整式的乘法1 (2)
整式的乘法(1)
(3)
(5)
7.能力提升:
(1)
(2)若单项式 xn+1y与单项式3xyz乘积的结果是一个六次单项式,求n的值。
四、【我的收获】
4.经历了上面的探索过程,请在下面写出单项式乘法法则:
归纳:单项式乘单项式的运算法则:
探究二:做一做
例1.利用乘法交换 律、结合律以及前面所学的幂Hale Waihona Puke 运算性质,计算下列单项式乘以单项式:
(1)2xy2· xy(2)(-2a2b3)·(-3a)
解:原式=()()()解:原式=()()() ()
= =
(3)7xy2·(2xyz)2
A.4a3bcB.36a3bcC.-4a3bcD.-36a3bc
4.下列各题的计算中正确的是()
A.(-7a)·(-5a)2=35a3B.7a2·8a3=15a5
C.3x3·5x3=15x9D.(-3x4)·(-4x3)=12x7
5.(-2a4b2)(-3a)2的结果是( )
A.-18a6b2B.18a6b2C.6a5b2D.-6a5b2
里辛一中“分层互助”导学案
初一数学 课题:整式的乘法(1)备课时间:2013-04-07
课堂寄语:数学王子高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。”
学习
目标
1.经历探索整式乘法运算法则的过程,发展观察,归纳,猜想,验证等能力。
(2)(2ab3)·(-4ab)=-2a2b4( )
(3)(xy)3(-x2y)=-x3y3( )
(4)-3a2b(-3ab)=9a3b2( )
2.下列运算正确的是()
整式的乘法说课稿
《整式的乘法(1)》说课稿授课老师:方泽青大家好,今天我说课的题目是北师大版初中数学七年级下册第一章第六节“整式乘法”第一课时的内容。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析和评价分析五个方面加以说明。
一、教材分析:1、教材的地位与作用:本节课的内容是“整式乘法”中的“单项式乘以单项式”,是在学生学习了整式加减的基础上进行的,作为铺垫,又提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了单项式与单项式的乘法,使学生通过对乘法交换律和结合律等法则的运用,探索单项式与单项式乘法的运算法则。
所以,本节课的知识既是对前面所学知识的综合应用,也为下面学习单项式乘以多项式、多项式乘以多项式和八年级学习分解因式打好基础。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析:学生的心理特征:初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
学生的知识技能基础:在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础。
对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识。
学生的活动经验基础:学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力。
沪教版七年级上册 整式乘法-带答案
3.多项式与多项式相乘法则的推导
教学难点:
1.分清单项式与单项式相乘中,幂的运算法则
2.单项式与多项式相乘时结果的符号的确定
3.多项式与多项式相乘的应用
考点及考试要求:
1. 单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算
2. 单项式与多项式相乘的法则及推导
2、已知:多项式 与3x+1的积中含 项的系数为10,且积中不含x项,求a、b的值。
a=3,b=-1
自我测试
一、选择题:
1、下列说法中,不正确的是( D )
A.单项式乘以单项式,其结果一定仍是单项式
B.两个单项式相乘,积的系数是这两个单项式系数的积
C.两个单项式相乘,每一个因式所含字母都在结果里出现
方法提炼
1、展开式中不含某一项,说明该项的系数为0
2、整式的乘法会联合同类项出考题,所以要熟练掌握理解定义
3、运用整式乘法的运算规律,可以简化运算
巩固练习
一、填空题:
1、 .2
2、
3、 =
4、 。
5、若 ,则A=__________。
二、选择题:
1、若多项式 ,则a、b的值为( D )
A.a=2,b=3 B. a=2,b=-3 C. a=-2,b= -3 D. 都不对
(1)原式= (2)原式= (3)原式=
2、计算:
(1)
(2)
(3)
(4)
分析:观察原式和计算结果,会发现积的最高次项和常数项恰好分别是两个因式的最高次项的乘积和两个常数项的乘积,比较两个代数式的同次项的方法,特别是比较其最高次项和常数项的方法,在考试中经常用到。
解:(1)原式= (2)原式=
第1周1.4整式的乘法(2)
课时课题:第一章第四节整式的乘法(二)课型:新授课授课人:滕州市姜屯中学王翠华授课时间: 2013年 3 月 12 日,星期二,第 2、4 节课教学目标:1.在具体情境中了解单项式与多项式乘法的意义。
2.经历探索单项式与多项式乘法运算法则的过程,理解单项式乘以多项式的运算法则。
