】或 【解析】【分析】设(2λ,λ,﹣2λ),则||1,由此能求出结果.【详解】∵向量(2,1,﹣2),∥且||=1, ∴设(2λ,λ,﹣2λ),则||1,解得,∴()或(,,).故答案为:()或(,,).【点睛】 本题考查向量的求法,考查向量平行的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14.如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】7 8【解析】如下图,连结DN,取DN中点P,连结PM,PC,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.考点:异面直线的夹角.视频15.方程表示的曲线方程是________________.【答案】【解析】【分析】利用表达式的定义域,转化求解即可.【详解】(x2+y2﹣2)0有意义,必须x﹣3≥0,并且x2+y2﹣2=0或x﹣3=0,可得x=3.故答案为:x=3.【点睛】本题考查曲线与方程的应用,是基本知识的考查.16.已知直线与抛物线交于A,B两点,且,设线段AB的中点为M,当直线运动时,则点M的轨迹方程为_________.【答案】【解析】设点则有将两式相减得:将两式相加得:解出:又因为,所以所以,即点M的轨迹方程为故答案为:三、解答题17.已知,设命题:指数函数≠在上单调递增.命题:函数的定义域为.若“”为假,“”为真,求的取值范围.【答案】或【解析】试题分析:化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.试题解析:由命题p,得a>1,对于命题q,即使得x∈R,ax2-ax+1>0恒成立若a>0,△=a2-4a<0,即0<a<4若a=0,1>0恒成立,满足题意,所以0≤a<4由题意知p与q一真一假,当p 真q 假时 ,所以a ≥4.当p 假q 真时,,即0≤a ≤1.综上可知,a 的取值范围为[0,1]∪[4,+∞).18.已知直线l 过坐标原点O ,圆C 的方程为22640x y y +-+=.(1)当直线l l 与圆C 相交所得的弦长;(2)设直线l 与圆C 交于两点,A B ,且A 为OB 的中点,求直线l 的方程.【答案】(1) 直线l 的方程为y=x 或y=﹣x.【解析】试题分析:(1) 由已知,直线l 的方程为y =,圆C 圆心为()0,3,半径为l 的距离,根据勾股定理可求l 与圆C 相交所得的弦长;(2)设直线l 与圆C 交于两点,A B ,且A 为OB 的中点,设A ()11,x y ,则()112,2B x y ,将,A B 点的坐标代入椭圆方程求出A 的坐标,即可求直线l 的方程. 试题解析:(1)由已知,直线l 的方程为y=x ,圆C 圆心为(0,3),半径为,所以,圆心到直线l 的距离为=.…所以,所求弦长为2=2.(2) 设A (x 1,y 1),因为A 为OB 的中点,则B (2x 1,2y 1). 又A ,B 在圆C 上,所以 x 12+y 12﹣6y 1+4=0,4x 12+4y 12﹣12y 1+4=0. 解得y 1=1,x 1=±1, 即A (1,1)或A (﹣1,1)所以,直线l 的方程为y=x 或y=﹣x .19.边长为2的正三角形ABC 中,点D ,E ,G 分别是边AB ,AC ,BC 的中点,连接DE ,连接AG 交DE 于点现将沿DE 折叠至的位置,使得平面平面BCED ,连接A1G ,EG .证明:DE∥平面A1BC求点B到平面A1EG的距离.【答案】(1)见解析;(2)【解析】【分析】(1)推导出DE∥BC,由此能证明DE∥平面A1BC.(2)以F为原点,FG为x轴,FE为y轴,F A1为z轴,建立空间直角坐标系,利用向量法能求出点B到平面A1EG的距离.【详解】边长为2的正三角形ABC中,点D,E,G分别是边AB,AC,BC的中点,连接DE,连接AG交DE于点F.,平面,平面,平面.将沿DE折叠至的位置,使得平面平面BCED,连接,EG.以F为原点,FG为x轴,FE为y轴,为z轴,建立空间直角坐标系,1,,0,,,0,,,,,设平面的法向量y,,则,取,得,点B到平面的距离.【点睛】本题考查线面平行的证明,考查利用空间向量解决点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.是抛物线为上的一点,以S为圆心,r为半径做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.求抛物线的方程.求证:直线CD的斜率为定值.【答案】(1);(2)【解析】【分析】(1)将点(1,1)代入y2=2px(p>0),解得p,即可得出.(2)设直线SA的方程为:y﹣1=k(x﹣1),C(x1,y1).与抛物线方程联立,利用根与系数的关系可得C坐标.由题意有SA=SB,可得直线SB的斜率为﹣k,同理可得D坐标,再利用向量计算公式即可得出.【详解】将点代入,得,解得.∴抛物线方程为:.证明:设直线SA的方程为:,联立,联立得:,,,,由题意有,直线SB的斜率为,设直线SB的方程为:,联立,联立得:,,,,.【点睛】本题考查了抛物线的标准方程及其性质、一元二次方程的根与系数的关系、斜率计算公式、等腰三角形的性质,考查了推理能力与计算能力,属于中档题.21.如图,四棱锥中,底面ABCD为梯形,底面ABCD,,,,.1求证:平面平面PBC;2设H为CD上一点,满足,若直线PC与平面PBD所成的角的正切值为,求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】试题分析:(I)由直角三角形可得,由线面垂直的性质可得,从而可得平面进而可得结论;(II)以点为坐标原点,分别轴建立空间直角坐标系,分别求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(I)由,可得,又从而,底面,,平面所以平面平面.(II)由(I)可知为与底面所成角.所以,所以又及,可得,以点为坐标原点,分别轴建立空间直角坐标系,则.设平面的法向量.则由得取同理平面的法向量为所以又二面角为锐角.所以二面角余弦值为.【方法点晴】本题主要考查利用空间垂直关系以及空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.22.已知圆O : 224x y +=(其中O 为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线C . (1)求曲线C 的方程;(2)若点P 为曲线C 上一点,过点P 作曲线C 的切线交圆O 于不同的两点,A B (其中A 在B 的右侧),已知点())12,F F .求四边形12ABF F 面积的最大值.【答案】(1)2214x y +=(2)4 【解析】试题分析:(1)曲线C 上任意一点(),x y ,则(),2x y 为22:4O x y +=上的点,从而可得曲线C 的方程为2244x y +=,化简可得标准方程;(2),设:A B y k x m=+,由()()22222{ 41841014y kx mk x kmx m x y =+⇒+++-=+=,根据判别式为零可得2241m k =+,根据韦达定理、弦长公式以及三角形面积公式可得ABO S ∆=,同理可得2112AF O BF OS S y +=+=,则()1212ABF F ABO BF O AF O S S S S ∆=++=,利用基本不等式可得四边形12ABF F 面积的最大值.试题解析:(1)设曲线C 上任意一点(),x y ,则(),2x y 为22:4O x y +=上的点,22224414x x y y ∴+=⇔+=, ∴曲线22:14x C y +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祁县四中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .2. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥11 3. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥4. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .5.设{}n a是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1 B.2 C.4 D.6 6.