初中数学总复习题四
初中数学总复习试题及答案
初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。
初中数学中考总复习试卷
一、选择题(每题3分,共30分)1. 下列选项中,绝对值最小的是()A. -2B. -1C. 0D. 12. 下列选项中,最简分数是()A. $\frac{2}{4}$B. $\frac{3}{5}$C. $\frac{4}{6}$D. $\frac{5}{7}$3. 已知一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长是()A. 14cmB. 16cmC. 18cmD. 20cm4. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 3x + 2 = 8C. 4x - 3 = 7D. 5x + 4 = 95. 下列选项中,关于一次函数y=kx+b(k≠0)的图象,当k>0,b>0时,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限6. 下列选项中,关于反比例函数y=k/x(k≠0)的图象,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限7. 下列选项中,关于二次函数y=ax^2+bx+c(a≠0)的图象,当a>0时,正确的说法是()A. 图象开口向上,对称轴为x=-b/2aB. 图象开口向下,对称轴为x=-b/2aC. 图象开口向上,对称轴为x=b/2aD. 图象开口向下,对称轴为x=b/2a8. 下列选项中,关于平行四边形的性质,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 对边互相垂直9. 下列选项中,关于相似三角形的性质,正确的是()A. 对应边成比例B. 对应角相等C. 对应边相等D. 对应角互补10. 下列选项中,关于圆的性质,正确的是()A. 圆的直径是圆的最长弦B. 圆的半径是圆的最短弦C. 圆的直径是圆的对称轴D. 圆的半径是圆的对称轴二、填空题(每题3分,共30分)11. $\sqrt{16}$的值是______。
初中数学总复习题及答案
初中数学总复习题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333...(无限循环)D. 52. 如果一个角的补角是它的2倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°3. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 24. 一个正数的倒数是:A. 它的一半B. 它的负数C. 1除以这个数D. 这个数的平方5. 下列哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 5x^2 + 6x - 8 = 0D. 2x - 5 = 0答案:1. B 2. A 3. A 4. C 5. B二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是______。
7. 一个数的立方根是2,那么这个数是______。
8. 如果一个数的绝对值是5,那么这个数可能是______或______。
9. 一个多项式的次数是3,那么它至少包含______个单项式。
10. 一个圆的半径是5,那么它的面积是______。
答案:6. 5 7. 8 8. 5, -5 9. 3 10. 78.5三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)12. 解一元二次方程:x^2 - 5x + 6 = 013. 证明:如果一个三角形的两边长分别为a和b,且a + b > c,那么这个三角形是存在的。
答案:11. x^2 - 5x + 512. x = 2 或 x = 313. 根据三角形的三边关系定理,如果任意两边之和大于第三边,则可以构成三角形。
四、解答题(每题15分,共30分)14. 一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
人教版初中数学七年级上期末复习专题卷(1-4及答案
第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。
浙教版2020七年级数学期末复习综合练习题4(基础部分 含答案)
浙教版2020七年级数学期末复习综合练习题4(基础部分 含答案) 1.下列方程中分式方程有( )个. (1)x 2﹣x +;(2)﹣3=a +4;(3);(4)=1.A .1B .2C .3D .以上都不对2.如图,AB ∥CD ,CP 交AB 于O ,AO=PO ,若∠C=50°,则∠A 的度数为( )A .25°B .35°C .15°D .50°3.某城市家庭人口数的统计结果为:2口人家占10%,3口人家占50%,四口人家占20%,5口人家占10%,其他占10%.选择合适的统计图表示,应采用( ) A .条形统计图B .扇形统计图C .折线统计图D .频数直方图4.已知空气单位体积质量是,将用科学记数法表示为( )A .B .C .D .5.如图是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .a 2+b 2B .4abC .(b +a )2﹣4abD .b 2﹣a 26.若代数式()242M 39x y yx ⋅-=-,那么代数式M 为( )A .23x y --B .23x y -+C .23x y +D .23x y -7.(4分)下列运算正确的是( ) A .B .C .D .8.若32n =,35m =,则23m n -的值是( ) A .45B .252C .1-D .279.下列事件中,最适合采用普查的是( ) A .对某班全体学生出生月份的调查B .对全国中学生节水意识的调查C .对某批次灯泡使用寿命的调查D .对山西省初中学生每天阅读时间的调查10.计算221(1)(1)a a a +++的结果为( )A .1B .1aC .1a +D .11a + 11.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次? 12.如图AB ∥EF ,BC ∥DE ,则∠E +∠B 的度数为__________.13.已知x 2+x -1=0, x 3+2x 2+3=________________. 14.