[整理]高中物理机械能守恒定律典例解题技巧
高中物理实验【验证机械能守恒定律】内容+典例
图1图2实验:验证机械能守恒定律一、实验目的通过实验验证机械能守恒定律.二、实验原理如图1所示,质量为m 的物体从O 点自由下落,以地面作为零重力势能面,如果忽略空气阻力,下落过程中任意两点A 和B 的机械能守恒即12mv 2A +mgh A =12mv 2B +mgh B 上式亦可写成12mv 2B -12mv 2A =mgh A -mgh B . 等式说明,物体重力势能的减少等于动能的增加.为了方便,可以直接从开始下落的O 点至任意一点(如图1中A 点)来进行研究,这时应有:12mv 2A =mgh ,即为本实验要验证的表达式,式中h 是物体从O 点下落至A 点的高度,v A 是物体在A点的瞬时速度.三、实验器材打点计时器,低压交流电源,带有铁夹的铁架台,纸带,复写纸,带夹子的重物,刻度尺,导线两根.四、实验步骤1.安装置:按图2将检查、调整好的打点计时器竖直固定在铁架台上,接好电路.2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器的地方.先接通电源,后松开纸带,让重物带着纸带自由下落.更换纸带重复做3~5次实验.3.选纸带:分两种情况说明(1)用12mv 2n =mgh n 验证时,应选点迹清晰,且1、2两点间距离略小于或接近2 mm 的纸带.(2)用12mv 2B -12mv 2A =mg Δh 验证时,由于重力势能的相对性,处理纸带时,选择适当的点为基准点,只要后面的点迹清晰就可选用.五、数据处理方法一:利用起始点和第n 点计算代入mgh n 和12mv 2n ,如果在实验误差允许的条件下,mgh n 和12mv 2n 相等,则验证了机械能守恒定律.方法二:任取两点计算(1)任取两点A、B测出h AB,算出mgh AB.(2)算出12mv2B-12mv2A的值.(3)在实验误差允许的条件下,若mgh AB=12mv2B-12mv2A,则验证了机械能守恒定律.方法三:图象法从纸带上选取多个点,测量从第一点到其余各点的下落高度h,并计算各点速度的平方v2,然后以12v2为纵轴,以h为横轴,根据实验数据作出12v2-h图线.若在误差允许的范围内图线是一条过原点且斜率为g的直线,则验证了机械能守恒定律.六、误差分析1.本实验中因重物和纸带在下落过程中要克服各种阻力(如空气阻力、打点计时器阻力)做功,故动能的增加量ΔE k稍小于重力势能的减少量ΔE p,即ΔE k<ΔE p,这属于系统误差.改进的办法是调整器材的安装,尽可能地减小阻力.2.本实验的另一个误差来源于长度的测量,属偶然误差.减小误差的办法是测下落距离时都从0点量起,一次将各打点对应的下落高度测量完,或者多次测量取平均值来减小误差.七、注意事项1.打点计时器要稳定的固定在铁架台上,打点计时器平面与纸带限位孔调整在竖直方向,以减小摩擦阻力.2.应选用质量和密度较大的重物,增大重力可使阻力的影响相对减小,增大密度可以减小体积,可使空气阻力减小.3.实验中,需保持提纸带的手不动,且保证纸带竖直,待接通电源,打点计时器工作稳定后,再松开纸带.4.测下落高度时,要从第一个打点测起,并且各点对应的下落高度要一次测量完.5.速度不能用v n=gt n或v n=2gh n计算,因为只要认为加速度为g,机械能当然守恒,即相当于用机械能守恒定律验证机械能守恒定律,况且用v n=gt n计算出的速度比实际值大,会得出机械能增加的结论,而因为摩擦阻力的影响,机械能应该减小,所以速度应从纸带上直接测量计算.同样的道理,重物下落的高度h,也只能用刻度尺直接测量,而不能用h n=12gt2n或h n=v2n2g计算得到.记忆口诀自由落体验守恒,阻力减小机械能.仪器固定竖直向,先开电源物后放.开头两点两毫米,从头验证式容易.不管开头看清晰,任取两点就可以.图象验证也很好,关键记住两坐标.例1某实验小组在做“验证机械能守恒定律”实验中,提出了如图3所示的甲、乙两种方案:甲方案为用自由落体运动进行实验,乙方案为用小车在斜面上下滑进行实验.图1(1)组内同学对两种方案进行了深入的讨论分析,最终确定了一个大家认为误差相对较小的方案,你认为该小组选择的方案是__________,理由是_______________________________。
高中物理必修二第七章-机械能守恒定律知识点总结
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)
一、机械能守恒定律在连接体问题中的应用
机械能守恒定律的研究对象是几个相互作用的物体组成的系统时,在应用机械能守恒定律解决系统的运动状态的变化及能量的变化时,经常出现下面三种情况:
1.系统内两个物体直接接触或通过弹簧连接。
这类连接体问题应注意各物体间不同能
量形式的转化关系。
2.系统内两个物体通过轻绳连接。
如果和外界不存在摩擦力做功等问题时,只有机械
能在两物体之间相互转移,两物体组成的系统机械能守恒。
解决此类问题的关键是在绳的方
向上两物体速度大小相等。
3.系统内两个物体通过轻杆连接。
轻杆连接的两物体绕固定转轴转动时,两物体的角
速度相等。
【典例1】如图所示,质量均为m的物体A和B,通过轻绳跨过定滑轮相连.斜面光滑,倾角为θ,不计绳子和滑轮之间的摩擦.开始时A物体离地的高度为h,B物体位于斜面的底端,用手托住A物体,使A、B两物体均静止。
现将手撤去。
(1) 求A 物体将要落地时的速度为多大?