3.会利用法则进行单项式与多项式的乘法运算,理解单项式与多项式相乘的算理,体会乘法分配律及转化的数学思想。
4.发展学生有条理思考的能力和语言表达能力。
5.在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣。
教学重点:单项式与多项式相乘的运算法则及应用。
教学难点:灵活应用单项式与多项式乘法的法则。
教法及学法指导:本节应用“以预习稿为载体的自主互动式”学习模式,引导学生通过自己的预习,及对设计的问题进行仔细观察、展示自己的收获、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.学生在之前已经学习了单*单运算法则,但仍然存在不少问题,教学时需复习巩固.课前准备:制作课件,检查学生预习稿完成情况,发现学生存在的问题.教学过程:一、基础展示,导入新课师:同学们好,今天我们继续探究整式的乘法,在此之前我们一块复习一下上节课的学习内容(出示预习稿中的基础知识)师:我们本单元学习整式的乘法,整式包括什么?生:整式包括单项式和多项式。
师:什么是多项式?怎么理解多项式的项数和次数?生:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,有几个单项式就叫做几项,多项式的次数就是其中次数最高的单项式的次数。
师:整式乘法除了我们上节课学习的单项式乘以单项式外,还应包含哪些内容? 生:还应该有单项式乘以多项式和多项式乘以多项式。
(由此引入今天将学习单项式与多项式相乘)设计目的: 单项式乘以多项式最终转化为单项式乘以单项式,所以帮助学生理解单项式与多项式的联系非常重要。
问题1、2的设计是让学生从宏观上把握所学知识间的关系,而不是只见树木,不见森林。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)
考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
1.4整式的乘法(1)(2)(3)
=2x•x−2x• y + y•x y•y
练习一、计算:
(1) (2n+6)(n–3); (2) (2x+3)(3x–1);
(3) (2a+3)(2a–3); (4) (2x+5)(2x+5).
解:(1) (x+y)(x–y)
运用多项式乘法法则,要有序地逐项 相乘,不要漏乘,并注意项的符号.
最后的计算结果要化简 ̄ ̄ ̄
合并同类项.
2
2.(2a b )(3a) [(2) (3)](a a) b
2 3
2
3
6a b
3 3
3.(4 10 ) (5 10 ) (4 5) (10 10 )
5 4
5 4
20 10
9
2 10 6 3 2 2 3 2 4.( x y) (4 xy ) ( x y ) (4 xy )
)
2、单项式乘法法则对于三个以上的单项
式相乘能否同样适用呢? 适用
做一做
1 1 2 1.(2 xy ) ( xy)(3xyz ) (2 3) ( xxx)( y yy) z 3 3
2
2x y z
3 4
1 2 1 2 2 2.(2 x )( xy z )(6 yz ) [2 (6)] ( x x) ( y y) ( zz) 3 3 3 3 2
x 2 a 2 ax
3、长为2x米,宽为3a米的矩形, 面积为多少平方米?
2 x 3a 6 ax
在这里,求矩形的面积,会遇到如下的式子,这
是什么运算呢?
人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘
pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1);
解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
解:由题意得
3m 1 n 2n 3 m
6 4, 1,
解得
m 2, n 3.
∴
m2
+
n
=
7.
方法总结:单项式乘单项式就是把它们的系数和同底
数幂分别相乘,结合同类项的定义,列出二元一次方
程组求出参数的值,然后代值计算即可.
二 单项式与多项式相乘
问题 如图,试问三块草坪的的总面积是多少?
问题2 如果将上式中的数字改为字母,比如 ac5 ·bc2, 怎样计算这个式子?
ac5 ·bc2 = (a ·b) ·(c5 ·c2) (乘法交换律、结合律) = abc5+2 (同底数幂的乘法) = abc7.
根据以上计算,想一想如何计算单项式乘单项式?
知识要点 单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式.
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法
第1课时 单项式与单项式、多项式相乘
导入新课
北师大版七年级数学下册课件第一章第四节整式的乘法
对点训练
1.(1)计算a·3a的结果是( B )
A.a2
B.3a2
C.ห้องสมุดไป่ตู้a D.4a
(2)化简(-3x2)·2x3的结果是( C ) A.-3x5 B.18x5 C.-6x5 D.-18x5
知识点二:单项式与单项式相乘的一般步骤
(2)4y·(-2xy2);
解:(1)原式=(3×5)(x2·x3)=15x5.
