【数学】河南省2020届高三上学期阶段性考试(四)数学(文)

合集下载

2020届河南省安阳一中、安阳正一中学高三第十一次模拟考试数学(文)试题(解析版)

2020届河南省安阳一中、安阳正一中学高三第十一次模拟考试数学(文)试题(解析版)

2020届河南省安阳一中、安阳正一中学高三第十一次模拟考试(文)数学试题一、单选题 1.若复数满足(为虚数单位),为的共轭复数,则( )A .B .C .D .【答案】A【解析】分析:把已知等式变形,利用复数代数形式的乘除运算化简,结合复数模的公式求解. 详解:由,得,则,,则,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知矩形ABCD 中,4,3AB AD ==.如果向该矩形内随机投一点P ,那么使得ABP ∆与ADP ∆的面积都不小于2的概率为( )A .14B .13C .47D .49【答案】D【解析】,由题意知本题是一个几何概型的概率, 以AB 为底边,要使面积不小于2, 由于122ABP S AB h h V =⨯=, 则三角形的高要h ⩾1,同样,P 点到AD 的距离要不小于43,满足条件的P 的区域如图,其表示的区域为图中阴影部分,它的面积是()416 43133⎛⎫--= ⎪⎝⎭, ∴使得△ABP 与△ADP 的面积都不小于2的概率为:1643439=⨯. 故选D. 3.已知函数为偶函数且在单调递减,则的解集为( ) A .B .C .D .【答案】B4.已知双曲线222:12x y C a a-=-的离心率为2,则实数a 的值为( ) A .1 B .2-C .1 或2-D .1-【答案】C 5.在中,,则( )A .B .C .D .【答案】C6.如图程序中,输入,则输出的结果为( )A .B .C .D .无法确定【答案】B 7.将函数图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移个单位得到数学函数的图像,在图像的所有对称轴中,离原点最近的对称轴为( ) A .B .C .D .【答案】A8.在ABC V 中, 4B π=,BC 边上的高等于13BC ,则sin A = A .310B .1010C .55D .31010【答案】D9.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A .B .160C .D .64【答案】A 10.抛物线焦点与双曲线一个焦点重合,过点的直线交于点、,点处的切线与、轴分别交于、,若的面积为,则的长为( ) A . B .C .D .【答案】C 11.函数存在唯一的零点,且,则实数的范围为( ) A .B .C .D .【答案】B12.下列命题为真命题的个数是;;;A.1 B.2 C.3 D.4【答案】C【解析】本题首先可以构造函数,然后通过导数计算出函数的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数的单调性即可比较出大小。

专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。

2020届河南省平顶山市高三上学期10月阶段性检测数学(文)试题

2020届河南省平顶山市高三上学期10月阶段性检测数学(文)试题

2020届河南省平顶山市高三上学期10月阶段性检测数学(文)试题一、单选题1.已知集合{}2,0,1A =-,{}220B x Z x x =∈+≤,则AB =( )A .{}2-B .{}2,0-C .{}2,1-D .2,0,1【答案】B【解析】解出集合B ,然后利用交集的定义可得出A B .【详解】解不等式220x x +≤,解得20x -≤≤,所以,{}{}2202,1,0B x Z x x =∈+≤=--,因此,{}2,0A B =-,故选:B.【点睛】本题考查交集的运算,解题的关键就是交集定义的理解,考查计算能力,属于基础题.2.已知角α的终边经过点(-,则sin α的值为( )A .B .12-C .D 【答案】C【解析】利用三角函数的定义可计算出sin α的值. 【详解】由三角函数的定义得sin α== C.【点睛】本题考查任意角三角函数的定义,要熟记正弦、余弦以及正切三个三角函数值的定义,考查计算能力,属于基础题.3.函数()tan 4f x x π⎛⎫=-- ⎪⎝⎭的定义域为( )A .3,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .3,4x x k k Z ⎧⎫≠+∈⎨⎬⎩⎭C .3,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【答案】A【解析】解不等式42x k πππ-≠+,k Z ∈,即可得出该函数的定义域.【详解】 解不等式42x k πππ-≠+,k Z ∈,得34x k ππ≠+,k Z ∈, 因此,函数()tan 4f x x π⎛⎫=-- ⎪⎝⎭的定义域为3,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,故选:A. 【点睛】本题考查正切型函数定义域的求解,解题时要根据正切函数的定义域来列不等式求解,考查计算能力,属于基础题. 4.函数()4sin 3f x x ππ⎛⎫=+ ⎪⎝⎭图象的一条对称轴方程为( ) A .6x π=B .13x =-C .56x =-D .3x π=-【答案】C【解析】解方程()32x k k Z ππππ+=+∈,然后对k 赋值,可得出该函数图象的一条对称轴方程. 【详解】 由()32x k k Z ππππ+=+∈,得()16x k k Z =+∈,取1k =-,得56x =-, 即函数()4sin 3f x x ππ⎛⎫=+ ⎪⎝⎭图像的一条对称轴方程为56x =-,故选:C. 【点睛】本题考查正弦型函数对称轴方程的求解,解题时应充分利用正弦函数的对称轴方程,列等式求解,考查计算能力,属于基础题. 5.“a b >”是“77log log a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】求出不等式77log log a b >的等价条件,然后可判断出“a b >”与“77log log a b >”之间的充分必要性关系. 【详解】函数7log y x =是()0,∞+上的增函数,由77log log a b >,可得0a b >>. 因此,“a b >”是“77log log a b >”的必要不充分条件,故选:B. 【点睛】本题考查必要不充分关系的判断,一般转化为两集合间的包含关系来判断,也可以利用两条件的逻辑性关系进行判断,考查推理能力,属于中等题.6.已知()f x 为R 上的奇函数,当0x >时,()()4log 6f x x =+,则()2f -=( ) A .32-B .1-C .1D .32【答案】A【解析】先求出()2f 的值,然后利用奇函数的定义得出()()22f f -=-,即可得出结果. 【详解】由题意得()4ln83ln 232log 8ln 42ln 22f ====, 由于函数()y f x =为R 上的奇函数,因此,()()3222f f -=-=-,故选:A. 【点睛】本题考查利用函数的奇偶性求函数值,解题时要结合函数的解析式进行计算,考查计算计算能力,属于基础题.7.若函数1()3x af x -⎛⎫= ⎪⎝⎭满足(2)(2)f x f x +=-,则()f x 的单调递增区间为( ) A .(-∞,2] B .(-∞,1]C .[1,+∞)D .[2,+∞)【答案】A【解析】因为函数满足(2)(2)f x f x +=-,则函数关于2x =对称,进而求出参数a 的值,进而求出函数的递增区间. 【详解】解法1:由(2)(2)f x f x +=-知,函数图象()f x 关于2x =对称,所以,a =2.函数2y x =-在(-∞,2]单调递减,在[2,+∞)单调递增;而13xy ⎛⎫= ⎪⎝⎭在(-∞,+∞)上递减,由复合函数的单调性知,函数21()3x f x -⎛⎫= ⎪⎝⎭的单调递增区间为(一∞,2],故选A.解法2:由函数图象变换可知,a =2且函数21()3x f x -⎛⎫= ⎪⎝⎭的单调递增区间为(一∞,2].故选A. 【点睛】在函数的性质中,有几个表达式值得去关注: (1)()()f a x f a x +=-,关于x a =对称; (2)()-()f a x f a x +=-,关于点(),0a 对称; (3)()()f a x f x +=,函数周期为a .8.《九章算木》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面釈所用的经验公式为:弧田面积=12(弦×矢+矢²).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差。

2020届河南省百校联盟高三12月教育教学质量检测考试数学(文)试卷 PDF版

2020届河南省百校联盟高三12月教育教学质量检测考试数学(文)试卷 PDF版

~5 IOF2 I,若椭圆C的离心率为巳3 ,则直线M凡的斜率为
A. -4
t B.
C. 2
÷ D 一
12.己知函数 f(工)=41 x+2 I+cos1日,则f(4x一 7)ζ3的解集为
A. [一,2]
B.[l ’一 32 ]
C.[2,一 ]
. D. [ t,l]
第E卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23
# !
#(>
%%
$
"""" &
# #(? !
!
'
&%% '$
)#% (#! '$ -$) $9 :%; < =(@ 2 3 # 4 A B 3 . / '&$
0槡--" C&$0槡-"(DEF)$
.$) $9:%;< =("&!"4 G H I ' %(J K L
( M3NKOPQ(?R<' 'S*&&!'(
23. (本小题满分10分)【选修4 → 5: 不等式选讲】 已知函数f(x)=lx-ml+l2x十 生I Cm>2).
η1
(1 )若m =4,求不等式f(x)>5 的解集; (2)证明:f(x)十一_ (m!一2一) 二三2十2!2.
234(!5-67
!"#$%&'! !!()*+ !$"""%"!&'"(##"# !!,-./0123# 45678./

第三关 以棱柱、棱锥与球的组合体为背景的选择题-高考数学备考优生百日闯关系列(原卷版)

第三关 以棱柱、棱锥与球的组合体为背景的选择题-高考数学备考优生百日闯关系列(原卷版)