(2) A 物体落地后, B 物体由于惯性将继续沿斜面向上运动,则 B 物体在斜面上到达的最高点离地的高度为多大?。
高中物理复习:机械能守恒定律和能量守恒定律
高中物理复习:机械能守恒定律和能量守恒定律【知识点的认识】1.机械能:势能和动能统称为机械能,即E=E k+E p,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力(或弹簧弹力)做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)表达式:观点表达式守恒观点 E1=E2,E k1+E p1=E k2+E p2(要选零势能参考平面)转化观点△E K=﹣△E P(不用选零势能参考平面)转移观点△E A=﹣△E B(不用选零势能参考平面)【命题方向】题型一:机械能是否守恒的判断例1:关于机械能是否守恒的叙述中正确的是()A.只要重力对物体做了功,物体的机械能一定守恒B.做匀速直线运动的物体,机械能一定守恒C.外力对物体做的功为零时,物体的机械能一定守恒D.只有重力对物体做功时,物体的机械能一定守恒分析:机械能守恒的条件:只有重力或弹力做功的物体系统,其他力不做功,理解如下:①只受重力作用,例如各种抛体运动.②受到其它外力,但是这些力是不做功的.例如:绳子的一端固定在天花板上,另一端系一个小球,让它从某一高度静止释放,下摆过程中受到绳子的拉力,但是拉力的方向始终与速度方向垂直,拉力不做功,只有重力做功,小球的机械能是守恒的.③受到其它外力,且都在做功,但是它们的代数和为0,此时只有重力做功,机械能也是守恒的.解:A、机械能守恒条件是只有重力做功,故A错误;B、匀速运动,动能不变,但重力势能可能变化,故B错误;C、外力对物体做的功为零时,不一定只有重力做功,当其它力与重力做的功的和为0时,机械能不守恒,故C错误;D、机械能守恒的条件是只有重力或弹力做功,故D正确.故选:D.点评:本题关键是如何判断机械能守恒,可以看能量的转化情况,也可以看是否只有重力做功.题型二:机械能守恒定律的应用例2:如图,竖直放置的斜面下端与光滑的圆弧轨道BCD的B端相切,圆弧半径为R,∠COB =θ,斜面倾角也为θ,现有一质量为m的小物体从斜面上的A点无初速滑下,且恰能通过光滑圆形轨道的最高点D.已知小物体与斜面间的动摩擦因数为μ,求:(1)AB长度l应该多大.(2)小物体第一次通过C点时对轨道的压力多大.分析:(1)根据牛顿第二定律列出重力提供向心力的表达式,再由动能定理结合几何关系即可求解;(2)由机械能守恒定律与牛顿第二定律联合即可求解.解:(1)因恰能过最高点D,则有又因f=μN=μmgcosθ,物体从A运动到D全程,由动能定理可得:mg(lsinθ﹣R﹣Rcosθ)﹣fl=联立求得:(2)物体从C运动到D的过程,设C点速度为v c,由机械能守恒定律:物体在C点时:联合求得:N=6mg答:(1)AB长度得:.(2)小物体第一次通过C点时对轨道的压力6mg.点评:本题是动能定理与牛顿运动定律的综合应用,关键是分析物体的运动过程,抓住滑动摩擦力做功与路程有关这一特点.题型三:多物体组成的系统机械能守恒问题例3:如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是()A.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒分析:C球刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等;解:A、C刚离开地面时,对C有:kx2=mg此时B有最大速度,即a B=a C=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=,α=30°,故A正确;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至C刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=mg(x1+x2)+(4m+m)v Bm2以上方程联立可解得:v Bm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,C刚离开地面时,B的速度最大,加速度为零.故C错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选:AB.点评:本题关键是对三个小球进行受力分析,确定出它们的运动状态,再结合平衡条件和系统的机械能守恒进行分析.【解题方法点拨】1.判断机械能是否守恒的方法(1)利用机械能的定义判断:分析动能与势能的和是否变化.如:匀速下落的物体动能不变,重力势能减少,物体的机械能必减少.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,机械能守恒.(3)用能量转化来判断:若系统中只有动能和势能的相互转化,而无机械能与其他形式的能的转化,则系统的机械能守恒.(4)对一些绳子突然绷紧、物体间非弹性碰撞等问题机械能一般不守恒,除非题中有特别说明或暗示.2.应用机械能守恒定律解题的基本思路(1)选取研究对象﹣﹣物体或系统.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能.(4)选取方便的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、△E k=﹣△E p或△E A=﹣△E B)进行求解.注:机械能守恒定律的应用往往与曲线运动综合起来,其联系点主要在初末状态的速度与圆周运动的动力学问题有关、与平抛运动的初速度有关.3.对于系统机械能守恒问题,应抓住以下几个关键:(1)分析清楚运动过程中各物体的能量变化;(2)哪几个物体构成的系统机械能守恒;(3)各物体的速度之间的联系.13.能量守恒定律【知识点的认识】能量守恒定律1.内容:能量即不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变,叫能量守恒定律.2.公式:E=恒量;△E增=△E减;E初=E末;3.说明:①能量形式是多种的;②各种形式的能都可以相互转化.4.第一类永动机不可制成①定义:不消耗能量的机器,叫第一类永动机.②原因:违背了能量守恒定律.。
2025高考物理总复习机械能守恒定律
过程中,下列说法正确的是(
)
刚释放物体B时,物体A受到细线的拉力大小为
2
A.