(2)原式=[4×(-2)]x(y·y2)=-8xy3.
(3)(3x2y)3·(-4x);
(4)(-2a)3·(-3a)2.
解:(3)原式=27x6y3·(-4x)=[27×(-4)](x6·x)y3=-108x7y3.
第一章 整式的乘除
整式的乘法(1)
学习目标
1.经历探索整式乘法运算法则的过程,进一步体会类比方法的 作用,以及乘法分配律在整式乘法运算中的作用. 2.(课标)能进行简单的整式乘法运算(单项式乘单项式).
知识要点 知识点一:单项式乘单项式法则 单项式与单项式相乘的运算法则: 单项式与单项式相乘,把它们的 系数 、相同字母的幂分 别 相乘 ,其余字母连同它的 指数不变 ,作为积的因式.
3
27
=-2x5y5- 1x7y5.
3
7.【例4】(北师7下P15)一家住房的结构如图所示,这家房子 的主人打算把卧室以外的部分都铺上地砖,至少需要多少平 方米的地砖?如果某种地砖的价格是a元/m2,那么购买所需地 砖至少需要多少元?
解:根据题意,得xy+2xy+8xy=11xy(m2), 则把卧室以外的部分都铺上地砖,至少需要11xy m2的地砖,购 买所需地砖至少需要11axy元.
6.5.1整式的乘法1
1 xm 8
xm 1.2xm
1 xm 8
(1) 第一幅画的画面面积是多少平方米? 第二幅呢?你是怎样做的? (2) 若把图中的1.2x改为mx,其他不变, 则两幅画的面积又该怎样表示呢?
自学指导
• 学生认真看书自学课本第36页的内容并解决一下 问题: • 1、 3a2b ·2ab3 和 (xyz) · y2z又等于什么?你是怎 样计算的? • 2、如何进行单项式乘单项式的运算? • 3、在你探索单项式乘法运算法则的过程中,运用 了哪些运算律和运算法则? • 4、认真自学课本例1,不会的请教你的小组长。 • 5分钟后,检测同学们的自学效果。
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系 数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
自学检测:
计算:
1 (1)2 xy ( xy ) 3 (2) 2a 2b3 (3a)
2
(3)7 xy 2 z (2 xyz ) 2 2 2 3 3 5 1 2 (4)( a bc ) ( c ) ( ab c) 3 4 3
整式的乘法1 (单项式与单项式相乘)
学习目标
1、理解并掌握单项式与单项式相乘的法则, 能够熟练地进行单项式的乘法计算。 2、经历单项式与单项式相乘的法则的探究过 程,培养学生的归纳、归纳、猜测、验证 等能力. 3、在单项式与单项式相乘的计算过程中培养 学生认真细心的作风.
温故育新:
运用幂的运算性质计算下列各题:
巩固练习
完成课本37页:随堂练习
完成课本37页:习题1、2题
延伸拓展:
一家住房的结构如图 示,房子的主人打算把 卧室以外的部分全都铺 上地砖,至少需要多少 平方米的地砖?如果某 种地砖的价格是a元/平 方米,那么购买所需地 砖至少需要多少元?
