13.3实数课件1

合集下载

数学:13.3《实数课件》1(人教新课标八年级上)

数学:13.3《实数课件》1(人教新课标八年级上)
复习 你认识下列各数吗?
3
3 5
9 11
5
0.875
0
有理数是分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数
正整数
有 正分数 理 零 数 负整数 负数 负分数
正数
引入 把下列各数写成小数的形式:
3 3.0
有 限 小 数
47 5.875 8
3 0 .6 5
巩固
2、在 0 , 0.100100010000 , 3 ,
3
, 9中,无理数分别 8, 1
3
3


巩固 3、把下列各数分别填在相应的集合中:

0 .3
3.1415926
25 36

3
16
1.732
7
… 无理数集合
有理数集合
引入 在数轴上表示下列各数:
1 2 0 3 1 2 0 3
巩固 5、下列结论正确的是( ) A.无限小数是无理数 B.有理数都可以表示成分数形式 C.无理数都是带根号的数 D.无理数都是无限不循环小数
探究
2 的相反数是 2

的相反数是
0 的相反数是
2 -2 -1

0
; ;
2
0 1 2
a的相反数是-a
探究
2
2

2 2
0 1
00
-2 2-1
2 2
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0.
范例
例1、(1)求 64 的绝对值; (2)已知一个数的绝对值是 3 , 求这个数。
3
巩固 6、请将数轴上是各点与下列实数对应 起来:

实数完整版课件

实数完整版课件

实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。

2. 实数的性质:实数的加法、减法、乘法、除法运算规则。

3. 实数的运算律:交换律、结合律、分配律。

4. 实数与数的比较:实数的大小比较、实数的绝对值。

二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。

2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。

3. 培养学生运用实数解决实际问题的能力。

三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。

2. 教学重点:实数的性质,实数的运算律。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。

2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。

3. 例题讲解:举例子说明实数的性质和运算律的应用。

4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。

5. 板书设计:列出实数的性质和运算律,方便学生记忆。

6. 作业设计:布置有关实数的运算题目,巩固所学知识。

六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。

通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。

在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。

最新人教版八年级上册数学精品课件13.3《实数》课件(人教新课标)

最新人教版八年级上册数学精品课件13.3《实数》课件(人教新课标)

正无理数
负有理数
负实数
最新人教版数学负精品无课理件设数
随堂练习 一、判断: 1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
最新人教版数学精品课件 设计
随堂练习 二、填空 1、正实数的绝对值是 它本身 ,0的绝对值是 0 ,
负实数的绝对值是它的相反数 .
2、 3 的相反数是 3 ,绝对值是 3 .
3、绝对值等于 5 的数是 5 , 7 的平方 是
4、比较大小:-7
4 3
5、在实数 中,
3 22 , 1 , , 3
(6)实数集合: 9 3 5
64 3

3 9

3 0.13

4
64


0.6
3 4
3 9
3
0.13
最新人教版数学精品课件设
每个有理数都可以用数轴上的点表示, 那么无理数 是否也可以用数轴上的 点来表示呢?
你能在数轴上找到表示 和 2及 2
这样的无理数的点吗?
9
7, , 5 ,
2
2,
20 3
,

5, 3 8,
(相邻两个3之间
0.3737737773 的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,

3 2, 7 , , 2, 20 , 3
5, 0.3737737773

有理数集合 最新人教版数学精品课件设无理数集合

实数完整版课件

实数完整版课件

实数完整版课件一、教学内容本节课我们将学习教材第十章“实数”部分,详细内容如下:1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 实数在数学中的应用。

二、教学目标1. 理解实数的定义,掌握实数的分类;2. 学会实数的性质和运算规则,并能熟练运用;3. 理解实数与数轴的关系,能将实数在数轴上表示出来。

三、教学难点与重点1. 教学难点:实数的性质及运算规则;2. 教学重点:实数的定义、分类及与数轴的关系。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 导入:通过实际情景引入实数概念,如温度、长度等;2. 新课导入:讲解实数的定义、分类及性质;3. 例题讲解:讲解实数运算规则,如加减乘除、乘方等;4. 随堂练习:让学生进行实数运算的练习,巩固所学知识;5. 知识拓展:介绍实数与数轴的关系,引导学生将实数在数轴上表示出来;7. 课堂作业:布置实数相关的作业,巩固所学知识。