B. 物体B下落至最低点时,A和弹簧组成的系统机械能最大
C. 物体A的速度最大时弹簧的形变量为
D. 物体A的最大速度为
2
2
目录
高中总复习·物理
第32课时
机械能守恒定律
CONTENTS
01
02
立足“四层”·夯基础
着眼“四翼”·探考点
概念 公式 定理
题型 规律 方法
03
聚焦“素养”·提能力
巧学 妙解 应用
01
立足“四层”·夯基础
概念 公式 定理
目录
高中总复习·物理
目录
高中总复习·物理
(粤教版必修第二册第104页“资料活页”)地铁线路节能设计—
2
3
1
,图(b)中根据机械能守恒定律有 mg +
2
2
2
4
×2m ,解得vb=
1
mg +
2
2
4
1
= m 2 ,
2
6
4
1
=
2
,图(c)中根据机械能守恒定律有
14
1
2
+mg· = ×2m ,解得vc=
,则有vc>va>vb,故
2
2
4
选C。
目录
高中总复习·物理
考点三 多物体系统的机械能守恒 [多维探究类]
1
解析:设释放B前弹簧的压缩量为x0,对A有kx0=mgsin θ= mg,刚释放B瞬间,
验证机械能守恒定律-2024年高考物理一轮复习热点重点难点(解析版)
验证机械能守恒定律特训目标特训内容目标1利用打点计时器验证机械能守恒定律(1T -4T )目标2利用光电门验证机械能守恒定律(5T -8T )目标3利用单摆验证机械能守恒定律(9T -12T )目标4利用竖直面内圆周运动验证机械能守恒定律(13T -16T )【特训典例】一、利用打点计时器验证机械能守恒定律1某物理兴趣小组利用如图1所示装置验证机械能守恒定律,该小组让重物带动纸带从静止开始自由下落,按正确操作得到了一条完整的纸带如图2所示(在误差允许范围内,认为释放重锤的同时打出O 点)。
(1)下列关于该实验说法正确的是。
A.实验时应先释放重锤,后接通电源B.实验时应选择体积和密度较小、下端有胶垫的重锤C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上D.为准确测量打点计时器打下某点时重锤的速度v ,可测量该点到O 点的距离h ,利用v =2gh 计算(2)在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、h C 。
已知当地重力加速度为g ,打点计时器所用交流电源的频率为f ,重物的质量为m 。
从打O 点到打B 点的过程中,重物动能变化量DE k =。
(3)该小组通过多次实验发现重力势能的减少量总是略大于动能的增加量,出现这种现象的原因可能是。
A.工作电压偏高B.由于有空气和摩擦阻力的存在C.重物质量测量得不准确D.重物释放时距打点计时器太远【答案】 C m (h C -h A )2f 28B【详解】(1)[1]A .为充分利用纸带,实验时应先接通电源,后释放重锤,故A 错误;B .为减小空气阻力的影响,实验时应选择体积小,密度较大、下端有胶垫的重锤,故B 错误;C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上,故C正确;D.为准确测量打点计时器打下某点时重锤的速度v,不能利用v=2gh计算,应用速度的定义式计算,故D错误。
高中物理必修三机械能 能量守恒定律讲义
高中物理必修三机械能能量守恒定律讲义一、概述本讲义主要介绍了高中物理必修三中的机械能和能量守恒定律。
通过研究这一部分的内容,我们将了解机械能的概念以及能量守恒定律的应用。
二、机械能1. 机械能的定义机械能是指物体在运动过程中所具有的动能和势能的总和。
动能是物体由于运动而具有的能量,势能是物体由于位置关系而具有的能量。
2. 动能动能的定义为$E_k = \frac{1}{2} mv^2$,其中$E_k$表示动能,$m$表示物体的质量,$v$表示物体的速度。
3. 势能势能可以分为重力势能和弹性势能两种。
- 重力势能的定义为$E_p = mgh$,其中$E_p$表示重力势能,$m$表示物体的质量,$g$表示重力加速度,$h$表示物体的高度。
- 弹性势能的定义为$E_p = \frac{1}{2} kx^2$,其中$E_p$表示弹性势能,$k$表示弹簧的劲度系数,$x$表示弹簧的变形量。
三、能量守恒定律能量守恒定律是指在一个孤立系统中,能量总量保持不变。
这意味着物体在运动过程中,动能的增加必然伴随着势能的减少,反之亦然。
四、应用实例能量守恒定律在实际生活中有着广泛的应用。
以下是一些相关实例:1. 坠落物体:当物体从高处坠落时,重力势能减少而动能增加。
2. 弹簧振动:弹簧在振动过程中,动能和弹性势能相互转化。
3. 滑雪:滑雪过程中,重力势能转化为动能。
五、总结通过本讲义的研究,我们了解到了机械能的概念和能量守恒定律的应用。
能量守恒定律在物理学中起着重要的作用,并可以应用于各种实际问题的解决中。
以上就是高中物理必修三中关于机械能和能量守恒定律的讲义内容总结。
参考资料:- 高中物理必修三教材。
部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法
(名师选题)部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法单选题1、如图所示,分别用力F1、F2、F3将质量为m的物体,由静止开始沿同一光滑斜面以相同的加速度,从斜面底端拉到斜面的顶端.用P1、P2、P3分别表示物体到达斜面顶端时F1、F2、F3的功率,下列关系式正确的是()A.P1=P2=P3B.P1>P2=P3C.P1>P2>P3D.P1<P2<P3答案:A由于物体沿斜面的加速度相同,说明物体受到的合力相同,由物体的受力情况可知拉力F在沿着斜面方向的分力都相同;由v2=2ax可知,物体到达斜面顶端时的速度相同,由瞬时功率公式P=Fvcosθ可知,拉力的瞬时功率也相同,即P1=P2=P3故选A。
2、如图所示,在水平地面上方固定一水平平台,平台上表面距地面的高度H=2.2m,倾角θ= 37°的斜面体固定在平台上,斜面底端B与平台平滑连接。
将一内壁光滑血管弯成半径R=0.80m的半圆,固定在平台右端并和平台上表面相切于C点,C、D为细管两端点且在同一竖直线上。