北师大版七年级数学下册 第一章 整式的乘除(二) 讲义(无答案)
第一章整式的乘除(二)一、整式的乘法1. 单项式与单项式相乘:法则:把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(-5a2b2)·(-4 b2c)·(-ab)= [(-5)×(-4)×(-1)]·(a2·a)·(b2·b2)·c=-30a3b4c2.单项式与多项式相乘法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.用字母表示:a(b+c+d)= ab + ac + ad例:= (-3x2)·(-x2)+(-3x2)·2 x一(-3x2)·1=3.多项式与多项式相乘法则:多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.用字母表示:( a+b)(c+d)= ac + ad + bc + bd例:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb二、乘法公式1. 平方差公式:两数和与这两数差的积,等于它们的平方差。
(a+b)(a-b)=a2-b2例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(-m+n )( m+n ) = ( ) ( )=___________________;③=( ) ( )=___________;④(2a+b+3)(2a+b-3) =( )2-( )2=______________= ;⑤(2a—b+3)(2a+b-3)=()()=( )2-( )2⑥ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______; ⑦ (x +3y )( ) = 9y 2-x 22. 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)们的 积的2倍。
整式的乘法教案1
⑵法则实质给出我们运算的方法和步骤. 尝试运用,巩固知识 例 1 计算:
2 3 ⑴ 5a b 3a
⑵ 2 x 5 x y
3 2
要求:紧扣法则,准确计算. 例 2 计算: ⑴ 4 10
5
5 10 3 10
6 4
2 3 ⑵ x3 y 2 xy 2 3 2
8. (1.2 103 )(2.5 1011 )(4 109 ) __________ _____. 三、解答题 1.计算下列各题 (1) 4 xy (
2
3 2 3 x yz ) 8
(2) ( a b )( 2 a b c)
3 2 3 3
3 7
1 3
(3) 3.2mn (0.125m n )
2
(三)课堂训练 尝试反馈,解决疑难 练习一 ⑴计算: ① 3x 5 x
5 3
3 ② 4 y 2 xy
2 ③ 2.5 x 4 x
④
2 2 3 5 x y xyz 5 16
⑵计算:① 3x y
2
4 xy
3 2
② xy z
2 3 4
x y
(一)导入新课 复习: (1)叙述单项式乘法法则; (2)说出多项式 2 x 3x 1 的项和各项系数。
2
(二)讲授新课 简便计算: 36
5 3 1 5 3 1 36 36 36 1 9 4 6 9 4 6
引申:计算 m a b c ,其中 m 、 a 、 b 、 c 都是单项式,因为式中字母都表示数,故分配律对代数式 也适用,则 m a b c ma mb mc 引导学生用学过的长方形面积知识加以验证,把宽为 m ,长分别是 a 、 b 、 c 的三个小长方形拼成大长方 形,研究图形面积的整体与部分关系。 由该等式,你能说出单项式与多项式相乘的法则吗?
八年级数学下 整式的乘法1-2 教案华师大版
学
媒
体
资
源
的
选
择
知识点编号
学习
目标
媒体
类型
媒体内容要点
教学
作用
使用
方式
所得结论
占用
时间
媒体
来源
①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示X,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
本节课的设计与学生的心理规律不太符合,因而很不成功。
章节名称
整式的乘法(1、2)
计划学时
2
教学目标
课程标准:
本节课教学目标:
一、知识与技能:了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算
二、过程与与方法:.通过对单项式与单项式、单项式与多项式相乘的法则的探究,进一步理解整式的乘法
三、情感与态度:让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力
15.1-7
学会
3.计算:(3a2b)2+(-2ab)(-4a3b)
4.计算:
5.计算:
பைடு நூலகம்6.已知 求 的值
7.解不等式:
形
成
性
评
价
在教师引导下,学生自主进行归纳,能够使新学的知识及时地纳入学生的认知结构。
在乘方意义的基础上,学生可以开展合作探究,采用合作学习,更易使学生体会知识的形成过程。
教学反思
数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”
北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习
《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。
整式的乘法教案
•••••••••••••••••整式的乘法教案整式的乘法教案作为一名优秀的教育工作者,常常需要准备教案,借助教案可以有效提升自己的教学能力。
我们应该怎么写教案呢?以下是小编为大家整理的整式的乘法教案,仅供参考,大家一起来看看吧。
整式的乘法教案篇1一、内容和内容解析1、内容:同底数幂的乘法。
2、内容解析同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。
在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。
同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。
同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。
基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。
二、目标和目标解析1、目标(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。
(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。
2、目标解析达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同底数幂的乘法运算。
达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的`作用,能体会到数式通性在推到结论的过程中的重要作用。
三、教学问题诊断分析在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。
幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。
教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。
冀教版数学七年级下册8.4《整式的乘法》教学设计1
冀教版数学七年级下册8.4《整式的乘法》教学设计1一. 教材分析冀教版数学七年级下册8.4《整式的乘法》是整式乘除单元的重要内容。
本节内容通过实例引入整式乘法,让学生掌握整式乘法的基本法则和运算技巧。
教材从实际问题出发,引导学生探究整式乘法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经掌握了整式的基本知识,对加减乘除运算有了初步了解。
但学生在进行整式乘法运算时,容易出错,对乘法分配律的理解不够深入。
因此,在教学过程中,需要帮助学生巩固整式乘法的基本规则,引导学生发现运算规律,提高运算速度和准确性。
三. 教学目标1.知识与技能:使学生掌握整式乘法的基本法则,能够熟练进行整式乘法运算。
2.过程与方法:通过实例探究,让学生理解并掌握整式乘法的运算过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:整式乘法的基本法则和运算过程。