六、板书设计1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系。

七、作业设计1. 作业题目:(1)判断下列数哪些是实数,哪些不是:2、3/2、√2、π;(2)计算:2/3 + 5/6 1/2;答案:(1)实数:2、3/2、√2、π;(2)2/3 + 5/6 1/2 = 3/2;(3)见附图。

八、课后反思及拓展延伸1. 了解无理数的概念,探究无理数与有理数的关系;2. 探索实数在生活中的应用,如测量、计算等。

重点和难点解析1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 作业设计中实数在数轴上的表示;5. 课后拓展延伸的无理数概念及实数在生活中的应用。

一、实数的定义及分类实数是数学中一个重要的概念,包括有理数和无理数。

有理数是可以表示为两个整数之比的数,如分数、整数等;无理数则不能表示为两个整数之比,如π、√2等。

实数ppt课件

实数ppt课件

原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称

02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。

《实数》实数课件

《实数》实数课件
微积分
实数在微积分中有着重要的地位,如函数的极限、导数、积分等概念都涉及到实数的运算 ,实数在微积分中的应用推动了人类对自然界的认识。
04
总结与回顾
本章重点回顾
实数的概念与分类
实数的运算和性质
平方根和立方根
绝对值和比较大小
进一步学习建议
加强练习
拓展知识
多做习题,加深对实数概念和性质的理解。
学习其他数学知识和技能,如三角函数、不 等式等。
实数a的算术平方根记作sqrt(a),定义有sqrt(a)≥0,且[sqrt(a)]^2=a。
乘方
对于任何实数a和正整数n,an叫做a的n次方,记作a^n,定义有a^0=1,且 a^n=a*a*...*a(n个a相乘)。
实数与数轴
定义
在数学中,可以用一条直线上的点来表示实数,这条直线叫做数轴。
数轴上的表示
03
金融计算
利率、汇率等金融数据可以用实数来表示,实数在金融领域的应用为
投资理财和经济分析提供了计算基础。
实数在数学领域中的拓展
代数基础
实数在代数中有着广泛的应用,如解方程、因式分解、求函数最值等,实数的引入为代数 领域提供了更多的运算工具和研究对象。
三角函数
三角函数是实数在三角学中的应用,如正弦、余弦、正切等,实数与三角函数的结合为数 学和物理等学科提供了重要的分析工具。
无理数
无限不循环小数叫做无理数,例如π、根号2等。
复数
在数系中加入虚数后,数学上将数集分为实数和复数两类。其中实数又分为有理数和无理 数,有理数包括整数和分数,无理数包括无限不循环小数。复数包括实数和虚数,虚数包 括纯虚数和非纯虚数,非纯虚数包括实数和虚数。
02
实数的运算与几何意义

《实数》ppt课件

《实数》ppt课件

指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。

《实数》课件精品公开课

《实数》课件精品公开课

《实数》课件精品公开课一、教学内容本节课选自教材《数学》七年级下册第十章“实数”一节。

详细内容包括:实数的定义、分类及其在数轴上的表示;无理数的概念及其与有理数的区别;实数的运算规则,特别是无理数与有理数的混合运算。

二、教学目标1. 理解实数的概念,掌握实数的分类,能够正确地在数轴上表示实数。

2. 了解无理数的性质,能够区分有理数和无理数,并掌握基本的运算规则。

3. 提高学生的数学思维能力,培养他们解决实际问题的能力。

三、教学难点与重点教学难点:无理数的概念及其运算规则。

教学重点:实数的定义和分类,实数在数轴上的表示。

四、教具与学具准备1. 教具:黑板、粉笔、实数教学挂图、数轴模型。

2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入:通过生活中的实例,如测量物体长度、计算面积等,引出实数的概念。