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个7.下列命题中正确的是()A.复数a+bi与c+di相等的充要条件是a=c且b=dB.任何复数都不能比较大小C.若=,则z1=z2D.若|z1|=|z2|,则z1=z2或z1=8.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1509.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)x-=表示的曲线是()10.方程1A.一个圆B.两个半圆C.两个圆D.半圆11.如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是()A.=B.∥C.D.12.已知双曲线的方程为﹣=1,则双曲线的离心率为()A.B.C.或D.或二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.14.运行如图所示的程序框图后,输出的结果是15.1785与840的最大约数为.16.数据﹣2,﹣1,0,1,2的方差是.17.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=.18.经过A(﹣3,1),且平行于y轴的直线方程为.三、解答题19.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.20.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.21.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.22.(本小题满分12分)已知函数21()cos cos 2f x x x x =--.(1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.24.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.祁县四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.2.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.3.【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.4. 【答案】C【解析】解:如图所示,△BCD 是圆内接等边三角形,过直径BE 上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD 的内切圆的半径为1, 显然当弦为CD 时就是△BCD 的边长,要使弦长大于CD 的长,就必须使圆心O 到弦的距离小于|OF|, 记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内}, 由几何概型概率公式得P (A )=,即弦长超过圆内接等边三角形边长的概率是. 故选C .【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答.5. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=,解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 6. 【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.7. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .8. 【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,则其体积V=S ×h=30×5=50.故选B .9. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.10.【答案】A 【解析】试题分析:由方程1x -=221x -=,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 11.【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.12.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.二、填空题13.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题14.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.15.【答案】105.【解析】解:1785=840×2+105,840=105×8+0.∴840与1785的最大公约数是105.故答案为10516.【答案】2.【解析】解:∵数据﹣2,﹣1,0,1,2,∴=,∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x,x2,…x n的平均数,是一道基础题;117.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.18.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.三、解答题19.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i ,b=1+i ;或a=﹣1+i ,b=﹣1﹣i ;或a=﹣1﹣i ,b=﹣1+i .【点评】本题考查了共轭复数以及复数相等;正确设出a ,b 是解答的关键.20.【答案】【解析】解:(Ⅰ)元件A 为正品的概率约为.元件B 为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A次B 次.∴随机变量X 的所有取值为90,45,30,﹣15.∵P (X=90)==;P (X=45)==;P (X=30)==;P (X=﹣15)==.∴随机变量X 的分布列为:EX=.(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5﹣n 件.依题意得 50n ﹣10(5﹣n )≥140,解得.所以 n=4或n=5. 设“生产5件元件B 所获得的利润不少于140元”为事件A ,则P (A )==.21.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x ,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1.∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减, 且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).22.【答案】(1)最大值为,最小值为32-;(2. 【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-= ∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin 14A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 23.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.24.【答案】【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.∴集合P3,P5中的元素个数分别为9,23,∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,∴P3不具有性质Ω.…..证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.因为1∈E15,所以1∈A∪B,不妨设1∈A.因为1+3=22,所以3∉A,3∈B.同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.。

相关文档
最新文档