一轻质弹簧上端固定在斜面顶端,一质量m=1.0kg的小物块在外力作用下缓慢压缩弹簧下端至A点,此时弹簧的弹性势能E p=2.8J,AB长L=2.0m。
现撤去外力,小物块从A点由静止释放,脱离弹簧后的小物块继续沿斜面下滑,经光滑平台BC,从C点进入细管,由D点水平飞出。
已知小物块与斜面间动摩擦因数μ=0.80,小物块可视为质点,不计空气阻力及细管内径大小,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。
求小物块到达D点时细管内壁对小物块的支持力大小;()A.42NB.45NC.48ND.55N答案:D小物块从A点到C点的过程,由动能定理可得W弹+mgLsinθ−μmgLcosθ=12mv2C−0弹簧弹力做功数值等于弹簧弹性势能的变化量数值,故W弹=2.8J 解得小物块达到C点速度为v C=2m/s 小物块从C点到D点的过程,由机械能守恒得2mgR=12mv2D−12mv2C在D点,以小物块为研究对象,由牛顿第二定律可得F N−mg=m v2D R解得细管内壁对小物块的支持力为F N=55N故选D。
高中物理第八章机械能守恒定律知识点总结归纳完整版(带答案)
高中物理第八章机械能守恒定律知识点总结归纳完整版单选题1、如图所示,斜面倾角为θ=37°,物体1放在斜面紧靠挡板处,物体1和斜面间动摩擦因数为μ=0.5,一根很长的不可伸长的柔软轻绳跨过光滑轻质的小定滑轮,绳一端固定在物体1上,另一端固定在物体2上,斜面上方的轻绳与斜面平行。
物体2下端固定一长度为h 的轻绳,轻绳下端拴在小物体3上,物体1、2、3的质量之比为4:1:5,开始时用手托住小物体3,小物体3到地面的高度也为h ,此时各段轻绳刚好拉紧。
已知物体触地后立即停止运动、不再反弹,重力加速度为g =10m/s 2,小物体3从静止突然放手后物体1沿面上滑的最大距离为( )A .3hB .73hC .2hD .43h 答案:D设2的质量为m ,从开始放手到3触地过程中,设触地时3的速度为v 1;则对整体根据功能关系可知 6mgh ﹣(4mg sin θ+4μmg cos θ)h =12(10m )v 12此后3停止,设物体2继续向下运动距离s 后速度减小为零,对1、2应用功能关系可知mgs ﹣(4mg sin θ+4μmg cos θ)s =0−12(5m )v 12解得s =ℎ3则1沿斜面上滑的最大距离为L =h +s =43h故D 正确,ABC 错误。
故选D 。
2、有一种飞机在降落的时候,要打开尾部的减速伞辅助减速,如图所示。
在飞机减速滑行过程中,减速伞对飞机拉力做功的情况是()A.始终做正功B.始终做负功C.先做负功后做正功D.先做正功后做负功答案:B减速伞对飞机的作用力与飞机运动方向相反,对飞机做负功。
故选B。
3、如图,一位质量为m的滑雪运动员从高h的斜坡加速下滑。
如果运动员在下滑过程中受到的阻力F f,斜坡倾角θ,则下列说法正确的是()A.阻力做功为W f=F fℎsinθB.重力做功为W G=mgℎC.阻力做功为W f=F fℎD.人所受外力的总功为零答案:BAC.阻力做功为W f=−F fℎsinθ故AC错误;B.重力做功为W G=mgℎ故B正确;D.人加速下滑,动能增加,则根据动能定理可知,人所受外力的总功不为零,故D错误。
高中物理机械能守恒和动量守恒问题解析
高中物理机械能守恒和动量守恒问题解析在高中物理学习中,机械能守恒和动量守恒是两个重要的概念。
理解这两个概念对于解题非常关键。
本文将通过具体题目的举例,分析和说明机械能守恒和动量守恒的考点,并提供解题技巧,帮助高中学生和家长更好地理解和应用这些知识。
一、机械能守恒问题解析机械能守恒是指在没有外力做功的情况下,系统的机械能保持不变。
在解决机械能守恒问题时,我们需要考虑势能和动能的转化。
例如,一道常见的题目是:一个质量为m的物体从高度为h处自由落下,落地后弹起到高度为h/2。
求物体弹起的最高点离地面的高度。
解题思路:首先,我们可以根据机械能守恒定律,将物体在自由落下和弹起过程中的机械能相加,即势能和动能之和保持不变。
在自由落下过程中,物体的势能转化为动能;在弹起过程中,动能转化为势能。
因此,我们可以列出等式:mgh = mgh/2通过简化计算,得出最高点离地面的高度为h/4。
这道题目的考点是机械能守恒的应用。
学生需要理解机械能的定义和转化过程,并能正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
二、动量守恒问题解析动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。
在解决动量守恒问题时,我们需要考虑物体的质量和速度变化。
例如,一道常见的题目是:一个质量为m1的物体以速度v1向右运动,与一个质量为m2的物体以速度v2向左运动碰撞,碰撞后两个物体分别以v3和v4的速度运动。
求碰撞后两个物体的速度。
解题思路:根据动量守恒定律,我们可以列出等式:m1v1 + m2v2 = m1v3 + m2v4通过化简计算,可以得出碰撞后两个物体的速度。
这道题目的考点是动量守恒的应用。
学生需要理解动量的定义和守恒定律,能够正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
三、解题技巧和应用在解决机械能守恒和动量守恒问题时,有一些常用的解题技巧和应用方法可以帮助学生更好地理解和应用这些知识。
完整版)高中物理解题技巧
完整版)高中物理解题技巧物体在重力场中的状态分为三种:超重、失重和重力平衡状态。
在解题时,要根据题目所给出的情况,确定物体所处的状态,再根据物理规律进行分析和计算。
在本例中,利用超重状态下的竖直向上的加速度,可以得出正确答案为D。
技巧一:合成法解题典例1】一倾角为θ的斜面上放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动。
当细线(1)与斜面方向垂直,或沿水平方向时,求上述两种情况下木块下滑的加速度。
解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向。