2. 知识讲解:(1) 介绍实数的定义、分类及数轴上的表示方法。

(2) 详细讲解无理数的概念,通过例题讲解无理数与有理数的区别。

(3) 讲解实数的运算规则,特别是无理数与有理数的混合运算。

3. 例题讲解:选取具有代表性的例题,进行详细的解题步骤分析。

4. 随堂练习:布置一定数量的练习题,让学生及时巩固所学知识。

六、板书设计1. 实数的定义、分类及数轴上的表示。

2. 无理数的概念及性质。

3. 实数的运算规则。

4. 例题及解题步骤。

七、作业设计1. 作业题目:(1) 判断下列数中,哪些是有理数,哪些是无理数?(2) 计算下列各题的结果:a. √2 + 3b. √9 2/3c. (3√2) × (2√3)(3) 在数轴上表示下列实数:2, 3/4, √5, 1/2√2。

2. 答案:见课后附页。

八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对实数的概念和分类有了清晰的认识,但无理数的运算仍是难点,需要在今后的教学中加强练习。

2. 拓展延伸:引导学生探索实数与数轴上的点之间的关系,了解实数在实际生活中的应用,如几何图形的面积、体积计算等。

实数ppt课件人教版

实数ppt课件人教版

实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版

《实数》课件精品公开课

《实数》课件精品公开课

《实数》课件精品公开课一、教学内容本节课选自教材第九章《实数》的第一节,详细内容包括实数的定义、性质及其分类。

重点讲解无理数的概念及其与有理数的区别,实数的运算法则,以及实数在数轴上的表示。

二、教学目标1. 让学生掌握实数的定义,理解无理数的概念,并能正确区分有理数与无理数。

2. 使学生掌握实数的运算法则,并能熟练进行实数的加减乘除运算。

3. 培养学生运用数轴表示实数的能力,提高数形结合的思维能力。

三、教学难点与重点难点:无理数的理解及其运算;实数在数轴上的表示。

重点:实数的定义;实数的运算法则;数轴上的实数表示。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:直尺、圆规、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,如测量物体长度、计算面积等,引出实数的概念。

2. 知识讲解:(1)实数的定义:包括有理数和无理数。

(2)实数的性质:封闭性、可比较性、可运算性。

(3)实数的分类:整数、分数、无理数。

(4)无理数的理解:通过平方根、立方根等例子,让学生直观感受无理数的存在。

3. 例题讲解:(1)实数的加减乘除运算。

(2)实数在数轴上的表示。

4. 随堂练习:(1)判断题目:区分有理数和无理数。

(2)计算题目:实数的加减乘除运算。

(3)作图题目:在数轴上表示给定的实数。

六、板书设计1. 实数的定义及性质。

2. 实数的分类:整数、分数、无理数。

3. 实数的运算法则。

4. 数轴上的实数表示。

七、作业设计1. 作业题目:(3)在数轴上表示实数3、2、√5。

2. 答案:(1)π、√2、3/2、5都是实数。

(2)和:2/3 + √3 + 4 + 1/2 = 9/2 + √3;差:2/3 √3 = 2/3 √3;积:2/3 × √3 = √3/3;商:2/3 ÷ √3 =2/(3√3)。

(3)见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念有了更深入的了解,但部分学生对无理数的理解仍存在困难,需要在今后的教学中加强引导。

《实数》课件精品公开课

《实数》课件精品公开课

《实数》课件精品公开课一、教学内容本节课选自教材第十五章《实数》的第一节,详细内容包括实数的定义、分类和性质,特别是无理数的概念及其与有理数的区别,实数的运算规则,以及实数在数轴上的表示。

二、教学目标1. 理解并掌握实数的定义,能够区分有理数和无理数,了解实数的分类。

2. 能够运用实数的性质进行基本的运算,并理解实数在数轴上的表示。

3. 培养学生的逻辑思维能力和解决问题的能力,通过实数的探究活动,提高学生的数学素养。

三、教学难点与重点教学难点:无理数的概念及其运算,实数与数轴的关系。

教学重点:实数的定义及其性质,实数运算规则的理解和应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、实数教学挂图。