专题一 压轴选择题第三关 以棱柱、棱锥与球的组合体为背景的选择题【名师综述】球作为立体几何中重要的旋转体之一,成为考查的重点.要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,以及与球有关的最值问题,更应特别加以关注的.试题一般以小题的形式出现,有一定难度.解决问题的关键是画出正确的截面,把空间“切接”问题转化为平面“问题”处理.类型一 四面体的外接球问题典例1.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若ABC 的面积为,ABC S OBC 的面积为,OBC S PBC 的面积为PBC S ,满足2ABC OBC PBC S S S ⋅=△△△,当,,PAB PBC PAC 的面积之和的最大值为8时,则三棱锥P ABC -外接球的体积为( )A .43πB .83πC .163πD .323π 【来源】山西省晋中市2022届高三上学期1月适应性调研数学(理)试题【举一反三】在四边形ABCD 中(如图1所示),AB AD =,45ABD ∠=,2BC BD CD ===,将四边形ABCD 沿对角线BD 折成四面体A BCD '(如图2所示),使得90A BC ∠=',E ,F ,G 分别为棱BC ,A D ',A B '的中点,连接EF ,CG ,则下列结论错误的是( ).A .A C BD '⊥B .直线EF 与CG 45C .C ,E ,F ,G 四点不共面D .四面体A BCD '外接球的表面积为8π【来源】陕西省2022届高三上学期元月联考理科数学试题类型二 三棱柱的外接球问题典例2.已知各顶点都在同一球面上的正四棱柱的底边长为a ,高为h ,球的体积为86π,则这个正四棱柱的侧面积的最大值为( ) A .482 B .242 C .962 D .122【来源】内蒙古包头市2020-2021学年高三上学期期末考试数学(文)试题【举一反三】在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,12BB π=,90ABC ∠=︒,点M 为AB 的中点,点P 在三棱柱内部或表面上运动,且2PA PM =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .15【来源】贵州省贵阳市2021届高三适应性考试数学(理)试题(一)类型三 四棱锥的外接球问题典例3.在四棱锥P ABCD -中,底面ABCD 为等腰梯形,PB ⊥底面ABCD .若1PB AB CD AD ====, 2BC =,则这个四棱锥的外接球表面积为( )A .3πB .4πC .5πD .6π【来源】四川省成都市第七中学2021-2022学年高三下学期入学考试文科数学试题【举一反三】已知四棱锥P ABCD -中,底面ABCD 是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面ABCD ,2AB =,若四棱锥P ABCD -82π,则该四棱锥的表面积为( ) A .3B .63C .83D .103【来源】山西省吕梁市2021届高三上学期第一次模拟数学(理)试题类型四 几何体的内切球问题典例4.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .3B 153C 153D 153【来源】江西省乐平市第一中学2021届高三上学期联考理科数学试题【举一反三】由棱长都为1的4个正四面体和1个正八面体,组合成一个正四面体,再将此正四面体削切、打磨成最大的球,则该球体积为( )A 6B 6C .354D 646 【来源】湖南省长沙市雅礼中学2020届高三下学期5月质量检测文科数学试题【精选名校模拟】1.已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( )A .128πB .132πC .144πD .156π【来源】湖北省武汉市武昌区2020-2021学年高三上学期1月质量检测数学试题2.已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( )A .8πB .24310πC .8110πD .6π【来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查理科数学试题3.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC 的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( )A .343aB .23a πC .332a πD .212a【来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测理科数学试题4.在三棱锥P ABC -中,22AB AC ==,120BAC ∠=,26PB PC ==,25PA =,则该三棱锥的外接球的表面积为( )A .40πB .20πC .80πD .60π【来源】江西省名校2021届高三上学期第二次联考数学(理)试题5.已知直三棱柱111ABC A B C -的底面是正三角形,23AB =,D 是侧面11BCC B 的中心,球O 与该三棱柱的所有面均相切,则直线AD 被球O 截得的弦长为( )A .1010B .105C .31010D .31056.如图,在三棱锥P ABC -,PAC △是以AC 为斜边的等腰直角三角形,且22CB =,6AB AC ==,二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球表面积为( )A 510B .10πC .9πD .(423π+7.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若2ABC OB PBC C S S S ⋅=,且三棱锥P ABC -的外接球半径为3,则PAB PBC PAC S S S ++△△△的最大值为( )A .8B .10C .18D .22【来源】吉林省梅河口市第五中学2020-2021学年高三上学期第三次月考数学(理)试题8.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为233,2AB =,1AC =,60BAC ∠=︒,则此球的表面积等于( )A .5πB .8πC .16πD .20π【来源】河南省河南大学附属中学2021-2022学年高三上学期11月月考数学文科试题9.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B 455πC .30πD .45π【来源】江西宜春市2021届高三上学期数学(文)期末试题10.在菱形ABCD 中,3A π=,3AB =△ABD 沿BD 折起到△PBD 的位置,二面角P BD C--的大小为23π,则三棱锥P BCD -的外接球的表面积为( ) A .23πB .27πC .72πD .112π 【来源】山西省长治市第二中学校2021届高三上学期9月质量调研数学(文)试题多选题11.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑(biēnào ).如图,三棱锥D ABC -为一个鳖臑,其中DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,AM DC ⊥,M 为垂足,则( )A .AM ⊥平面BCDB .DC 为三棱锥D ABC -的外接球的直径C .三棱锥M ABD -的外接球体积为43πD .三棱锥M ABC -的外接球体积与三棱锥M ABD -的外接球体积相等【来源】河北省张家口市2022届高三上学期期末数学试题12.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38a C .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(1483)a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '3 【来源】江苏省南京市第二十九中学2021-2022学年高三上学期12月月考数学试题。

2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第二节 函数的单调性与最值

2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章  第二节  函数的单调性与最值

课时规范练 A 组 基础对点练1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:当x >0时,f (x )=3-x 为减函数; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 答案:C2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1D .y =lg|x |解析:A 中y =1x 是奇函数,A 不正确;B 中y =e -x=⎝ ⎛⎭⎪⎫1e x 是非奇非偶函数,B不正确;C 中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C. 答案:C3.(2019·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( ) A .f (x )=(x -1)2 B .f (x )=e x C .f (x )=1xD .f (x )=ln(x +1)解析:根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确; 对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 答案:C4.(2019·福州模拟)函数f (x )=⎩⎨⎧-x +3a ,x <0a x ,x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎢⎡⎭⎪⎫13,1 C.⎝ ⎛⎦⎥⎤0,13 D.⎝ ⎛⎦⎥⎤0,23 解析:∵⎩⎪⎨⎪⎧0<a <13a ≥1,∴13≤a <1.答案:B5.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A. 答案:A6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3)D .f (0.32)<f (log 25)<f (20.3)解析:∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数, ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 答案:AB 组 能力提升练7.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,∴函数在[-2,2]上单调递增,∴⎩⎪⎨⎪⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a ,∴⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C. 答案:C8.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x -1)对任意的x ∈[-1,0]恒成立,则实数m 的取值范围是( ) A .[-3,1]B .[-4,2]C .(-∞,-3]∪[1,+∞)D .(-∞,-4]∪[2,+∞)解析:因为f (x +1)是偶函数,所以f (-x +1)=f (x +1),所以f (x )的图象关于x =1对称,由f (m +2)≥f (x -1)得|(m +2)-1|≤|(x -1)-1|,所以根据题意得|m +1|≤2,解得-3≤m ≤1.故选A. 答案:A9.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B.⎣⎢⎡⎭⎪⎫1,32 C .[1,2)D.⎣⎢⎡⎭⎪⎫32,2 解析:函数f (x )的定义域为(0,+∞),所以k -1≥0,即k ≥1.令f ′(x )=4x 2-12x =0,解得x =12⎝ ⎛⎭⎪⎫x =-12舍.因为函数f (x )在区间(k -1,k +1)内不是单调函数,所以k -1<12<k +1,得-12<k <32.综上得1≤k <32. 答案:B10.(2018·西安一中模拟)已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(-1,2)D .(-2,1)解析:∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.故选D.答案:D11.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析:由f (x )=⎩⎪⎨⎪⎧-2x -a ,x <-a22x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-a 2,+∞,故3=-a 2,解得a =-6.答案:-612.已知函数f (x )=x +ax (x ≠0,a ∈R ),若函数f (x )在(-∞,-2]上单调递增,则实数a 的取值范围是__________.解析:设x 1<x 2≤-2,则Δy =f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2.因为x 1-x 2<0,x 1x 2>0,所以要使Δy =(x 1-x 2)(x 1x 2-a )x 1x 2<0恒成立,只需使x 1x 2-a >0恒成立,即a <x 1x 2恒成立.因为x 1<x 2≤-2,所以x 1x 2>4,所以a ≤4,故函数f (x )在(-∞,-2]上单调递增时,实数a 的取值范围是(-∞,4]. 答案:(-∞,4]。

2020届河南省天一大联考高三阶段性测试(四) 数学(理)

2020届河南省天一大联考高三阶段性测试(四) 数学(理)

绝密★启用前天一大联考2019-2020学年高中毕业班阶段性测试(四)理科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={x|(x -1)(x -4)≥0},N ={x|y =ln(2-x)},则M ∩N =A.(1,2)B.[1,2]C.(-∞,1]D.(2,4]2.复数z 满足1212i i z+=-,则z 的共轭复数z = A.-3+4i B.-3-4i C.3455i -+ D.3455i -- 3.已知两个平面α,β,直线l ⊂α,则“l //β”是“α//β”的A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 4.42)1(x x+-展开式中的常数项为 A.-11 B.11 C.70 D.-70 5.已知正实数a ,b ,c 满足(12)a =log 3a ,(14)b =log 3b ,c =log 32,则 A.a<b<c B.c<b<a C.b<c<a D.c<a<b6.已知向量a ,b 的夹角为135°,|a|=,|b|=3,且a +λb 与a -b 垂直,则λ= A.1415 B.56 C.23 D.167.设不等式组21022020x y x y x y +-≥-+≥+-≤⎧⎪⎨⎪⎩,表示的平面区域为D ,命题p :点(2,1)在区域D 内,命题q :点(1,1)在区域D 内。

则下列命题中,真命题是A.(⌝p)∨qB.p ∨(⌝q)C.(⌝p)∧(⌝q)D.p ∧q8.函数f(x)=333x xx --+的图象大致是9.已知F 1,F 2为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,点M 为E 右支上一点。

十所名校2020届高三生物阶段性测试试题四含解析

十所名校2020届高三生物阶段性测试试题四含解析
故选D。
【点睛】本题考查种群数量的变化曲线,重点考查种群数量增长的“S”型曲线,要求考生识记“S”型曲线形成的原因,理解和掌握种群“S”型增长曲线中增长速率的变化情况,并能对选项作出准确的判断.
二、非选择题
7.研究表明,兰科菌根真菌(记为OM)对铁皮石斛幼苗 生长有明显的促进作用.某小组利用铁皮石斛幼苗和OM真菌进行了相关研究,结果如图所示(“+M"表示接种OM真菌,“-M”表示不接种OM真菌).请回答下列相关问题:
C、激素类蛋白质例如胰岛素,可以作为信号分子调节机体的生命活动,C正确;
D、血糖浓度过高时,葡萄糖可转化为脂肪或某些非必需氨基酸,D正确。
故选B.
【点睛】本题考查蛋白质的结构和功能的知识,考生识记蛋白质的构成和功能是解题的关键。
2。钠钾泵又称钠钾ATP酶,广泛存在于人体各种细胞的细胞膜上.钠钾泵水解一个ATP释放的能量可将3个Na+泵到细胞外,同时将2个K+泵入细胞内,造成跨膜梯度和电位差。下列有关叙述错误的是( )
【答案】B
,组成生物体的氨基酸约有20种,由R基决定,氨基酸彼此之间可以通过脱水缩合的方式形成多肽。
蛋白质的功能:①构成细胞和生物体的重要物质;②催化作用;③传递信息;④免疫作用;⑤运输作用.
【详解】A、氨基酸之间通过脱水缩合的方式形成肽链,A正确;
B、翻译过程发生在细胞质中,运输氨基酸的物质是tRNA,B错误;
(3)在有光条件下,铁皮石斛吸收的CO2在__________(具体场所)中被固定为C3,进而转变为糖类。据图可知,在种植铁皮石斛过程中可通过__________等措施提高铁皮石斛的净光合速率。
(4)研究表明,铁皮石斛能与某些真菌形成菌根,真菌能为铁皮石斛提供无机盐和某些有机养分(如某些种类 氨基酸等),两种生物生活在一起,彼此有利,说明铁皮石斛与该真菌之间存在____________________关系。

河南省天一大联考2020届高三化学上学期阶段性测试试题(二)

河南省天一大联考2020届高三化学上学期阶段性测试试题(二)

河南省天一大联考2020届高三化学上学期阶段性测试试题(二)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 B 11 C 12 0 16 Na 23 Mg 24 A1 27 Si 28 S 32 K 39 Fe 56 Cu 64 Zn 65 I 127一、选择题:本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.国画唐•周昉的《挥扇仕女图》全卷所画人物共计13人。

画卷为絹本设色,描绘嫫妃的生活,画面结构井然,线条秀劲细利,赋色柔丽多姿,艳而不俗。

下列说法错误的是 A.画中所用的绢属于蚕丝制品,其主要成分是蛋白质B.画中的红色颜料,主要用赤铁矿粉,其主要成分是四氧化三铁C.画中的黑色颜料,主要用黑色的墨,其主要成分是炭黑D.画中的绿色颜料,古称石青,现在称为铜绿,其主要成分是碱式碳酸铜 2.下列化学用语错误的是A.中子数为10的氧原子:O 188 B.COS 的结构式:0 =C =SC.BaH2 的电子式:[H:] -Ba2+[H]-3.下图是某可逆反应在反应过程中的能量变化示意图,下列说法正确的是A.该反应的焓变△H = E2 - E1B. A(g) +B(s) =C(g) △H>0C.两种途径的差异可能是有无催化剂造成的D. 1 mol A与足量B充分反应后有a kJ的化学能转化为热能4.设N A代表阿伏加德罗常数的值,下列说法错误的是A.将6.4 g S02溶于水,溶液中H2S03、HS03-、SO32-的个数之和为0.1N AB.12 g FeS2和MgS04的混合物中所含阴离子(S〗_、S0〗_)总数为0.1N AC. 19.2 g铜与一定浓度的硝酸完全反应,转移电子数一定为0.6N AD.标准状况下,11. 2 L C2H6和C3H6的混合气体中所含氢原子数为3N A5.下列各组物质中,组内任意两种物质在一定条件下不一定能发生反应的是6.对羟基苯乙酮是非常重要的医药中间体,工业上常用有机物甲通过Fries重排合成。