可以通过求小球的加速度来达到求解木块加速度的目的。
在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析。
在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单。
技巧二:超、失重解题典例2】如图2-2-4所示,A为电磁铁,C为胶木秤盘,A 和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小满足:A。
F=MgB。
Mg<F<(M+m)gC。
F=(M+m)gD。
F>(M+m)g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F与系统的重力(M+m)g满足关系式:F>(M+m)g,正确答案为D。
对于超、失重现象大致可分为以下几种情况:物体在重力场中的状态分为三种:超重、失重和重力平衡状态。
在解题时,要根据题目所给出的情况,确定物体所处的状态,再根据物理规律进行分析和计算。
高中物理机械能守恒定律知识点总结
高中物理机械能守恒定律知识点总结(一)一、功1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J.2.功是标量,但有正负.由,可以看出:(1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力;(2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换.(3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法(1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零.(2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零.(3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功.4、各种力做功的特点(1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关.(2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等.(3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l.(1)W总=F合lcosα,α是F合与位移l的夹角;(2)W总=W1+W2+W3+?为各个分力功的代数和;(3)根据动能定理由物体动能变化量求解:W总=ΔEk.5、变力做功的求解方法(1)用动能定理或功能关系求解.(2)将变力的功转化为恒力的功.①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等;②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功;③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功;④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功.二、功率1.计算式(1)P=tW,P为时间t内的平均功率.(2)P=Fvcosα5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明.6.实际功率:机械实际工作时输出的功率.要小于等于额定功率.方恒定功率启动恒定加速度启动式过程过程分析设牵引力为F阶段一:v↑?F=v(P↓?a=m(F-F阻↓阶段二:F=F阻?a=0?P=F·vm=F阻·vm阶段一:a=m(F-F阻不变?F不变?v↑?P=F·v↑,直到P=P额=F·vm′阶段二:v↑?F=v(P额↓?a=m(F-F阻↓阶段三:F=F阻时?a=0?v达最大值vm=F阻(P额运动规律加速度逐渐减小的变加速直线运动(对应下图的OA段)?以vm匀速直线运动(对应下图中的AB段)以加速度a做匀加速直线运动(对应下图中的OA段)?匀加速运动能维持的时间t0=a(vm′?以vm匀速直线运动,对应下图中的BC段vt图象三、动能1.定义:物体由于运动而具有的能.2.公式:Ek=21mv2.单位:焦耳(J),1J=1N·m =1kg·m2/s2.4.矢标性:动能是标量,只有正值.四、动能定理1.内容:所有外力对物体做的总功等于物体动能的变化量,这个结论叫做动能定理.2.表达式:w=Ek2-Ek1变化的大小由外力的总功来度量.4.适用条件:动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功.5.动能定理中涉及的物理量有F、s、m、v、W、Ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.无需注意其中运动状态变化的细节6.应用动能定理解题的一般思路(1)确定研究对象和研究过程.注意,动能定理一般只应用于单个物体,如果是系统,那么系统内的物体间不能有相对运动.(2)对研究对象进行受力分析.(研究对象以外的物体施于研究对象的力都要分析,含重力)(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.(4)写出物体的初、末动能.(5)按照动能定理列式求解.五、机械能1.重力做功的特点:重力做功与路径无关,只与初、末位置的高度差h有关.重力做功的大小WG=mgh,若物体下降,则重力做正功;若物体升高,则重力做负功(或说物体克服重力做功).2.重力势能(1)概念:物体的重力势能等于物体的重力和高度的乘积.(2)表达式:Ep=mgh,(3)重力势能是标量,且有正负.其正、负表示大小.物体在参考平面以下,其重力势能为负,在参考平面以上,其重力势能为正.六、机械能守恒定律1.内容:在只有重力(或弹簧的弹力)做功的情况下,动能和势能发生相互转化,但总量保持不变,这个结论叫做机械能守恒定律.2.机械能守恒的条件:(1)只有重力或系统内弹力做功.