2. 学具:练习本、铅笔、直尺、数轴图。

五、教学过程1. 实践情景引入:通过展示生活中的实例(如黄金分割比),引导学生思考非整数实数的存在和意义。

分组讨论:学生讨论实数在日常生活中的应用。

2. 例题讲解:例1:讲解无理数的平方根,如√2。

例2:实数运算,如(√3 + √2)(√3 √2)。

3. 随堂练习:练习1:判断下列数是有理数还是无理数。

练习2:在数轴上表示出给定的实数。

4. 知识巩固:小组活动:学生按小组进行实数运算比赛。

教师指导:巡回指导,解答学生疑问。

学生分享:小组代表展示解题过程和答案。

教师点评:点评并强调实数学习的要点。

六、板书设计板书分为三部分:1. 实数的定义和分类。

2. 实数的性质和运算规则。

3. 实数与数轴的关系。

七、作业设计1. 作业题目:计算题:计算下列实数的和、差、积、商:(3+√5)和(2√3)。

应用题:在数轴上标出实数1, √2, √3, 2的位置,并说明它们之间的关系。

2. 答案:计算题答案:和=5+√15,差=1+√2,积=6+5√3,商=(65√3)/10。

应用题答案:按照大小顺序排列,1<√2<√3<2。

八、课后反思及拓展延伸1. 反思:通过课后作业和随堂练习的反馈,教师应反思教学过程中学生对实数概念的理解和运用情况,及时调整教学方法。

13.3 实数 优秀课件

13.3 实数  优秀课件
2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( )
4.无限小数都是无理数。( × ) 5.带根号的数都是无理数。( ×) 6.无理数一定都带根号。( ×)
把下列各数填入相应的集合内:
9 35
64


0. 6
3 4
0 3 9
3
0.13
(1)有理数集合:

(2)无理数集合:
无理数集合
2.161661 , 22 , 0,
2.1·61·,
3
7 ,
11
49 , 2
π
, 2
2.1616616661……,
35
无理数的特征:
1.圆周率 及一些含有 的数
2.开不尽方的数 3.有一定的规律,但
不循环的无限小数
注意:带根 号的数不 一定是无 理数
随堂练习
判断题:
1.实数不是有理数就是无理数。( )
3 ,绝对值是 3 .
2、绝对值等于 5 的数是 5 .
3、写出下列各数的相反数与绝对值。
6
π -3.14
1 3 3
4、若实数a满足 a 1 ,则( D )
A、a>0
B、aa<0
C、a≥0
D、
a≤0
随堂练习
总结
1.无理数与实数的概念 2.实数的分类 3.数轴上的点与实数间的对应关系,利用数轴可以比较 两个实数的大小 4.实数范围内相反数、倒数和绝对值的意义
探究二
实数与数轴上的点是一一对应的.即每一个实数都可 以用数轴的一个点来表示;反过来,数轴上的每一个点 都是表示一个实数。
1.如下图,数轴上表示 3 的点是____B__
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
巩固 6、请将数轴上是各点与下列实数对应 起来:
2
1.5
A
5

B C DE
3
-3 -2 -1
0
1
2
3
4
巩固
7、下列各数中,互为相反数的是(
A C
)
2
1 3与 3
与 3 1 (1)
2
B D
2 与 (2)
5 与 5
巩固 8、 A C
5 3 2 5 的值是(
)
5
52 5
B D
3.14159265
无限不循环小数 无限不循环小数叫无理数
归纳
有理数 实 数 无理数
实数的分类 (定义)
整数 分数 有限小数或 无限循环小数 无限不循环小数
你还有其它分类方法吗?
归纳
实数的分类 (正负)
正实数 正有理数 正无理数
实 数
0
负实数
负有理数
负无理数
你知道怎样区分有理数和无理数吗?
2、在数轴上与原点的距离是 2 6 的点 所表示的数是 。
作业
3、求下列各数的相反数:
3
2,
3 , 4
3 2,
5 2.
作业
4、求下列各数的绝对值:
3
8,
17 ,
2 , 3
3 1.7,
1.4 2.
作业 5、把下列各数分别填在相应的集合中:
2 , 1 , 3
3.14, 3 ,
巩固
2、在 0 , .100100010000, 3 , 0
3
, 8 , 1 9中,无理数分别
3
3