河南省重点高中高三上学期阶段性调研联考化学试题含答案

河南省重点高中高三上学期阶段性调研联考化学试题含答案

河南省重点高中2022届高三上学期阶段性调研联考化学试题注意事项:1.共100分,考试时长为90分钟。

2.答题前,考生先将姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32一、选择题(每小题只有一个正确答案,1-10题每题2分,11-20题每题3分,共50分)1. 聚焦生态文明建设,守护蓝天碧水净土。

下列物质不属于空气污染物的是A. 臭氧B. 氮的氧化物C. PM2.5D. 二氧化碳2. 很多元素都有同素异形体,下列不属于碳元素的同素异形体的是A.C60 B. 12C C. 金刚石 D. 石墨3.化学工业是国民经济的支柱产业,下列生产过程中不涉及化学变化的是A.氮肥厂用氢气和氮气合成氨B.钢铁厂用热还原法冶炼铁C.化工厂用电解法制备氯气D.炼油厂用分馏法生产汽油4.实验室中从溴水中提取溴,下列方法中最适宜的是A.蒸馏B.过滤C.萃取D.结晶5.燃料电池能有效提高能源利用率,具有广泛的应用前景,下列物质均可用作燃料电池的燃料,其中最环保的是A.甲醇B.氢气C.液化石油气D.天然气6.我们经常用各类化学用语表达着多姿多彩的化学世界,下列化学用语表示正确的是OA.原子核内有8个中子的氧原子:1810B.硫离子的结构示意图:C.次氯酸钠的电子式:C H OD.蔗糖分子的分子式:61267.下列关于胶体的叙述正确的是A.胶体区别于其他分散系的本质特征是分散质粒子直径的大小B.光线透过溶液和胶体时,均可发生丁达尔效应C.FeCl3溶液和Fe(OH)3胶体均是红褐色液体D.可以通过过滤的方法分离FeCl3溶液和Fe(OH)3胶体8.奎尼酸是制备治疗艾滋病新药二咖啡酰奎尼酸的原料,其结构简式如图,下列有关奎尼酸的说法中正确的是A.奎尼酸的分子式是C7H9O6B.奎尼酸遇FeCl3溶液显紫色C.奎尼酸可以与钠反应但是不能与NaOH反应D.奎尼酸能发生消去反应、氧化反应、取代反应9.2018年第26届国际计量大会新修订了阿伏加德罗常数,规定1mol任何粒子的粒子数叫做阿伏加德罗常数,通常用6.02×1023mol−1表示。

河南省名校2020届高三3月联合考试 数学(文) 含答案

河南省名校2020届高三3月联合考试 数学(文) 含答案

河南名校(四校)高三联合考试数学(文科)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用铅笔把答题卡,上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设z=2ii-,则z的共轭复数z在复平面内的对应点在A.第一象限B.第二象限C.第三象限D.第四象限2.设集合M={0,1},N={x|lgx≤0},则集合M∪N=A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]3.设a=30.5,b=log0.50.6,c=cos 45π,则A.a<b<cB.b<c<aC.c<b<aD.c<a<b.4.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位…用纵式表示,十位、千位、十万位…用横式表示,则56846可用算筹表示为5.已知某函数图象如图所示,则图象所对应的函数可能是A.f(x)=sin x xe B.f(x)=e |x|-x 2 C.f(x)=e |x|-|x| D.f(x)=e |x|-2x 26.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600,从中抽取60个样本,下面提供随机数表的第4行到第6行:若从表中第6行第6列开始向右依次读取3个数据,则得到的第5个样本编号是A.522B.324C.535D.5787.已知sin63°≈0.8912(cos72°+cos18°)的近似值为A.1.773B.1.782C.1.796D.1.8158.已知向量OM =(1,0),ON =(0,2),MP =t MN ,则当|OP |取最小值时,实数t =A.15 B.13 C.12 D.19.在如图所示的程序框图中,执行所给的程序后,则输出的T 和k 的关系为A.T =7(k -2)B.T =10k -3C.T =9(k -2)D.T =8k -110.抛物线y 2=2px(p>0)的焦点为F ,半径为3的圆C 过点O 、F ,且与抛物线的准线l 相切,则p 的值为A.1B.2C.4D.811.将函数f(x)=sinxcosx 的图象向右平移φ(|φ|<2π)个单位长度后得到函数g(x)的图象,若g(x)在区间[0,6π]上单调递增,则满足条件的实数φ的最小值与最大值的和是A.2π B.3π C.4π D.6π12.已知F 1,F 2是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点A 是双曲线上第二象限内一点,且直线AF 1与双曲线的一条渐近线y =b ax 平行,△AF 1F 2的周长为9a ,则该双曲线的离心率为A.2C.3第II 卷本卷包括必考题和选考题两部分。

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类目录一、热点题型归纳【题型一】平移1:正弦←→余弦 (1)【题型二】平移2:识图平移 (3)【题型三】平移3:恒等变形平移 (4)【题型四】平移4:中心对称,轴对称,单调性等性质 (5)【题型五】平移5:最小平移 (6)【题型六】平移6:求w 最值 (7)【题型七】正余弦函数对称轴 (8)【题型八】正余弦对称中心 (9)【题型九】三角函数周期 (9)【题型十】单调性与最值 (11)【题型十一】正余弦“和”与“积”性质、最值 (11)【题型十二】三角函数零点 (12)【题型十三】图像与性质:x1与x2型 (13)【题型十四】三角函数最值 (14)【题型十五】万能代换与换元 (15)【题型十六】图像和性质综合 (15)二、真题再现 (16)三、模拟检测 (178)【题型一】平移1:正弦←→余弦【典例分析】(2022·安徽省太和中学高三阶段练习)已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,若()f x 的图象向右平移π12个单位后,得到函数()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,则( )A .6π=ϕB .π4ϕ= C .π3ϕ= D .2π5ϕ=1(2023·全国·高三专题练习)已知直线8x π=是函数()2sin(2)||2πϕϕ⎛⎫=+< ⎪⎝⎭f x x 的图像的一条对称轴,为了得到函数()y f x =的图像,可把函数2cos 26y x π⎛⎫=- ⎪⎝⎭的图像( )A .向左平移24π个单位长度B .向右平移24π个单位长度C .向左平移12π个单位长度 D .向右平移12π个单位长度2.(2022·全国·高三专题练习)为得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-- ⎪⎝⎭图象上所有的点( )A .向左平移712π个单位长度B .向右平移712π个单位长度 C .向左平移724π个单位长度D .向右平移724π个单位长度3.(2023·全国·高三专题练习)为了得到函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象,可以将函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移5π24个单位 B .向右平移7π24个单位 C .向右平移5π24个单位D .向左平移7π24个单位【题型二】平移2:识图平移【典例分析】(2022·陕西·渭南市华州区咸林中学高三开学考试(理))如图,函数()()π2sin 0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过()π,0,2π,22⎛⎫⎪⎝⎭两点,为得到函数()()2cos g x x ωϕ=-的图像,应将()f x 的图像( )A .向右平移7π6个单位长度 B .向左平移7π6个单位长度 C .向右平移5π2个单位长度D .向左平移5π2个单位长度()++(0)0Asin x b A ,的步骤和方法:确定函数的最大值M 和最小值2M mA ,2M mb; :确定函数的周期T ,则可2T得=; :常用的方法有代入法和五点法. 把图象上的一个已知点代入(此时A b ,,已知)或代入图象与直线y b =的交点求解注意交点是在上升区间上还是在下降区间上).五点法”中的某一个点为突破口.【变式演练】1.(2022·河南·高三阶段练习(理))函数()()2sin f x x ωϕ=+(0>ω且0πϕ<<)在一个周期内的图象如图所示,将函数()y f x =图象上的点的横坐标伸长为原来的2倍,再向右平移π4个单位长度,得到函数()y g x =的图象,则π3g ⎛⎫= ⎪⎝⎭( )AB .1C .-1D .2.(2022·全国·长垣市第一中学高三开学考试(理))将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===3.(2022·四川省内江市第六中学模拟预测(文))已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则3f π⎛⎫= ⎪⎝⎭( )A .12 B .12-C D .【题型三】平移3:恒等变形平移【典例分析】(2022·湖北·高三开学考试)要得到2()sin 43g x x π⎛⎫=+⎪⎝⎭的图象,只需要将22()cos 2sin 2f x x x =-的图象( ) A .向左平移24π个单位长度 B .向右平移24π个单位长度 C .向左平移12π个单位长度D .向右平移12π个单位长度【变式演练】1.(2023·全国·高三专题练习)已知函数()2sin cos f x x x =+的图象向左平移()0ϕϕ>个单位长度后得到函数()sin 2cos g x x x =+的图象,则()g ϕ=( )A .65B .115C .15 D .852.(2022·全国·高三专题练习)为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度3.(【百强校】2015届浙江省宁波市镇海中学高三5月模拟考试理科数学)设()cos 22f x x x =,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos 22g x x x =-的图象,则ϕ的值可以为( ) A .6π B .3πC .23πD .56π【题型四】平移4:中心对称,轴对称,单调性等性质【典例分析】(2022·安徽·高三开学考试)将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12)+)00((Asin x A ,两个点关于中心对称,则函数值互为相反数。

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。

多面体的内切球外接球问题求解策略(原卷版)

多面体的内切球外接球问题求解策略(原卷版)