2.难点:乘法分配律的理解和运用。
五. 教学方法1.情境教学法:通过生活实例引入整式乘法,让学生在实际问题中感受数学的价值。
2.启发式教学法:引导学生主动探究整式乘法的运算规律,培养学生的逻辑思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示整式乘法的运算过程和实例。
2.练习题:准备一些整式乘法的练习题,用于巩固所学知识。
3.板书设计:设计板书,突出整式乘法的基本法则和运算规律。
七. 教学过程1.导入(5分钟)利用生活实例,如计算商品的折扣,引入整式乘法的学习。
激发学生的学习兴趣,引导学生思考如何进行整式乘法运算。
2.呈现(10分钟)展示整式乘法的运算过程,让学生观察和思考。
通过讲解和示范,使学生掌握整式乘法的基本法则。
3.操练(10分钟)让学生分组进行练习,互相讨论和交流。
八年级数学上册第十四章《整式的乘法与因式分解》知识点总结
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6B解析:B【分析】 根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 2.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.3.在下列的计算中正确的是( )A .23a ab a b ⋅=;B .()()2224a a a +-=+;C .235x y xy +=;D .()22369x x x -=++ A 解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.4.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个A解析:A【分析】 ①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.5.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2D 解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意;C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.6.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ A解析:A【分析】 矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,列代数式进行化简即可.【详解】解:由题意可知,矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,∴S 矩形=()()22212a a +-+=2244144a a a a ++---=233a -.故选:A .【点睛】本题考查了整式的运算,根据题意列出代数式,同时正确使用完全平方公式是解决本题的关键.7.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数C 解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】 ()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.8.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D 解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.9.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.75D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.10.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握. 二、填空题11.已知2a -b +2=0,则1-4a +2b 的值为______.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.12.若2,3x y a a ==,则22x y a +=_______________________.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 13.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和(23,2)+放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对(23,2)+放入其中,最后得到的数是:(23+-1)(2-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.15.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】 令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.16.分解因式323a a -=____.【分析】提取公因式a2即可【详解】解:=故答案为:【点睛】本题考查了分解因式方法之一提取公因式正确提取公因式是解决本题的关键解析:2)(3a a -【分析】提取公因式a 2即可.【详解】解:323a a -,=2)(3a a -,故答案为:2)(3a a -.【点睛】本题考查了分解因式方法之一提取公因式,正确提取公因式是解决本题的关键. 17.已知23x y -=,则432x y --=________.3【分析】把看成一个整体原式可化为2()-3整体代入即可【详解】解:原式=2()-3=2×3-3=3故答案为:3【点睛】本题考查了求代数式的值把看成一个整体是解题的关键解析:3【分析】把2x y -看成一个整体,原式可化为2(2x y -)-3,整体代入即可.【详解】解:原式=2(2x y -)-3=2×3-3=3,故答案为:3.【点睛】本题考查了求代数式的值,把2x y -看成一个整体是解题的关键.18.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.19.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.计算下列各题:(12(2)-3125-9(2)(7)(37)2(22解析:(1)0;(2)2【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(12(2)-3125-9=2+(﹣5)+3=0;(2)(3+7)(3﹣7)+2(2﹣2)=32﹣(7)2+22﹣2=9﹣7+22﹣2=22.【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.22.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.解析:(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a2+7a+a+7-a2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式);(2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题:①10.39.7⨯②(2)(2)m n p m n p +--+解析:(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯- 22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观. 24.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 解析:232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+,当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________;(2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 解析:【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤;故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨,619999999999=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -8解析:(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.27.