(2)受其他外力但其他外力不做功或做功的代数和为零.3.表达式:(1)Ek+Ep=Ek′+Ep′,表示系统初状态机械能的总和与末状态机械能的总和相等.(2)ΔEk=-ΔEp,表示系统(或物体)机械能守恒时,系统减少(或增加)的重力势能等于系统增加(或减少)的动能,在分析重力势能的增加量或减少量时,可不选参考平面.(3)ΔEA增=ΔEB减,表示若系统由A、B两部分组成,则A部分物体机械能的增加量与B 部分物体机械能的减少量相等.4.判断机械能是否守恒方法:(1).利用机械能的定义判断(直接判断):若物体在水平面上匀速运动,其动能、势能均不变,机械能不变.若一个物体沿斜面匀速下滑,其动能不变,重力势能减少,其机械能减少.(2).用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3).用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.(4).对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒.七.功能关系1.合外力对物体做功等于物体动能的改变.W合=Ek2-Ek1,即动能定理.2.重力做功对应重力势能的改变.WG=-ΔEp=Ep1-Ep2重力做多少正功,重力势能减少多少;重力做多少负功,重力势能增加多少.3.弹簧弹力做功与弹性势能的改变相对应.WF=-ΔEp=Ep1-Ep2弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少.4.除重力弹力以外的力的功与物体机械能的增量相对应,即W=ΔE.5.克服滑动摩擦力在相对路程上做的功等于摩擦产生的热量:Q=Wf=f·s相四、能量转化和守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变.高中物理机械能守恒定律知识点总结(二)机械能守恒定律:1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
(整理)高中物理机械能守恒定律典例解题技巧
机械能守恒专题一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:〔1〕物体在运动过程中只有重力做功,物体的机械能守恒。
〔2〕物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:〔1〕阻力不计的抛体类。
〔2〕固定的光滑斜面类。
〔3〕固定的光滑圆弧类。
〔4〕悬点固定的摆动类。
〔1〕阻力不计的抛体类包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,那么物体抛出时和着地时的机械能相等2202121t mv mv mgh =+得:gh v v t 22+= 〔2〕固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,那么物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = 〔3〕固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,那么物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=〔4〕悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
高中物理如何把握机械能守恒定律的条件学法指导
高中物理如何把握机械能守恒定律的条件[名师导学]机械能守恒定律是:“在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
”这里的条件只有一个“只有重力做功”,而重力做功的特点是只跟物体的始末位置的高度差有关,与物体所经过的路径无关。
所以应用机械能守恒定律解答力学题比用牛顿定律解题简捷。
然而对于“只有重力做功”,这一条件却是难以把握的,是不是物体只受重力作用?物体如果还受其它外力作用又如何?下面从几个方面说明这个问题。
1. 在运动过程中物体只受重力作用例1 从离地面高度为100m 的飞机上以40m/s 的速率抛出一个质量为5kg 的物体,如果不计空气阻力,求物体落地时的速率?(2s /m 10g =)解析:题目中只给出了抛出物体的速率,没有速度的方向,显然不能用牛顿定律求解。
物体抛出后只受重力作用,且只有重力对物体做功,则机械能守恒。
以地面为重力势能的零势面,设物体落地时的速度为v ,则有:202mv 21mgh mv 21+= s /m 6010010240gh 2v v 220=⨯⨯+=+=2. 除重力外物体还受其它力,但其它力不做功例2. 一小球的质量为m ,沿光滑的弯曲轨道滑下,轨道的形状如图1所示。
与弯曲轨道相接的圆轨道的半径为R ,要使小球沿光滑圆轨道通过圆的顶点,小球应从离轨道最低处多高的地方由静止开始滑下?图1解析:小球在轨道上滑行的过程中受重力和轨道的支持力作用,但支持力始终跟小球的运动方向垂直,对小球不做功,即在整个运动过程中只有重力做功,则机械能守恒。
设轨道的最低点的水平面为零势能面,小球从最低点高为h 的地方开始滑下,小球运动到圆轨道最高点时的速度为0v由机械能守恒定律有: 20mv 21R 2mg mgh +⨯= ①要小球刚好沿圆轨道通过最高点应有:Rv m mg 20= ② 由①②式解得R 25h =3. 物体在运动过程中所受重力是变化的,但只有重力做功例3. 一根链条的总长度为l ,放在光滑的水平桌面上,其中一端悬垂到桌边外面,悬垂的长度为d ,开始用手拉着链条,如图2所示。
高中物理机械能守恒学习技巧分析
高中物理机械能守恒学习技巧分析物理是一门需要掌握基础知识的学科,而机械能守恒则是其中比较难理解的内容之一。
在学习机械能守恒时,需要理解相关概念和公式,并且能够熟练地运用它们解决问题。
以下是学习机械能守恒的一些技巧和方法。
一、理清概念首先,要理清机械能守恒的基本概念。
机械能守恒是指系统中动能和势能总和不变,即机械能在系统内部的转化和交换具有稳定性。