专题32 多面体的“内切球”、“外接球”问题求解策略【高考地位】球作为立体几何中重要的旋转体之一,成为考查的重点,基本属于必考题目.而且球相关的特殊距离,即球面距离是一个备考的重点,要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,更应特别加以关注的.题目一般属于中档难度,往往单独成题,或者在解答题中以小问的形式出现.类型一球的内切问题万能模板内容使用场景有关球的内切问题解题模板第一步首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.图1【变式演练1】阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( )A .12B .13C .23D .34【来源】2021年秋季高三数学开学摸底考试卷03(江苏专用)【变式演练2】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【变式演练3】【江西省乐平市第一中学2021届高三上学期联考理科】已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .BC D【变式演练4】【湖南省衡阳市第八中学2020-2021学年高三上学期10月月考】攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )A .3B .4C .2 D类型二 球的外接问题例2. 两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【来源】2021年天津高考数学试题例3、已知点M 是边长为3的等边三角形ABC 的边AC 上靠近点C 的三等分点,BC 的中点为F .现将ABF沿AF 翻折,使得点B 到达B '的位置,且平面AB F '⊥平面ACF ,则四面体AB FM '的外接球的表面积为( )A B C .372π D .374π 【来源】2021年高考最后一卷理科数学(第八模拟)【变式演练5】【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3π B .4π C .6π D .12π【变式演练6】【湖南省衡阳市第八中学2020-2021学年高三上学期11月第三次月考】在三棱锥A SBC -中,10AB ,4ASC BSC π∠=∠=,AC AS =,BC BS =,若该三棱锥的体积为3,则三棱锥S ABC -外接球的表面积为( )A .3πB .12πC .48πD .36π【变式演练6】【福建师范大学附属中学2021届高三上学期期中考试】在四面体ABCD 中,BD AC ==2AB BC AD ===,AD BC ⊥,则四面体ABCD 的外接球的体积为( )A .B .C .D .【高考再现】1.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12B .12C .4D .42.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.【2020年高考天津卷5】若棱长为 ) A .12π B .24π C .36π D .144π4.(2019•新课标⊙,理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D5.(2018•新课标⊙,理10文12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .6.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .7.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.【反馈练习】1.【浙江省台州市第一中学2020-2021学年高三上学期期中】设ABC 为等腰三角形,2AB AC ==,2π3A ∠=,AD 为BC 边上的高,将ADC 沿AD 翻折成ADC ',若四面体ABC D ',则线段BC '的长度为( )A .BC D2.【河南省九师联盟2021届高三第一学期11月质量检测理科】已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是O 的表面积是( )A .28π3B .14π3C .56π3D .7π 33.【陕西省安康市2020-2021学年高三上学期10月联考文科】四棱锥P ABCD -的顶点都在球O 的球面上,ABCD 是边长为P ABCD -体积的最大值为54,则球O 的表面积为( ) A .36π B .64π C .100π D .144π4.【广东省湛江市2021届高三上学期高中毕业班调研】鳖臑(biē nào )是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥A -BCD 是一个鳖臑,其中AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =6,BC =3,DC =2,则三棱锥A -BCD 的外接球的体积是( )A .493πB .3432πC .49πD .3436π 5.【湖北省鄂州高中2020-2021学年高三上学期10月质量检测】张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .366.【四川省成都市蓉城名校联盟2021届高三第一次联考文科】已知三棱锥P ABC -,PA ⊥平面ABC ,且PA =,在ABC 中,1AC =,2BC =,且满足sin 2sin 2A B =,则三棱锥P ABC -外接球的体积为( )A .3B .323πCD .83π 7.球O 的两个相互垂直的截面圆1O 与2O 的公共弦AB 的长度为2,若1O AB △是直角三角形,2O AB △是等边三角形,则球O 的表面积为( )A .9πB .12πC .16πD .20π【来源】辽宁省丹东市2021届高三二模数学试题8.【河南省洛阳市汝阳县2020-2021学年高三上学期联考数学(文)】我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B .2C .30πD .45π9.【湖南师大附中2021届高三(上)月考】四棱锥P ABCD -的底面ABCD 是矩形,侧面PAD ⊥平面ABCD ,120APD ︒∠=,AB PA ==2PD =,则该四棱锥P ABCD -外接球的体积为( )A .323πB .3C .D .36π10.【内蒙古赤峰市中原金科2020-2021学年高三大联考】据《九章算术》记载,“鳖臑(biēnào)”为四个面都是直角三角形的三棱锥.如图所示,现有一个“鳖臑”,PA ⊥底面ABC ,AB BC ⊥,且2PA AB BC ===,三棱锥外接球表面积为( )A .4πB .8πC .12πD .16π11.【内蒙古赤峰市松山区2020-2021学年高三第一次统一模拟考试文科】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143π B .283π C .11π D .12π12.如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A .3πB .8πC .6πD .4π 13.(多选)【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】已知球O 是正三棱锥(底面为正三角形,点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆的面积可能是( )A .πB .2πC .3πD .4π14.(多选)设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+ 【来源】重庆市2021届高三高考数学第三次联合诊断检测试题15.【江苏省泰州市2020-2021学年高三上学期期中】已知直三棱柱ABC —A 1B 1C 1中,AB =BC =1,AC ,侧棱AA 1=2,则该三棱柱外接球的体积为_______.16.【江西省南昌市第十中学2021届高三上学期期中考试】如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.【福建省莆田第一中学2021届高三上学期期中考试】在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 为正方形11CDD C 对角线的交点,则三棱锥11M ACC -的外接球表面积为______.18.在一个棱长为3+方体和大球之间的空隙自由滑动,则小球的表面积最大值是___________.【来源】2021届高三数学临考冲刺原创卷(一)19.阿基米德在他的著作《论圆和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为________.【来源】福建省厦门第一中学2021届高三高考模拟考试数学试题20.在一次综合实践活动中,某手工制作小组利用硬纸板做了一个如图所示的几何模型,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .经研究发现,当点P 在半圆弧AD 上(不含A ,D 点)运动时,三棱锥P ABD -的外接球始终保持不变,则该外接球的表面积为______.【来源】山东省烟台市2021届高三二模数学试题21.一个封闭的正方体容器内盛有一半的水,以正方体的一个顶点为支撑点,将该正方体在水平桌面上任意旋转,当容器内的水面与桌面间距离最大时,水面截正方体各面所形成的图形周长为外接球的表面积为___________.【来源】湘豫联考2021届高三5月联考文数试题22.以三棱柱上底所在平面某一点为对称中心,将上底图形旋转180°后,再将上、下底顶点连接形成空间几何体称为“扭反三棱柱”.如图所示的“扭反三棱柱”上、下底为全等的等腰三角形,且顶点A ,B ,C ,A 1,B 1,C 1均在球O 的球面上,AB =AC =A 1B 1=A 1C 1=m ,截面BCB 1C 1是矩形,BC =2,B 1C =4.则该几何体的外接球表面积为__________,当该几何体体积最大时m =__________.【来源】重庆市第八中学2021届高三下学期适应性月考卷(七)数学试题23.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家,享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家.公元前212年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁.阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球(一个球与圆柱上下底面相切且与侧面相切)的图形,以纪念他在几何学上的卓越贡献,这个图形中的内切球的体积与圆柱体积之比为________,内切球的表面积与圆柱的表面积之比为_______.【来源】湖南省衡阳市第八中学2021届高三下学期考前预测(二)数学试题24.将三个边长为6的正方形分别沿相邻两边中点裁剪而成(1、2)部分,与正六边形组合后图形如图所示,将此图形折成封闭的空间几何体,则这个几何体的体积是___________,外接球表面积为___________.【来源】全国新高考2021届高三数学方向卷试题(B)25.天津滨海文化中心地天津滨海新区开发区,是天津乃至京津冀地区的标志性文化工程.其中滨海图书馆建筑独具特色,被称为“滨海之眼”,如图所示,中心球状建筑引起了小明的注意,为了测量球的半径,小明设计了两个方案,方案甲,构造正三棱柱侧面均与球相切如图所示,底面边长约为30米,估计此时球的完整表面积为 ________平方米;方案乙,测量球被地面截得的圆的周长约为16π米,地面到球顶部高度约为16米,估计此时球的完整体积为__________立方米,你认为哪种方案好呢?【来源】天津市河东区2021届高三下学期一模数学试题26.2020年底,中国科学家成功构建了76个光子的量子计算机“九章”,推动全球量子计算的前沿研究达到一个新高度.该量子计算机取名“九章”,是为了纪念中国古代著名的数学专著《九章算术》.在《九章算术》中,底面是直角三角形的直三棱柱被称为“堑堵”.如图,棱柱111ABC A B C -为一“堑堵”,P 是1BB 的中点,12AA AC BC ===,则在过点P 且与1AC 平行的截面中,当截面图形为等腰梯形时,该截面的面积等于___________,该“堑堵”的外接球的表面积为___________.【来源】全国100所名校2021年高考冲刺试卷(样卷一)文科数学试题。