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF ,CF ,AC .(1)用含a 、b 的代数式表示GC =______;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长; (3)若8a =,AFC △的面积为S ,求S 的值.解析:(1)a+b ;(2)10;(3)32【分析】(1)可由图形直观的得出结论;(2)利用完全平方公式通过展开推导,再将数值代入计算可得;(3)通过面积计算可得,△AFC 的面积为12a 2即为32. 【详解】解:(1)∵GC =GB+BC ,∴GC =a+b ,故答案为:a+b ;(2)∵(a+b )2=a 2+b 2+2ab =60+20×2=100,∴a+b =10,∴GC =10;(3)S △AFC =S △AFE +S ▱FGBE +S △ABC -S △FGC 22111()()222b a b b a b b a =-++-+ 22221111122222ab b b a b ab =-++-- 212a = 2182=⨯ 32=故答案为:32.【点睛】本题主要考查了完全平方公式运用,解题的关键是完全平方公式展开与合并.运用几何直观理解、通过几何图形之间的数量关系对完全平方公式做出几何解释的知识点. 28.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.解析:(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣1)2;(2)9a2﹣4(a+b)2=[3a+2(a+b)][3a﹣2(a+b)]=(5a+2b)(a﹣2b).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
专题15 整式的乘法-重难点题型(举一反三)(学生版)
专题整式的乘法-重难点题型【【例1】(2021•开平区一模)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是()A.37B.13C.20D.36【变式1-1】(2021春•潍坊期末)若(x+a)(x﹣5)=x2+bx﹣10,则ab﹣a+b的值是()A.﹣11B.﹣7C.﹣6D.﹣55【变式1-2】(2020秋•播州区期末)若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是.【变式1-3】(2021春•江都区期中)在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.【题型2 整式乘法中的不含某项问题】【例2】(2021春•蜀山区校级期中)关于x的代数式(mx﹣2)(2x+1)+x2+n化简后不含有x2项和常数项.(1)分别求m,n的值.(2)求m2020n2021的值.【变式2-1】(2021春•通川区校级月考)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.【变式2-2】(2021春•金牛区校级月考)已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.【变式2-3】(2021春•太湖县期末)【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.【题型3 整式乘法的计算】【例3】(2020秋•河北区期末)计算:(1)−12x2y⋅(13x3y2−34x2y+16)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【变式3-1】(2021春•九龙坡区校级期中)计算:(1)2x2y(x−12y+1);(2)(x﹣2y)(y﹣x).【变式3-2】(2021春•海陵区校级月考)计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).【变式3-3】(2021春•未央区月考)小奇计算一道整式的混合运算的题:(x﹣a)(4x+3)﹣2x,由于小奇将第一个多项式中的“﹣a”抄成“+a”,得到的结果为4x2+13x+9.(1)求a的值.(2)请计算出这道题的正确结果.【题型4 整式乘法的应用】【例4】(2021春•铁西区期中)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.(1)那么第二次按键后,A区显示的结果为,B区显示的结果为.(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=2时,代数式乘积的值.【变式4-1】(2021春•碑林区校级期中)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【变式4-2】(2021春•成都期末)(1)如图是小颖家新房的户型图,小颖的爸爸打算把两个卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格为每平方米a元,那么购买地砖至少需要多少元?(2)如果房屋的高度是h米,现在需要在客厅和两个卧室四周的墙上贴墙纸,那么至少需要多少平方米的墙纸?如果某种墙纸的价格为每平方米b元,那么购买所需的墙纸至少要多少元?(计算时不扣除门、窗所占的面积,忽略墙的厚度)【变式4-3】(2021春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.(1)S1与S2的大小关系为:S1S2.(2)若一个正方形的周长与甲的周长相等.①求该正方形的边长(用含m的代数式表示).②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.【知识点2 整式的除法】【例5】(2021春•上城区期末)一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4【变式5-1】(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?()A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1【变式5-2】(2020秋•袁州区校级期中)已知一个长方形的面积是6a2﹣4ab+2a,且它的一条边长为2a,则长方形的周长为.【变式5-3】(2021春•潍坊期末)若多项式A除以2x2﹣3,得到的商式为3x﹣4,余式为5x+2,则A=.【题型6 整式乘法中的规律探究】【例6】(2020秋•邹城市期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…(1)分解因式:x5﹣1=;(2)根据规律可得(x﹣1)(x n﹣1+…+x+1)=(其中n为正整数);(3)计算:(3﹣1)(350+349+348+…+32+3+1).【变式6-1】(2021春•包河区期末)探究规律,解决问题:(1)化简:(m﹣1)(m+1)=,(m﹣1)(m2+m+1)=.(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.(3)化简:(m﹣1)(m n+m n﹣1+m n﹣2+…+1)=.(n为正整数,m n+m n﹣1+m n﹣2+…+1为n+1项多项式)(4)利用以上结果,计算1+3+32+33+…+3100的值.【变式6-2】(2021春•合肥期中)观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.【变式6-3】(2020秋•石狮市校级月考)探究应用:(1)计算:(x﹣1)(x2+x+1)=;(2x﹣y)(4x2+2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m﹣2n)(m2+2mn+2n2)C.(3﹣n)(9+3n+n2)D.(m﹣n)(m2+2mn+n2)(4)设A=109﹣1,利用上述规律,说明A能被37整除.。
第32课时 整式的乘法(1)——同底数幂的乘法
(3)a3·a5=____a_8_____; n都是正整数).