巩固 3、把下列各数分别填在相应的集合中:

0 .3
3.1415926
25 36

3
16
1.732
7
… 无理数集合
有理数集合
把下列各数分别填入相应的集合内: 1 5 20 3 2 , 4 , 7 , , , 2 , 3 , 5, 3 8, 2 (相邻两个3之间 4 , 0 , 0.3737737773 的7的个数逐次加1) 9 5 1 , , 3 8, 3 , 2, 20 , 4 2 2, 7 , 3 4 5, 0.3737737773 , 0, 9
无 限 循 环 小 数
11 0.12 9 9 0理数
有限小数和无限循环小数叫有理数
探究 把下列各数写成小数的形式:
2 1.4142
3 1.7320 5 2.2360
3 3 3
3 1.442 5 1.710 7 1.913

0
1
2
3
4
巩固
4、下列命题错误的是( ) A.有最小的正数 B.没有最大的有理数 C.有绝对值最小的数 D.正分数既是有理数又是实数
巩固 5、下列结论正确的是( ) A.无限小数是无理数 B.有理数都可以表示成分数形式 C.无理数都是带根号的数 D.无理数都是无限不循环小数
探究
2 的相反数是 2
复 习
你认识下列各数吗?
3
3 5
9 11
5
0.875
0
有理数是分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数
正整数
有 正分数 理 零 数 负整数 负数 负分数
正数
引入 把下列各数写成小数的形式:
3 3.0
有 限 小 数
47 5.875 8
3 0.6 5

的相反数是
0 的相反数是
2 -2 -1

0
; ;
2
0 1 2
a的相反数是-a
探究
2
2

2 2
0 1
00
-2 2-1
2 2
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0.
范例
例1、(1)求 64 的绝对值; (2)已知一个数的绝对值是 3 , 求这个数。


有理数集合
无理数集合
引入 在数轴上表示下列各数:
1 2 0 3 1 2 0 3
-3 -2 -1 0
3.6 3.6
1 2 3 4
有理数都可以用数轴上的点表示
探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′的坐标是多少?
0
1
2
3 O′
4
探究
0
范例 例1、下列各数中,哪些是有理数,哪 些是无理数?

3
22 7
0.4 16
3
3
2
0.23
1 3
27
3
8 64
3
0.131331333
9
0
巩固
1 2 1、下列各数 , , (3) ,3.14 , 7
2 ,0 中,有理数的个数有( )
A C 2个 4个 B D 3个 5个
1.732,
0,
3
4,
… …
有理数
无理数
一、判断: 1.实数不是有理数就是无理数。( )
2.无理数都是无限不循环小数。(
3.无理数都是无限小数。( ) 4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( × )

6.两个无理数之积不一定是无理数。( 7.两个无理数之和一定是无理数。(× )
1
2 5 5
巩固 9、在数轴上距离表示-2的点是 3 个 单位长度的数是 。
小结
1、本节课你学了什么知识? 实数的定义 实数的分类 (定义、正负)
实数与数轴上的点一一对应 2、你有什么体会? 有理数 无理数 有限小数或 无限不循环小数 无限循环小数
作业
1、设 3 对应数轴上的点是A, 5 对应数轴上的点是B,那么A、B间的 距离是 。
1
2
3 O′
4
你有什么发现? 无理数π可以用数轴上的点表示
再探
以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧, 与正半轴的交点表示什么?
2
-2 -1 0
2
2
1 2
无理数 2可以用数轴上的点表示
归纳
1、每一个有理数都可以用数轴上的点 表示; 2、每一个无理数都可以用数轴上的点 表示; 实数与数轴上的点是一一对应的
相关文档
最新文档