(全国三卷地区适用)2020届高三上学期期末数学(文)教学质量检测卷及答案【测试范围:高中全部内容】

(全国三卷地区适用)2020届高三上学期期末数学(文)教学质量检测卷及答案【测试范围:高中全部内容】

绝密★启用前2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.测试范围:高中全部内容。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=A.{3} B.{2,3} C.{﹣1,3} D.{1,2,3}2.已知复数312iz=-(i是虚数单位),则z=A.36i55+B.36i55-C.12i55-D.12i55+3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为A.35B.34C.710D.454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.已知实数x0是函数f(x)6x=的一个零点,若0<x1<x0<x2,则A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>06.已知等比数列{a n}的公比12q=,该数列前9项的乘积为1,则a1=A.8 B.16 C.32 D.647.若函数f(x)=x2ln2x,则f(x)在点(12,)处的切线方程为A.y=0 B.2x﹣4y﹣1=0 C.2x+4y﹣1=0 D.2x﹣8y﹣1=08.过正方体ABCD﹣A1B1C1D1的顶点A作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作A.1 个B.2 个C.3 个D.4 个9.执行如图所示的程序框图,输出的结果为A.22019﹣1 B.22019﹣2 C.22020﹣2 D.22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|=A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积. 18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点;(2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 及曲线C 1的直角坐标方程,并判断曲线C 1的形状; (2)已知点P (1,1),直线l 交曲线C 1于A ,B 两点,求11PA PB+的值. 23.(本小题满分10分)选修4-5:不等式选讲已知f (x )=|x ﹣1|+|2x +3|. (1)求不等式f (x )>4的解集;(2)若关于x 的不等式|x +1|﹣|x ﹣m |≥|t ﹣1|+|2t +3|(t ∈R )能成立,求实数m 的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2,3},B ={x |x 2﹣2x >0},则A ∩B = A .{3} B .{2,3}C .{﹣1,3}D .{1,2,3}2.已知复数312iz =-(i 是虚数单位),则z = A .36i 55+ B .36i 55- C .12i 55- D .12i 55+ 3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为 A .35B .34C .710D .454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发 明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.已知实数x 0是函数f (x )6x x=-的一个零点,若0<x 1<x 0<x 2,则 A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>06.已知等比数列{a n }的公比12q =,该数列前9项的乘积为1,则a 1=A .8B .16C .32D .647.若函数f (x )=x 2ln2x ,则f (x )在点(102,)处的切线方程为 A .y =0B .2x ﹣4y ﹣1=0C .2x +4y ﹣1=0D .2x ﹣8y ﹣1=08.过正方体ABCD ﹣A 1B 1C 1D 1的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作 A .1 个B .2 个C .3 个D .4 个9.执行如图所示的程序框图,输出的结果为A .22019﹣1B .22019﹣2C .22020﹣2D .22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|= A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE 沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积.18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点; (2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量; (2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为11212x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求直线l及曲线C1的直角坐标方程,并判断曲线C1的形状;(2)已知点P(1,1),直线l交曲线C1于A,B两点,求11PA PB的值.23.(本小题满分10分)选修4-5:不等式选讲已知f(x)=|x﹣1|+|2x+3|.(1)求不等式f(x)>4的解集;(2)若关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,求实数m的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学·参考答案13.【答案】2-【解析】∵向量=a (3,﹣2),=b (m ,1),∴()2324m -=--,a b , ∵(-a 2b )∥b ,∴﹣4m =3﹣2m ,∴m 32=-.故答案为:32-.14.【答案】100【解析】由a n ﹣a n ﹣1=2(n ≥2),知数列{a n }是公差为2的等差数列,由S 10=10,得110910102d a ⨯+=,即1912a d +=, a 2+a 4+a 6+…+a20()()11092102da d ⨯=++=10a 1+100d 11910454510452a d d a d d ⎛⎫=++=++ ⎪⎝⎭=10+45×2=100.故答案为:100. 15【解析】椭圆2295x y +=1的a =3,b =c =2,e 23=,设椭圆的右焦点为F ',连接PF ', 线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得|PF '|=2|AO |=4,设P 的坐标为(m ,n),可得323-m =4,可得m32=-,n 2=,由F (﹣2,0),可得直线PF的斜率为2322=-+ 另解:由|PF '|=2|AO |=4,|PF |=6﹣4=2,|FF '|=2c =4,可得cos ∠PFF'4161612244+-==⨯⨯,sin ∠PFF'== 可得直线PF 的斜率为sin 'cos 'PFF PFF ∠=∠16.【答案】9【解析】在△ABC 中,∵∠ABC =90°,∠C =30°,AB =1,∴AC =2,BC=B 到AC 的距离d ABBC AC ⋅==, 设DE =x ,则0<x 2≤,CE=, ∴四边形ABDE 的面积S 11122x=⨯=(1﹣x2), 显然当平面PDE ⊥平面ABDE 时,棱锥的体积最大,此时,PE ⊥平面ABDE ,∴棱锥的体积V (x )13=S •PE 12=(x ﹣x 3), V ′(x )12=(1﹣3x 2),故当0<x 3<时,V ′(x )>0,当3<x 2<V ′(x )<0,∴当x =V (x )取得最大值12)=.17.【解析】(1)由b cos C=(2a﹣c)cos B,以及正弦定理得sin B cos C+cos B sin C=2sin A cos B,即sin(B+C)=sin A=2sin A cos B(sin A>0),可得cos B12 =,则Bπ3=.(6分)(2)由b=4,a+c=8及余弦定理b2=a2+c2﹣2ac cos B得16=a2+c2﹣ac=(a+c)2﹣3ac=64﹣3ac,可得ac=16,则△ABC的面积S12=ac sin B12=⨯162⨯=12分)18.【解析】(1)因为ABCD是矩形,所以,CD∥AB,又AB⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB,又CD⊂平面CDEF,平面CDEF∩平面PAB=EF,所以CD∥EF,所以AB∥EF,又在△PAB中,E为PB的中点,所以,F为PA的中点.(6分)(2)因为PA=AB,E为PB的中点,所以AE⊥PB,AE⊂平面PAB又平面PAB⊥平面PBC,平面PAB∩⊥平面PBC=PB,所以AE⊥平面PBC,BC⊂平面PBC,所以AE⊥BC,又ABCD是矩形,所以AB⊥BC,AE∩AB=A,AB,AE⊂平面PAB,所以,BC⊥平面PAB,PA⊂平面PAB,所以BC⊥PA.(12分)19.【解析】(1)由(0.0020+0.0095+0.0110+0.0125+x+0.0050+0.0025)×20=1,解得x=0.0075,∴月平均用电量在[240,260)的频率为0.0075×20=0.15,设样本容量为n,则0.15n=30,解得n=200.(4分)(2)∵(0.0020+0.0095+0.0110)×20=0.45<0.5,∴月平均用电量的中位数[220,240)内,设中位数a,则0.45+0.0125×(a﹣220)=0.5,解得a=224,∴中位数为224.(8分)(3)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为:0.25,0.15,0.1,0.05,∴月平均用电量在[260,280)的用户中应抽取220.10.250.150.10.05⨯=+++4户.(12分)20.【解析】(1)对f(x)求导,得f'(x)=1+ln x+2ax,所以f'(1)=1+2a=﹣1,解得a=﹣1.(4分)(2)由f(x)﹣mx≤﹣1,得x ln x﹣x2﹣mx≤0,因为x∈(0,+∞),所以对于任意x∈(0,+∞),都有ln x﹣x≤m.设g(x)=ln x﹣x,则()1'1g xx=-,令g'(x)=0,解得x=1,(8分)当x变化时,g(x)与g'(x)的变化情况如下表:x(0,1) 1 (1,+∞)g'(x)+ 0 ﹣g(x)增极大值减所以当x =1时,g (x )max =g (1)=﹣1,因为对于任意x ∈(0,+∞),都有g (x )≤m 成立,所以m ≥﹣1, 所以m 的最小值为﹣1.(12分)21.【解析】(1)由题意知,B (2,4),设A (t ,t 2),由OA OB ⋅=u u u r u u u r2,得2t +4t 2=2,解得t 12=(舍)或t =﹣1,∴A (﹣1,1).(4分) (2)由条件知()222221()4x x x y λ+-=+,把y =x 2代入得()2221110216y y λλ⎛⎫-+-+=⎪⎝⎭,∴2234∆λλ⎛⎫=-⎪⎝⎭, 当λ=1时,M有两个点,当λ=M 有两个点,当12λ<<时,M 点有四个,当λ>1,M 点有两个,当0λ<<,M 点不存在.(8分) (3)设B (211x x ,),A (222x x ,),由题意得:2212122x x x x +=,解得x 1x 2=﹣2.设直线AB 的方程为y =kx +m ,联立2y kx my x=+⎧⎨=⎩,得x 2﹣kx ﹣m =0,得x 1x 2=﹣m , 又x 1x 2=﹣2,∴m =2,则直线经过定点(0,2), ∴S 四边形OABC =S △OAB +S △OBC =S △OAB +S △OBF()1211111192232248x x x x x =⨯⨯-+⨯⨯=+≥=, 当且仅当143x =等号成立,四边形OABC 面积最小, ∴B (43,169).(12分) 22.【解析】(1)∵直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).∴直线l的直角坐标方程为)11y x -=-,1y =+-∵曲线C 1:ρ=4cos θ+4sin θ,∴曲线C 1的直角坐标方程为(x ﹣2)2+(y ﹣2)2=8,是以(2,2)为圆心,为半径的圆.(5分) (2)联立直线的参数方程与圆的直角坐标方程得)2160t t --=.记该方程的两根为t 1,t 2,由直线参数方程的几何意义可得|PA |=|t 1|,|PB |=|t 2|,121t t +=,t 1t 2=﹣6,故1212121211t t t t PA PB t t t t +-+===.(10分)23.【解析】(1)由题意可得|x ﹣1|+|2x +3|>4,当x ≥1时,x ﹣1+2x +3>4,解得x ≥1; 当32-<x <1时,1﹣x +2x +3>4,解得0<x <1; 当x 32≤-时,1﹣x ﹣2x ﹣3>4,解得x <﹣2. 可得原不等式的解集为(﹣∞,﹣2)∪(0,+∞).(5分)(2)由(1)可得|t ﹣1|+|2t +3|32134123322t t t t t t ⎧⎪+≥⎪⎪=+-<<⎨⎪⎪--≤-⎪⎩,,,,可得t32=-时,|t﹣1|+|2t+3|取得最小值52,关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,等价为52≤|x+1|﹣|x﹣m|的最大值,由|x+1|﹣|x﹣m|≤|m+1|,可得|m+1|52≥,解得m32≥或m72≤-.(12分)。

导数构造函数十二种题型归类(学生版)

导数构造函数十二种题型归类(学生版)