(4)ym·y2m=_____y_3m____.
返回目录
典型例题
知识点1:同底数幂的乘法运算
【例1】计算下列各式,结果用幂的形式表示:
(1)x2·以单项式,先把这个多项式的每一项分别除以单 乘除法 项式,再把所得的商相加.
乘法公 式
平方差公式:两个数的和与这两个数的差相乘,等于这两 个数的平方差. (a+b)(a-b)=a2-b2. 平方差公式特征:①左边是两个二项式相乘,并且这两个 二项式中有一项完全相同,另一项互为相反数;②右边是 相同项的平方减去相反项的平方;③公式中的a和b可以是 具体数,也可以是单项式或多项式.
解:原式=2a9-a6.
返回目录
10. 已知a+b+c=3,求22a-3·23b-2·2a+3c的值. 解:22a-3·23b-2·2a+3c =22a-3+3b-2+a+3c=23(a+b+c)-5, ∵a+b+c=3,∴原式=23×3-5=24=16.
11. 已知a3·am·a2m+1=a25,求m的值. 解:∵a3·am·a2m+1=a3m+4=a25, ∴3m+4=25,即m=7.
因式分 提公因式法:字母表示为ma+mb+mc=m(a+b+c). 解
返回目录
运用平方差公式法:公式为a2-b2=(a+b)(a-b). 因式分
解 运用完全平方公式法:公式为a2±2ab+b2=(a±b)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
1、请你计算出例1的结果.
2、仿照例1的计算过程完成P29随 堂练习!
单项式的除法 法则
• 如何进行单项式除以单项式的运算?
单项式相除, 把系数、同底数幂分别相除,作为 商的因式;对于只在被除式里含有的字母,则连它的 指数作为商的一个因式。
理解
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 除式的系数
先把这个多项式的每一项分别除以单项式, 再把所得的商相加。
已知-5xm+3ny3m-n ÷(-2x3ny2m+n) 的商与-2x3y2是同类项,求m+n 的值。
2 3 3 2
(4)(4 x y 3 xy ) 7 xy
2 2
注意:同号得正,异号得负
小组PK赛
挑战学习
第一题
第二题
第三题
第四题
小 结
拓 展
挑战学习
填一填:
(1)3a2÷(6a6)·(-2a4) = ( -1 )
(2) (
Байду номын сангаас
-2x+3y
)· (-2xy)= 4x2y-6xy2
4分题
挑战学习
追 求 融 卓 会 放 越 中 眼 外 全 球
1
Warm up
m
自主学习
(1)a a
8
8
a a a
n
4
mn
3
( 2 ) (3 a ) ( 2 a )
(3) (6 a b ) (2 a b)
3 4 2
同底数幂相 除,底数不 变指数相减
自主学习
阅读课本 28回答下列问题(5min)
填一填:
(1)(-12a3bc ) ÷(
(2)(
-3ac
) =4a2b
3 7 2 x 1 x 2 2
4分题
挑战学习
◆一个长方体模型的长、宽、高分 别为4a(cm),3a(cm),2a(cm)。某种油 漆每千克可漆 的面积,问 漆好这个模型需要多少千克油漆?
1 2 4a 3a 2a a 48a 2
底数不变, 指数相减。
保留在商里 作为因式。
挑战学习
请把解题思路大声说出来
先把这个多项式的每一 项分别除以单项式,再把 所得的商相加。 先定商的符号(同号得正,异号得负);
挑战学习
(1)(3 xy y ) y (2)(ma mb mc) m (3)(6c d c d ) (2c d )
6分题
挑战学习
4分题
(1)(12a b c) (6ab ) 2ab
3 3 2
2a bc
2
(4)(2 (2 )( x 4 y 3) 2 x 2 y 3
3 x 2y 2
反思学习
单项式相除
1、系数相除; 2、同底数幂相除;
3、只在被除式里的幂不变。
多项式除以单项式