此外,还需要明确机械能守恒的前提条件:系统内部没有非保守力做功和热源参与。
其次,需要了解机械能守恒的一些相关概念。
比如,机械功、势能和动能等概念,这些都是学习机械能守恒必须掌握的基础。
同时,还需要注意区别机械能和总能量之间的差别。
机械能只包括动能和势能,而总能量还包括热能、光能、声能等。
在机械能守恒的问题中,只考虑机械能的转化和守恒。
二、掌握计算方法学习机械能守恒还需要掌握其计算方法。
主要包括使用机械能守恒定理解决问题的步骤和公式。
一般来说,求解机械能守恒问题主要步骤如下:1、选择适当的参考系;2、列出机械能守恒方程;3、根据问题条件,化简机械能守恒方程;4、解方程得到所求。
机械能守恒的公式包括动能公式、势能公式和机械能守恒定理公式。
其中,动能公式为K=1/2mv²,势能公式为U=mgh或U=kx²/2,机械能守恒定理公式为Ki+Ui=Kf+Uf。
此外,需要注意机械能守恒公式的使用条件,必须在系统内部没有非保守力做功和热源参与的条件下才适用。
三、多练习例题在学习机械能守恒时,多练习例题是必要的。
通过做题可以巩固知识,发现问题,提高问题解决能力。
可以从基础的单个物体问题开始练习,逐渐增加难度,到复杂的多物体问题。
在练习时,需要掌握不同类型的问题解决思路和方法。
比如,撞击类问题、平衡类问题、弹性碰撞类问题等等,每种问题都有其特定的解决方法。
此外,在练习中需要注意理解问题的物理意义,避免单纯地套用公式。
需要将公式和物理概念结合起来,理解物理规律,逐步提高解题水平。
高中物理中的机械能守恒定律
高中物理中的机械能守恒定律在高中物理的学习中,机械能守恒定律是一个极其重要的知识点,它不仅在解决物理问题时有着广泛的应用,还能帮助我们更深入地理解自然界中的能量转化规律。
首先,让我们来明确一下什么是机械能。
机械能包括动能和势能,动能大家都比较熟悉,就是物体由于运动而具有的能量,其大小与物体的质量和速度有关,公式为 E_k = 1/2 mv²,其中m 是物体的质量,v 是物体的速度。
势能则分为重力势能和弹性势能,重力势能是物体由于被举高而具有的能量,与物体的质量、高度以及重力加速度有关,表达式为 E_p = mgh ,这里的 h 是物体相对参考平面的高度。
弹性势能是物体由于发生弹性形变而具有的能量,常见于弹簧被拉伸或压缩的情况。
机械能守恒定律的内容是:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
这里需要强调的是,“只有重力或弹力做功”这个条件非常关键。
如果有其他力做功,比如摩擦力,那么机械能就不守恒了。
那为什么会有机械能守恒这一现象呢?从本质上来说,这是因为重力和弹力是保守力。
保守力做功与路径无关,只与初末位置有关。
以重力为例,一个物体从高处下落,无论它是直线下落还是曲线下落,重力做的功都是一样的,都等于重力势能的减少量。
正是由于这种特性,才保证了在只有重力做功的情况下机械能守恒。
为了更好地理解机械能守恒定律,我们来看几个具体的例子。
假设一个自由落体的物体,从高处h 处自由下落。
在下落的过程中,重力势能逐渐减少,而动能逐渐增加。
根据机械能守恒定律,重力势能的减少量等于动能的增加量。
开始时,物体的速度为0 ,动能为0 ,重力势能为 mgh ;当物体下落到某一高度 h' 时,此时的重力势能为mgh' ,速度为 v ,动能为 1/2 mv²。
因为机械能守恒,所以有 mgh =mgh' + 1/2 mv²。
再比如一个竖直放置的弹簧,上面有一个物体。
高中物理机械能守恒定律典型题解析
机械能守恒定律典型题剖析例1 关于机械能是否守恒的叙述,正确的是 [ ]A.作匀速直线运动的物体的机械能一定守恒.B.作匀变速运动的物体机械能可能守恒.C.外力对物体做功为零时,机械能一定守恒.D.只有重力对物体做功,物体机械能一定守恒.分析机械能守恒的条件是除重力或弹性力对物体做功外,没有其他外力对物体做功,或其他外力对物体做功的代数和等于零.D正确.当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.A错.物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.B正确.因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.C错.答 B,D.例2 a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c 球竖直下抛.设三球落地的速率分别为va、vb、vc,则[ ]A.va>vb>vc.B.va=vb>vc.C.va>vb=vc.D.va=vb=vc.分析小球抛出后,只有重力对它做功,所以小球从抛出到落地过程中的机械能守恒.设抛出的速率为v0,抛出处高度为h,取地面为零势能位置,由得落地速率可见,它仅与抛出时的速率及离地面的高度有关,与抛出的方向无关.答 D.说明由本题解答可知,从一定高度h以一定大小的初速度v0抛出的物体,落地时的速度大小恒为它与抛出时的方式——竖直上抛、下抛、平抛、斜上抛、斜下抛等无关,不同的抛出方式只影响着物体在空中的具体路径、运动时间以及落地速度的方向.例3 用一根长l的细线,一端固定在顶板上,另一端拴一个质量为m的小球.现使细线偏离竖直方向α角后,从A处无初速地释放小球(图4-21).试问:(1)小球摆到最低点O时的速度?(2)小球摆到左方最高点的高度(相对最低点)?向左摆动过程中能达到的最大高度有何变化?分析小球在摆动过程中,受到两个力作用:重力和线的拉力.由于小球在拉力方向上没有位移,拉力对小球不做功,只有重力做功,所以小球在运动过程中机械能守恒.解答(1)设位置A相对最低点O的高度为h,取过O点的水平面为零势能位置.由机械能守恒得(2)由于摆到左方最高点B时的速度为零,小球在B点时只有势能.由机械能守恒EA=EB即 mgh=mgh'.所以B点相对最低点的高度为h'=h.(3)当钉有钉子P时,悬线摆至竖直位置碰钉后,将以P为中心继续左摆.由机械能守恒可知,小球摆至左方最高点B1时仍与AB等高,如图4-22所示.说明第(3)小题中的钉子在竖直线上不同位置时,对小球的运动是有影响的.