导数构造函数十二种题型归类内容速递一、知识梳理与二级结论二、热考题型归纳【题型一】 导数四则运算基础【题型二】 幂函数与f(x)积型【题型三】 幂函数与f(x)商型【题型四】 指数函数与f(x)积型【题型五】 指数函数与f(x)商型【题型六】 正弦函数与f(x)型【题型七】 余弦函数与f(x)型【题型八】 对数函数与f(x)型【题型九】 一元二次(一次)与f(x)线性【题型十】 指数型线性【题型十一】对数型线性【题型十二】综合构造三、高考真题对点练四、最新模考题组练知识梳理与二级结论一、导数的运算(1)基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0 f(x)=xα(α∈Q,且α≠0)f′(x)=αxα-1 f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin x f(x)=a x(a>0,且a≠1)f′(x)=a x ln a f(x)=ex f′(x)=e xf(x)=log a x(a>0,且a≠1)f′(x)=1 x ln af(x)=ln x f′(x)=1 x(2)导数的四则运算法则法则和差[f(x)±g(x)]′=f′(x)±g′(x)积[f(x)g(x)]′=f'x g x +f x g'x ,特别地,[cf(x)]′=cf′(x) 商f(x)g(x)′=f(x)g(x)-f(x)g (x)g(x)2(g(x)≠0)(3)简单复合函数的导数一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 它的导数与函数y=f(u),u=g(x)的导数间的关系y ′x =y ′u ·u ′x即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.二、导数构造规律(1)、关系式为“加”型,常构造为乘法①fx +f x ≥0,构造F x =e xf x ,Fx =e xf x +fx ,②xfx +f x ≥0,构造F x =xf x ,Fx =xfx +f x ,③xfx +nf x ≥0,构造F x =x nf x ,Fx =x n -1xfx +nf x ;(2)、关系式为“减”型,常构造为除法①fx -f x ≥0,构造F x =f x e x ,F x =f x -f x ex,②xf x -f x ≥0,构造F x =f x x ,Fx =xfx -f x x 2,③xf x -nf x ≥0,构造F x =f x x n ,Fx =xf x -nf x xn +1.热点考题归纳【题型一】导数四则运算基础【典例分析】1(2022春·北京·高三模拟)若f x =e x ln x ,则f x =()A.e xln x +e xxB.e x ln x -e xxC.e x xD.e x ln x 2(2023春·黑龙江伊春·高三模拟)函数y =e x sin2x 的导数为()A.y =2e x cos2xB.y =e x sin2x +2cos2xC.y =2e x sin2x +cos2xD.y =e x 2sin2x +cos2x【提分秘籍】基础求导公式:C=0;x α=αx α-1;a x=axln a ;log a x=1x ln a ;sin x=cos xcos x=sin x【变式演练】3(2022春·北京·高三清华附中校考)函数f x =sin xx的导数是()A.x sin x +cos xx 2B.x cos x +sin xx 2C.x sin x -cos x x 2D.x cos x -sin xx 24(2023春·四川资阳·高三联考)已知函数y =x ⋅tan x 的导函数为()A.y =sin x cos x +xcos 2x B.y =sin x cos x +x cos2xcos 2xC.y =sin x cos x +1cos 2xD.y =sin x cos x +cos2xcos 2x【题型二】幂函数与f (x )积型【典例分析】1设函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且有2f x +xf x >0,则不等式x -20212f x -2021 -f 1 >0的解集为()A.2020,+∞B.0,2022C.0,2020D.2022,+∞2(黑龙江省大庆实验中学2020-2021学年高三数学试题)函数f x 是定义在区间0,+∞ 上的可导函数,其导函数为f x ,且满足xf x +2f x >0,则不等式(x +2020)f (x +2020)3<3f (3)x +2020的解集为()A.x |x >-2017 B.x |x <-2017C.x |-2020<x <0D.x |-2020<x <-2017【提分秘籍】若已知对于xf(x )+kf (x )>0(<0),构造g (x )=x k∙f (x )分析问题;【变式演练】3(江西省赣州市八校协作体2020-2021学年高三联考数学(理)试题)已知定义在R 上的奇函数f (x ),其导函数为f (x ),当x ≥0时,恒有x3f (x )+f (x )>0.则不等式x 3f (x )-(1+2x )3f (1+2x )<0的解集为().A.{x |-3<x <-1} B.x -1<x <-13C.{x |x <-3或x >-1}D.{x |x <-1或x >-13}4(山西省忻州市岢岚县中学2020-2021学年高三4月数学(理)试题)设函数f x 是定义在(-∞,0)上的可导函数,其导函数为f 'x ,且有2f x +xf 'x >x 2则不等式x +2019 2f x +2019 -4f -2 <0的解集为()A.(-2019,-2017)B. (-2021,-2019)C.(-2019,-2018)D.(-2020,-2019)5(安徽省黄山市屯溪第一中学2020-2021学年高三数学试题)已知函数f (x )是定义在R 上的奇函数,其导函数为f x ,若对任意的正实数x ,都有x f x +2f (x )>0恒成立,且f 2 =1,则使x 2f (x )<2成立的实数x 的集合为()A.-∞,-2 ∪2,+∞B.-2,2C.-∞,2D.2,+∞【题型三】幂函数与f (x )商型【典例分析】1(2022届湖南省衡阳市高三上学期期末考试数学试卷)函数f x 在定义域0,+∞ 内恒满足:①f x >0,②2f x <xf x <3f x ,其中f x 为f x 的导函数,则() A.14<f 1 f 2<12 B.116<f 1 f 2<18 C.13<f 1 f 2<12 D.18<f 1 f 2<142(黑龙江省哈尔滨市第三中学2021-2022学年高三第一次阶段性测试数学试题)已知偶函数f x 的导函数为f x ,且满足f 2 =0,当x >0时,xf x >2f x ,使得f x >0的x 的取值范围为【提分秘籍】对于x ∙f (x )-kf (x )>0(<0),构造g (x )=f (x )x k【变式演练】3(河南省郑州市示范性高中2020-2021学年高三阶段性考试(三)数学(理)试题)已知函数f x 的导函数为f x ,若f x <x ,f x <2,f x -x 对x ∈0,+∞ 恒成立,则下列个等式中,一定成立的是()A.f 2 3+12<f 1 <f 2 2 B.f 2 4+12<f 1 <f 2 2C.3f 2 8<f 1 <f 2 3+12D.f 2 4+12<f 1 <3f 2 84(江西省上高二中2021届高三上学期第四次月考数学试题)已知定义在R 上的偶函数f x ,其导函数为f x ,若y ,f -2 =1,则不等式f x x 2<14的解集是()A.-2,2B.-∞,-2 ∪2,+∞C.-2,0 ∪0,2D.-∞,0 ∪0,25设f x 是偶函数f x x ≠0 的导函数,当x ∈0,+∞ 时,y ,则不等式4f x +2019 -x +2019 2f -2 <0的解集为()A.-∞,-2021B.-2021,-2019 ∪-2019,-2017C.-2021,-2017D.-∞,-2019 ∪-2019,-2017【题型四】指数函数与f (x )积型【典例分析】1(【全国百强校】广东省阳春市第一中学2022届高三第九次月考数学(理)试题)已知函数f (x )(x ∈R )的导函数为f (x ),若2f (x )+f (x )≥2,且f (0)=8,则不等式f (x )-7e -2x >1的解集为()A.(-∞,0)B.(0,+∞)C.(-∞,-1)∪(0,+∞)D.(1,+∞)2(广东省普宁市华美实验学校2020-2021学年高三第一次月考数学试题)已知f x 是R上可导的图象不间断的偶函数,导函数为f x ,且当x>0时,满足f x +2xf x >0,则不等式e1-2x f x-1> f-x的解集为()A.12,+∞B.-∞,12C.-∞,0D.0,+∞【提分秘籍】对于f (x)+kf(x)>0(<0),构造g(x)=e kx∙f(x)【变式演练】3(2020届河南省八市重点高中联盟领军考试高三11月数学(理)试题)已知定义在R上的函数f x 的导函数为f x ,若f1 =1,ln f x +f x +1>0,则不等式f x ≥e1-x的解集为()A.-∞,1B.-∞,eC.1,+∞D.e,+∞4已知函数f x 的导函数为f x ,且对任意的实数x都有f x =e-x2x+5 2-f x (e是自然对数的底数),且f0 =1,若关于x的不等式f x -m<0的解集中恰有唯一一个整数,则实数m的取值范围是()A.-e2,0B.-e2,0C.-3e4,0D.-3e4,92e【题型五】指数函数与f(x)商型【典例分析】1定义在(-2,2)上的函数f(x)的导函数为f x ,满足:f x +e4x f-x=0,f1 =e2,且当x>0时,f (x)>2f(x),则不等式e2x f(2-x)<e4的解集为()A.(1,4)B.(-2,1)C.(1,+∞)D.(0,1)2已知定义在R上的函数f(x)的导函数为f'(x),且满足f'(x)-f(x)>0,f(2021)=e2021,则不等式f1 e ln x<e x的解集为()A.e2021,+∞B.0,e2021C.e2021e,+∞D.0,e2021e【提分秘籍】对于f (x)-kf(x)>0(<0),构造g(x)=f(x) e kx【变式演练】3(天一大联考高三毕业班阶段性测试(四)理科数学)定义在R上的函数f x 的导函数为f x ,若f x <2f x ,则不等式e4f-x>e-8x f3x+2的解集是()A.-12,+∞B.-∞,12C.-12,1D.-1,124已知定义在R上的函数f(x)的导函数为f (x),且满足f (x)-f(x)>0,f(2021)=e2021,则不等式f1 3ln x<3x的解集为()A.(e6063,+∞)B.(0,e2021)C.(e2021,+∞)D.(0,e6063)5(贵州省凯里市第三中学2022届高三上学期第二次月考数学(理)试题)已知函数f(x)是定义域为R,f (x)是f(x)的导函数,满足f (x)<f(x),且f(1)=4,则关于不等式f(x)-4e x-1>0的解集为()A.(-∞,1)B.1e ,1C.1e,eD.1e,+∞【题型六】正弦函数与f(x)型【典例分析】1(【衡水金卷】2021年普通高等学校招生全国统一考试高三模拟研卷卷四数学试题)已知定义在区间0,π2上的函数f x ,f x 为其导函数,且f x sin x-f x cos x>0恒成立,则()A.fπ2>2fπ6 B.3fπ4 >2fπ3C.3fπ6<fπ3 D.f1 <2fπ6 sin12(【市级联考】广西玉林市2018-2019学年高三上学期考试数学试题)已知f'(x)为函数y=f(x)的导函数,当x x∈0,π2是斜率为k的直线的倾斜角时,若不等式f(x)-f'(x)⋅k<0恒成立,则()A.{x22-m ln x2-2mx2=0x22-ln x2-m=0B.f(1)sin1>2fπ6C.f(x)=x2+6x-10D.3fπ6-fπ3 >0【提分秘籍】对于sin x∙f (x)+cos x∙f(x)>0(<0),构造g(x)=f(x)∙sin x对于sin x∙f (x)-cos x∙f(x)>0(<0),构造g(x)=f(x) sin x【变式演练】3(贵州省遵义航天高级中学222届高三第五次模拟考试数学试题)已知定义在0,π2上的函数,f(x)为其导函数,且f(x)sin x<f (x)cos x恒成立,则()A.f π2 >2f π6B.3f π4>2f π3 C.3f π6 <f π3 D.f (1)<2f π6 sin14已知奇函数f x 的导函数为f x ,且f x 在0,π2上恒有f (x )cos x -f (x )sin x <0成立,则下列不等式成立的()A.2f π6>f π4 B.f -π3 <3f -π6 C.3f -π4 <2f -π3D.22f π3 <3f π4 5(广东省七校联合体2021届高三下学期第三次联考(5月)数学试题)设f x 是定义在-π2,0 ∪0,π2 上的奇函数,其导函数为f x ,当x ∈0,π2 时,f x -f x cos xsin x<0,则不等式f x <233f π3sin x 的解集为()A.-π3,0 ∪0,π3 B.-π3,0 ∪π3,π2C.-π2,-π3 ∪π3,π2D.-π2,-π3 ∪0,π3【题型七】余弦函数与f (x )型【典例分析】1(2023春·新疆克孜勒苏·高三模拟)已知函数y =f x 对于任意的x ∈-π2,π2满足f x cos x +f x sin x >0(其中fx 是函数f x 的导函数),则下列不等式成立的是()A.f 0 >2f π4 B.2f -π3 >f -π4 C.2f π3 >f π4D.f 0 >2f π3 2(2023·全国·高三专题练习)定义在0,π2上的函数f x ,已知f x 是它的导函数,且恒有cos x ⋅f x +sin x ⋅f x <0成立,则有()A.3x -y -1=0B.3f π6>f π3C.f π6>3f π3D.2f π6<3f π4【提分秘籍】对于cos x ∙f (x )-sin x ∙f (x )>0(<0),构造g (x )=f (x )∙cos x ,对于cos x ∙f (x )+sin x ∙f (x )>0(<0),构造g (x )=f (x )cos x【变式演练】3(四川省成都市第七中学2022-2023学年高三上学期10月阶段考试理科数学试题)已知偶函数f (x )是定义在[-1,1]上的可导函数,当x ∈[-1,0)时,f (x )cos x +f (x )sin x >0,若cos (a +1)f (a )≥f (a +1)cos a ,则实数a 的取值范围为()A.[-2,-1]B.-1,-12C.-12,0D.-12,+∞ 4(四川省南充高级中学2021-2022学年高三考试数学试题)已知偶函数f (x )的定义域为-π2,π2,其导函数为f '(x ),当0<x <π2时,有f (x )cos x +f (x )sin x <0成立,则关于x 的不等式f (x )<2f π3 cos x 的解集为()A.0,π3B.π3,π2C.-π3,0 ∪0,π3D.-π2,-π3 ∪π3,π2【题型八】对数与f (x )型【典例分析】1已知函数f ′(x )是奇函数f (x )(x ∈R )的导函数,且满足x >0时,ln xf (x )+1xf (x )<0,则(x -2019)f (x )>0的解集为()A.(-1,0)∪(1,2019)B.(-2019,-1)∪(1,2019)C.(0,2019)D.(-1,1)2(【全国百强校】重庆市巴蜀中学20-20学年高三下考试理科数学试题)定义在0,+∞ 上的函数f x 满足x ⋅f 'x ⋅ln x +f x >0(其中f 'x 为f x 的导函数),则下列各式成立的是()A.ef e>π-f 1π>1 B.ef e<π-f 1π<1 C.ef e>1>π-f 1πD.ef e<1<π-f 1π【提分秘籍】对于f (x )ln x +f (x )x>0(<0),构造g x =ln x ∙f (x )【变式演练】3(江西省新余市第四中学2023届高三上学期第一次段考数学试题)已知定义在[e ,+∞)上的函数f (x )满足f (x )+x ln xf ′(x )<0且f (2018)=0,其中f ′(x )是函数f x 的导函数,e 是自然对数的底数,则不等式f (x )>0的解集为()A.[e ,2018)B.[2018,+∞)C.(e ,+∞)D.[e ,e +1)4(山东省招远一中2019届高三上学期第二次月考数学试题)定义在(0,+∞)上的函数f (x )满足xf '(x )ln x +f (x )>0(其中f '(x )为f (x )的导函数),若a >1>b >0,则下列各式成立的是()A.af (a )>bf (b )>1 B.af (a )<bf (b )<1 C.af (a )<1<bf (b )D.af (a )>1>bf (b )5(2023重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数f x 是奇函数f x x ∈R 的导函数,且满足x >0时,ln x ⋅f x +1x f x <0,则不等式x -985 f x >0的解集为()A.985,+∞B.-985,985C.-985,0D.0,985【题型九】一元二次(一次)与f (x )线性【典例分析】1(2021届云南省昆明第一中学高中新课标高三第三次双基检测数学试题)函数y =f (x )的定义域为R ,其导函数为f (x ),∀x ∈R ,有f (x )+f (-x )-2x 2=0在(0,+∞)上f (x )>2x ,若f (4-t )-f (t )≥16-8t ,则实数t 的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,2]2(2020届黑龙江省实验中学高三上学期期末考试数学(理)试题)设函数f x 在R 上存在导函数f x ,∀x ∈R ,有f x -f -x =x 3,在0,+∞ 上有2f x -3x 2>0,若f m -2 -f m ≥-3m 2+6m -4,则实数m 的取值范围为()A.-1,1B.-∞,1C.1,+∞D.-∞,-1 ∪1,+∞【提分秘籍】二次构造:f (x )×÷r (x )±g (x ),其中r (x )=x n,e nx,sin x ,cos x 等【变式演练】3(江苏省盐城中学2020-2021学年高三上学期第二次阶段性质量检测数学试题)已知定义在R 上的函数f (x )的导函数为f (x ),且对任意x ∈R 都有f (x )>2,f (1)=3,则不等式f (x )-2x -1>0的解集为()A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)4(吉林省蛟河市第一中学校2021-2022学年高三下学期第三次测试数学试题)已知定义在R 上的可导函数f (x ),对于任意实数x 都有f (-x )=f (x )-2x 成立,且当x ∈(-∞,0]时,都有f '(x )<2x +1成立,若f (2m )<f (m -1)+3m (m +1),则实数m 的取值范围为()A.-1,13B.(-1,0)C.(-∞,-1)D.-13,+∞ 5(【市级联考】福建省龙岩市2021届高三第一学期期末教学质量检查数学试题)已知定义在R 上的可导函数f (x )、g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g 1 =3,g (x )=f (x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =()A.-2B.2C.-3D.3【题型十】指数型线性【典例分析】1(安徽省阜阳市第三中学2021-2022学年高三上学期第二次调研考试数学试题)设函数f x 定义域为R ,其导函数为f x ,若f x +f x >1,f 0 =2,则不等式e x f x >e x +1的解集为()A.-∞,0 ∪0,+∞B.-∞,0C.2,+∞D.0,+∞2(黑龙江省哈尔滨市第六中学2020-2021学年高三3月阶段性测试数学试题)已知函数f x =e 2x -ax 2+bx -1,其中a ,b ∈R ,e 为自然对数底数,若(0,1],f x 是f x 的导函数,函数f x 在0,1 内有两个零点,则a 的取值范围是()A.2e 2-6,2e 2+2B.e 2,+∞C.-∞,2e 2+2D.e 2-3,e 2+1【提分秘籍】对于f (x )-f (x )>k (<0),构造g x =e x f x -k【变式演练】3(金科大联考2020-2021学年高三10月质量检测数学试题)设函数f (x )的定义域为R ,f (x )是其导函数,若f (x )+f (x )>-e -x f (x ),f 0 =1,则不等式f (x )>2e x +1的解集是()A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)4(2023春·福建龙岩·高三联考)∀x ∈R ,f x -f x =-2x +1 e x ,f 0 =-3,则不等式f x >-5e x 的解集为()A.-2,1B.-2,-1C.-1,1D.-1,25(2023春·四川眉山·高三模拟)函数f x 的定义域是R ,f 1 =2,对任意x ∈R ,f x +f x >1,则不等式e x f (x )>e x +e 的解集为()A.x |x >1B.x |x <1C.{x |x <-1或0<x <1}D.{x |x <-1或x >1}【题型十一】对数型线性【典例分析】1(2023春·安徽合肥·高三合肥一中校考)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,若xf x -1<0,f e =2,则关于x 的不等式f e x<x +1的解集为()A.0,1B.1,eC.1,+∞D.e ,+∞2(2022春·江西赣州·高三赣州市赣县第三中学校考阶段练习)定义在(0,+∞)的函数f (x )满足xf x -1<0,f 1 =0,则不等式f e x-x <0的解集为()A.(-∞,0)B.(-∞,1)C.(0,+∞)D.(1,+∞)【提分秘籍】y =ln (kx +b )与y =f (x )的加、减、乘、除各种结果逆向思维【变式演练】3(2023·全国·高三专题练习)若函数f x 满足:x -1 fx -f x =x +1x-2,f e =e -1,其中f x 为f x 的导函数,则函数y =f x 在区间1e,e的取值范围为()A.0,eB.0,1C.0,eD.0,1-1e4(2021年全国高中名校名师原创预测卷新高考数学(第八模拟))已知函数f (x )的定义域为R ,且f (x +2)是偶函数,f (x )>12x -1+ln (x -1)(f (x )为f (x )的导函数).若对任意的x ∈(0,+∞),不等式f -t 2+2t +1 ≥f 12 x-2 恒成立,则实数t 的取值范围是()A.[-2,4]B.(-∞,-2]∪[4,+∞)C.[-1,3]D.(-∞,-1]∪[3,+∞)【题型十二】综合构造【典例分析】1(河北省沧州市沧县中学2020-2021学年高三数学)已知定义在R 上的可导函数f (x )的导函数为f '(x ),对任意实数x 均有(1-x )f (x )+xf '(x )>0成立,且y =f (x +1)-e 是奇函数,不等式xf (x )-e x >0的解集是()A.1,+∞B.e ,+∞C.-∞,1D.-∞,e2(江西省吉安市重点高中2020-2021学年高三5月联考数学试题)已知函数f x 是定义域为0,+∞ ,fx 是函数f x 的导函数,若f 1 =e ,且xfx -1+x f x >0,则不等式f ln x <x ln x 的解集为()A.0,eB.e ,+∞C.1,eD.0,1【变式演练】3(2022·高三测试)已知定义在R 上的函数f (x )的导函数是f (x ),若f (x )+xf (x )-xf (x )>0对任意x ∈R 成立,f 1 =e .则不等式f (x )<e xx 的解集是()A.(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)D.(0,1)4(2023·四川·校联考模拟预测)定义在0,+∞ 上的函数f x 的导函数为f x ,且x 2+1 f x <x -1x f x ,若θ∈0,π4 ,a =tan θ,b =sin θ+cos θ,则下列不等式一定成立的是()A.f 1 <f a B.f 1 >2bf b2+sin2θC.f 1 >f a sin2θD.f a 2+sin2θ <f b 1sin θ+1cos θ5(2023春·江西吉安·高三模拟)若定义在R 上的可导函数f (x )满足(x +3)f (x )+(x +2)f (x )<0,f (0)=1,则下列说法正确的是()A.f (-1)<2eB.f (1)<23eC.f (2)>12e 2D.f (3)>25e 3高考真题对点练一、单选题1(浙江·高考真题)设f x 是函数f x 的导函数,y =f x 的图象如图所示,则y =f x 的图象最有可能的是()A .B .C .D .2(江西·高考真题)已知函数y =xf (x )的图象如图所示(其中f (x )是函数f (x )的导函数),则下面四个图象中,y =f x 的图象大致是()A. B.C. D.3(陕西·高考真题)f x 是定义在(0,+∞)上的非负可导函数,且满足xf ′x +f x ≤0.对任意正数a ,b ,若a <b ,则必有()A.af b ≤bf aB.bf a ≤af bC.af a ≤f bD.bf b ≤f a4(湖南·高考真题)设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f (x )g (x )+f (x )g (x )>0.且g (-3)=0,则不等式f (x )g (x )<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)5(2015·福建·高考真题)若定义在R 上的函数f x 满足f 0 =-1,其导函数f x 满足f x >k >1,则下列结论中一定错误的是()A.f 1k<1kB.f 1k>1k -1C.f 1k -1<1k -1D.f 1k -1>kk -16(2013·辽宁·高考真题)设函数f x 满足x 2fx +2xf x =e x x ,f 2 =e 28,则x >0时,f x ()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值7(2015·全国·高考真题)设函数f '(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf '(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)8(辽宁·高考真题)函数f x 的定义域为R ,f -1 =2,对任意x ∈R ,f x >2,则f x >2x +4的解集为()A.-1,1B.-1,+∞C.-∞,-1D.-∞,+∞最新模考真题一、单选题1(2023·西藏日喀则·统考一模)如图,已知函数f x 的图象在点P 2,f 2 处的切线为直线l ,则f 2 +f 2 =()A.-3B.-2C.2D.12(2023·陕西榆林·统考三模)定义在0,+∞ 上的函数f x ,g x 的导函数都存在,f x g x +f (x )g x =2x -1x ln x +x +1x2,则曲线y =f x g x -x 在x =1处的切线的斜率为()A.12 B.1 C.32D.23(2023·四川成都·统考模拟预测)已知定义在R 上的函数f x 的导函数为f x ,若f x <e x ,且f 2 =e 2+2,则不等式f ln x >x +2的解集是()A.0,2B.0,e 2C.e 2,+∞D.2,+∞4(2023·陕西咸阳·校考模拟预测)已知函数f x 是定义在R 上的可导函数,其导函数记为f x ,若对于任意实数x ,有f x >f x ,且f 0 =1,则不等式f x <e x 的解集为()A.-∞,0B.0,+∞C.-∞,e 4D.e 4,+∞5(2023·河南·校联考模拟预测)已知函数f x 的定义域为R ,f x 为函数f x 的导函数,当x ∈0,+∞ 时,sin2x -f x >0,且∀x ∈R ,f -x +f x -2sin 2x =0,则下列说法一定正确的是()A.f π3-f π6 >12 B.f π3-f π4 <14C.f π3 -f 3π4 <14 D.f π3 -f -3π4 >146(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知函数f x 的定义域为0,+∞ ,f x 为函数f x 的导函数,若x 2f x +xf x =1,f 1 =0,则不等式f 2x -3 >0的解集为()A.0,2B.log 23,2C.log 23,+∞D.2,+∞7(2023·山东烟台·统考二模)已知函数f x 的定义域为R ,其导函数为f x ,且满足f x +f x =e -x ,f 0 =0,则不等式e 2x -1 f x <e -1e的解集为( ).A.-1,1eB.1e ,e C.-1,1 D.-1,e8(2023·安徽·校联考模拟预测)已知函数f x 、g x 是定义域为R 的可导函数,且∀x ∈R ,都有f x >0,g x >0,若f x 、g x 满足f x f x <g xg x ,则当x 1<x <x 2时下列选项一定成立的是()A.f x 2 g x 1 >f x 1 g x 2B.f x g x 1 >f x 1 g xC.f x 2 -g x 2 f x 1 -g x 1 <g x 2 g x 1 D.f x 2 g x 2 <f x 1 +f x 2g x 1 +g x 2二、多选题9(2022·重庆九龙坡·重庆市育才中学校考模拟预测)已知函数f (x )对于任意的x ∈0,π2都有f (x )cos x -f (x )sin x >0,则下列式子成立的是()A.3f π6>2f π4 B.2f π4<f π3 C.2f (0)<f π4 D.2f (0)>f π3 10(2020·山东泰安·校考模拟预测)定义在0,π2 上的函数f (x ),f x 是f (x )的导函数,且fx <-tan x ⋅f (x )恒成立,则() A.f π6>2f π4B.3f π6 >f π3C.f π6>3f π3D.2f π6>3f π411(2023·黑龙江·黑龙江实验中学校考三模)已知函数f x 在R 上可导,其导函数为f x ,若f x 满足:x -1 fx -f x >0,f 2-x =f x e 2-2x ,则下列判断不正确的是()A.f 1 <ef 0B.f 2 >e 2f 0C.f 3 >e 3f 0D.f 4 <e 4f 012(2023·辽宁锦州·校考一模)定义在R 上的函数f x 满足xf x -f x =1,则y =f x 的图象可能为()A. B.C. D.三、填空题13(2024·四川成都·石室中学校考模拟预测)已知函数f x 的定义域为-π2 ,π2,其导函数是f x .有f x cos x+f x sin x<0,则关于x的不等式f(x)>2fπ3cos x的解集为.14(2023·广东佛山·统考模拟预测)已知f x 是定义在R上的偶函数且f1 =2,若f x <f x ln2,则f x -2x+2>0的解集为.15(2023·广东广州·广州市从化区从化中学校考模拟预测)设函数y=f x 在R上存在导数y=f x ,对任意的x∈R,有f x -f-x=2sin x,且在0,+∞上f x >cos x.若fπ2-t-f t >cos t-sin t.则实数t的取值范围为.16(2023·山东·模拟预测)定义在0,π2上的可导函数f x 的值域为R,满足f x tan x≥2sin x-1f x ,若fπ6=1,则fπ3 的最小值为.。