当钉子位于水平线AB上方时,小球碰钉后总能摆到跟AB同一高度处.若钉子继续下移,碰钉后的运动较为复杂,有兴趣的读者可自行研究.讨论1.机械能守恒定律的研究对象机械能的转化和守恒是指系统而言.动能与重力势能的转化是指物体与地球组成的系统机械能守恒;动能与弹性势能的转化是指物体与弹簧组成的系统机械能守恒.通常说某物体的机械能守恒是一种简化的不严格的说法.前面介绍的动能公式,则是对单个物体(质点)而言的.2.机械能守恒定律的应用特点应用机械能守恒定律时,只需着重于始末两状态的分析,不需考虑中间过程的细节变化,这是守恒定律的一大特点.如例2中没有从具体的抛出方式的不同规律出发,但根据机械能守恒却很容易求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒专题一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。
因此只有重力做功,物体的机械能守恒。
例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等221)cos 1(t mv mgL =-θ 得:)c o s 1(22θ-=gL v t 由向心力的公式知:Lmv mg T t 2=-可知θcos 23mg mg T -= 作题方法:一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。
注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。
这在计算中是要特别注意的。
练习题1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( )A T c >T b >T aB T a >T b >T cC T b >T c >T aD T a =T b =T c2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?3、如图,一质量为m的木块以初速V0从A点滑上半径为R的光滑圆弧轨道,它通过最高点B时对轨道的压力FN为多少?4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:(1)小球滑至圆环顶点时对环的压力;(2)小球至少要从多高处静止滑下才能越过圆环最高点;(3)小球从h= 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。
二、系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。
不做功,系统的机械能就不变。
(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。
系统内物体的重力所做的功不会改变系统的机械能系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。
3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。
在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。
虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。
但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。
归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。
(4)悬点在水平面上可以自由移动的摆动类。
(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,倾角为 的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度?分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。
它们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。
M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sin mv Mv Mgh mgh ++=θ 可得mM M m gh v +-=)sin (2θ 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系 例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小?(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。
两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。
有:2221212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知B A v v 2=所以:⎩⎨⎧==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系(3)在水平面上可以自由移动的光滑圆弧类。
光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m受到的重力和地面的支持力。
m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。
有:222121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0 所以:⎩⎨⎧+=+=)(2)(2m M M gR M v m M M gR m v M m(4)悬点在水平面上可以自由移动的摆动类。
悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。