河南省2020届高三上学期阶段性考试(四)生物附答案

河南省2020届高三上学期阶段性考试(四)生物附答案

2019〜2020年度河南省高三阶段性考试(四)生物考生注意:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。

考试时间90分钟^2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:人教版必修1、2、3。

第Ⅰ卷(选择题共50分)一、选择题(本大题包括25小题,每小题2分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

11.大豆多肽苹果饮料是以苹果原汁为基质,添加大豆多肽、糖和柠檝酸等物质制备而成的饮料。

为鉴定饮料中的大豆多肽,可选用的试剂及发生的相应颜色反应是A.斐林试剂、砖红色B.双缩脲试剂、紫色C.健那绿染液、蓝绿色D.龙胆紫染液、深色2.下列关于组成生物体的元素和化合物的叙述,错误的是A.植物的光合色素中都含有镁元素B.高温会破坏蛋内质的空间结构而使其失去功能C.雄性激衮和维生素属于固醇类物质D.T2噬绡体的遗传信息储存在DNA分子中3.下列有关细胞结构和功能的叙述,错误的是A.核膜、内质网膜和高尔基体膜都有一定的流动性B.细胞膜的待定功能主要由膜蛋白决定C.紫色洋葱鳞片叶外表皮细胞的液泡和叶绿体中都含有色素D.酵母菌细胞核内的基因表达时主要依赖线粒体提供能4.右图是人体细胞X的结构和功能的模式图,下列叙述错误的是A.X能由B细胞埔殖,分化产生B. X的细胞膜上有与抗原特异性结合的受体C.X的核孔数量可能比口腔上皮细胞的多D. X进行右图所示过程时,高尔基体膜会更新5.某实验小组用人工脂双层膜制作渗透装置,膜两侧装入不同浓度的KC1溶液,向脂双层膜中加入裸鲤卵毒素,一定时间后测得膜两侧溶液中的K+浓度差如图所示,下列相关叙述错误的是A.制备人工脂双层膜时应以磷腊分子为原料B.酒楮通过细胞膜和人工脂双层膜的速率可能无差异C.裸鲤卵毒素可能作为嵌入脂双层膜中的K+通道D.加入裸鯉卵毒素后,K+通过主动运输穿过脂双层膜6.下列有关ATP的叙述,正确的是A. ATP分子中的腺苷由腺嘌呤和脱氧核糖结合而成B.适当增大Cl浓度能促进乳酸菌细胞合成ATPC.在线粒体中合成ATP时,都需要Oj的参与D.叶绿体基质中C3被还原的过程会消耗ATP7.某实验小组用右图所示装置测量萌发种子的细胞呼吸速率,下列叙述错误的是A.实验中,种子贮存的有机物总量减少B.气压计读数的变化能反映种子的无氧呼吸速率C.实验开始后,装苴内气压逐渐降低直至稳定,此时气压计的读数保持不变D.若要测量种子的无氧呼吸速率,则应将NaOH溶液替换为等量的清水8.下列有关植物生命活动中,细胞内物质含g或比值关系的叙述,正确的是A.结合水/自由水的值,幼苗的比成熟植株的高B.02/CO2的值,线粒体内的比细胞质基质内的高C.暗处理植株后,叶绿体内C5/C3的值升高D.细胞进入分裂间期后,细胞膜表面积/细胞体积的值下降9.下图表示将某绿色植物放在密闭且透明的容器内,在适宜的光照和温度条件下培养,植株吸收或生成CO2的速率随时间的变化如下图所示。

河南省2020届高三化学上学期阶段性考试试题(含答案)

河南省2020届高三化学上学期阶段性考试试题(含答案)

.
②某实验小组分別用已除去 SO2 和未除去 SO2 的烟气(烟气中 NO 的体积分数相同)持续通过
体积相同的混合溶液(NaOH 浓度相同、KMn04 浓度不同)中,测得结果如图:
当 c(KMnO4)=0.08mol • L-1,有 SO2 时,NO 的脱除率大,其主要原因是
.
当 c(KMnO4)=0.02mol • L-1,有 SO 时,NO 的脱除率反而减小,其可能原因是
17. (15 分)FeCl2 具有独有的脱色能力,适用于印染、造纸行业的污水处理。FeCl3 在加热
条件 下遇水剧烈水解,FeCl3 和 FeCl2 均不溶于 C6H5Cl3、C6H4C12、苯。冋答下列问题:
(1)由 FeCl3• 6H20 制得干燥 FeCl2 的过程如下:
i.向盛有 FeCl3 • 6H2O 的容器中加入过量 SOCl2 (液体,易水解),加热,获得无水
河南省 2020 届高三化学上学期阶段性考试试题(四)
考生注意: 1.本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共 100 分。考试时间 90 分钟。 2.请将各题答案填写在答题卡上。 3.本试卷主要考试内容:人教版必修 1、必修 2、选修 4, 4.可能用到的相对原子质量:H 1 C12 016 Na 23 Cl 35.5 Fe 56 As 75
0.01 mol•L-1KMnO4 溶液滴定过量的 Na2C2O4 溶液至溶液呈浅红色,消耗 2.00 mL KMnO4 溶液.
①步骤 I 中“在沸水浴中加热 30 min”的目的是 .
②KMnO4 溶液盛放在
(填“酸”或“碱”)式滴定管中.
③加入 Na2C2O4 溶液时,发生反应的离子方程式为
, 该反应中每生成 1 molCO2 转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019〜2020年度河南省高三阶段性考试(四)
数学(文科)
考生注意:
1.本试卷共150分.考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容(除选修4一4,4—5)。

一、选择题本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 A={0<65|2+-x x x },B={22<2|1-x x },则=B A I
A.(2,25)
B.(-2, 2
5) C.(2, 12+) D.(-2, 12+)
2.欧拉公式沙x i x e ix sin cos += (e 是自然对数的底数,i 是虚数单位)是数学里令人着迷的公式之一,根据欧拉公式可知,=-i ix 62π
A. i -3
B. i 31-
C. i +3
D. i 31+ 3.设log 12
12,log ,log -===e c e b e a ,则
A. a>b>c
B. b>a>c
a>c>b D. c>b>a
4.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图
的算法解决这个问题,则判断框中应填入的是
A.m>94
B.m=94
C.m=35
D.m=35
5.函数||ln )(3x x x f =的图象大致为
6.若非零向量b a ,满足||||2b a =,且)2()3(b a b a -⊥+,则a 与b 的夹角为
A. 4π
B. 3
π C. 32π D. 65π 7.临近学期结束,某中学要对本校高中部一线科任教师进行“评教评学”调査,经调査,高一年级 80名一线科任教师好评率为90%,高二年级名一线科任教师好评率为92%,高三年级80名一线科任教师好评率为95%.依此估计该中学高中部一线科任教师的好评率约为
A.92%
B.93%
C.94%
D.95%
8. 在三棱锥D-ABC 中,DB 丄底面ABC ,AB=AC=2,∠4BC=300,DB=3,则该三梭锥的外接球的表面积为
A. π20
B. π25
C.
π6125 D. π30 9. 已知函数)0>)(4sin(2)(ωπω-=
x x f ,若)(x f 在)3,2(ππ上无极值点,则ω的取值不可能是
A. 81
B. 21
C. 127
D. 24
23 10.已知椭圆12222=+b y a x (a>0,b>0)的离心率为5
3,左、右焦点分别为F1,F2,过F1的直线与椭圆 C 交于M ,N 两点,若||||212F F MF =,则=||||12NF MF
11.在△A BC 中,角 A ,B ,C 的对边分别为a ,b ,c ,若 b=2,cos 2A=(4+3)sin(B+C)=23+1,点P 是△ABC 的重心,且AP=3
72,则a=
A. 32或52
B. 132
C.32或132
D. 72
12.已知函数⎪⎪⎩⎪⎪⎨⎧≤++≤---=3<0,1
2220<3,22)(x x x x x x x f ,若关于x 的不等式|21>|)(a x x f +在)3,3[-恒成立,则a 的取值范围是
A. )76,2231[-
B.
]145,1(-- C.
]145,2(-- D. ]2,23(- 二、填空题本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.
13.根据一组样本数据的散点图判断出两个变量线性相关,由最小二乘法求得回归直线方程为m x y -=43.0ˆ,若样本中心点为(m ,-2.85),则m= ▲ .
14.首项为-3的等差数列{n a }中,2a ,4a ,48-a 成等比数列,则{n a }的前8项和为 ▲ .
15. 设)('x f 是定义在R 上的奇函数)(x f 的导函数,且9)(=x f ,当0>x ,0< )()('x f x xf -,则不等式3< x
)(x f 的解集是 ▲ . 16.已知双曲线13
:22
=-y x C ,P,Q 是平面内的两点,P 关于两焦点的对称点分别为A ,B(P 与焦点不重合),线段PQ 的中点在双曲线C 上,则=-||||BQ AQ ▲ .
三、解答题本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. (10 分)
已知首项为1的等比数列{n a }的前3项和为3.
(1)求{n a }的通项公式;
(2)若||log ,122n n a b a =≠,求数列{
2
11++n n b b }的前 n 项和n T . 18.(12分)
《哪吒之魔童降世》于2019年7月26日在中国上映,据统计,2019年8月31日15点15分,《哪
吒之魔童降世》超《流浪地球》,升至中国影史票房榜第二位.某
电影院为了解观看该影片的现众的年龄构成情况.随机抽取了
40名现众.得到如下的频数统计图.
(1)估计所两丧的40名观众年龄的平均数和中位数;
(2)在上述40名观众中,若从年龄在[50,70)的范围内选出2人
进行观后采访,求这2人至少有1人的年龄在增 [50,60)的概率.
19. (12分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,且C c B b A a cos 2cos cos ==. (1)求A;
(2)若a = 3,求△ABC 的面积.
20. (12 分)
如图,在四棱锥 P-ABCD 中,PC 丄平面 ABCD, AB=3,BC=2, AD= 19,∠BCD =1200,∠ABC=900,点 E 为 PD 的中点.
(1)证明CE//平面/MB.
(2)若平面PAB 与平面PCD 所成锐二面角为
4π,求PC. 21.(12 分)
已知抛物线C,
px y 22= (p>0),点F 为抛物线C 的焦点,点A(l,a)(a>0)在抛物线C 上, 且
|FA|=2,过点F 作斜率为的直线l 与抛物线C 交于P ,Q 两点. (1) 求抛物线C'的方程;
(2) 若△APQ 面积的取值范围为]58,5[,求的取值范围.
22.(12 分)
已知函数)(1)1(2
)(2R a x a x a e x f x ∈-+-+=. (1) 当0=a 时,求曲线)(x f y =在点(1, )1(f )处的切线方程;
(2) 已知方程12
)(2-=
x a x f 有且仅有一个实数解,求a 的取值范围; (3) 当a>0时,不等式1080a <)()(23+-+≤-x f x f a 对于任意的],[a a x -∈恒成立,求a 的取值范围.。

相关文档
最新文档