把多项式3x 2+3x ﹣6分解因式的结果是 .15.在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有______篇.(不少于90分者为优秀)16.21()(21)(41)2x x x +-÷-= 17.02019的相反数是____.18.分式1a b +,22b a b -,22a a b-的最简公分母是____________. 19.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为__________. 20.当x_____时,分式235x x -+有意义.21.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.22.某班同学上学期全部参加了捐款活动,捐款情况如下统计表: 金额(元) 5 10 15 20 25 30 人数(人)81210622(1)求该班学生捐款额的平均数和中位数;(2)试问捐款额多于15元的学生数是全班人数的百分之几?(3)已知这笔捐款是按3:5:4的比例分别捐给灾区民众、重病学生、孤老病者三种被资助的对象,问该班捐给重病学生是多少元? 23.计算:2(1)(3)(3)x x x ---+ 24.先化简,再求值:225)3)(()2(y y x y x y x --+-+,其中21,2=-=y x . 25.某校利用暑假进行田径场的改造维修,项目承包单位派遣甲施工队进场施工,计划用40天时间完成整个工程.当甲施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣乙施工队与甲施工队共同完成剩余工程,结果按通知要求如期完成了整个工程. (1)若乙施工队单独施工,完成整个工程需要多少天?(2)若此项工程甲、乙施工队同时进场施工,完成整个工程需要多少天? 26.(m ﹣2n )2.27.如图,AC ,BD 相交于点O ,AC 平分∠DCB ,CD ⊥AD ,∠ACD =45°,∠BAC =60°.(1)证明:AD ∥BC ; (2)求∠EAD 的度数;(3)求证:∠AOB =∠DAC +∠CBD28.对于任何实数,我们规定符号a b c d的意义是:a b c d=ad-bc .按照这个规定请你计算:当x 2-3x+1=0时,x 13xx 2x 1+--的值.29.解方程:.30.计算:12021)|3|(π-+-+参考答案1.B【解析】根据分式方程的定义:分母里含有未知数的方程叫做分式方程即可判断.解:(1)x2﹣x+不是等式,故不是分式方程;(2)﹣3=a+4是分式方程;(3)是无理方程,不是分式方程;(4)=1是分式方程.故选B.2.A【解析】试题解析:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选A.考点:1.平行线的性质,2.三角形外角的性质,3.等腰三角形的性质3.B【解析】【分析】根据常用的几种统计图反映数据的不同特征结合实际来选择.【详解】因为要表示家庭人口数量所占的百分比,所以宜采用扇形统计图,故选B.【点睛】本题主要考查统计图的选择,解题的关键是根据常用的几种统计图反映数据的不同特征结合实际来选择.4.C【解析】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:=.故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【解析】【分析】根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【详解】解:由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab.故选:C.【点睛】本题考查了完全平方公式的几何背景,求出正方形的边长是解题的关键.6.A【解析】【分析】由题可得4229M3y xx y-=-,运用平方差公式将429y x-进行因式分解可得22(3)(3)y x y x+-,提“-”号得22(3)(3)y x x y-+-,分子分母约分后去括号可得结果.解:由题可得4229M 3y x x y -=-22222222(3)(3)(3)(3)(3)333y x y x y x x y y x y x x y x y+--+-===-+=----. 故选:A 【点睛】本题考查了分式的约分,利用因式分解找准分子分母的公因式是解题的关键.分式约分时分子或分母能因式分解时先进行因式分解. 7.B 【解析】 试题分析:A .,故本选项错误;B .,正确;C .,故本选项错误;D .,故本选项错误.故选B .考点:1.单项式乘多项式;2.立方根;3.合并同类项;4.完全平方公式. 8.B 【解析】 【分析】根据同底数幂的除法逆运算即可求解. 【详解】∵32n =,35m =,∴23m n -=()233m n ÷=52÷2=252故选B. 【点睛】此题主要考查幂的运算,解题的关键是熟知公式的逆用. 9.A 【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行分析判断即可. 【详解】解:A 、对某班全体学生出生日期的调查情况适合普查,故此选项符合题意; B 、对全国中学生节水意识的调查范围广适合抽样调查,故此选项不符合题意; C 、对某批次灯泡使用寿命的调查具有破坏性适合抽样调查,故此选项不符合题意; D 、对山西省初中学生每天阅读时间的调查范围广适合抽样调查,故此选项不符合题意; 故选:A . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 10.D 【解析】 【分析】利用分式的运算法则,即可求解答案. 【详解】2221(1)(1)+1=(1)1=+1a a a a a a ++++ 【点睛】本题考查分式的化简,分式化简一定要注意隐含条件,分式分母部分表达式不为0, 所以本题可以约分,约掉a+1 11.8 【解析】 【分析】根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可. 【详解】解:设:在甲机换了x 次.乙机换了y 次.丙机换了z 次. 在甲机上每换一次多 1 个; 在乙机上每换一次多 3 个; 在丙机上每换一次多 9 个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴123980x y z x y z ++=⎧⎨++=⎩①②由②-①,得:2y+8z=68, ∴y+4z=34, ∴y=34-4z ,结合x+y+z=12,能满足上面两式的值为: ∴x 2y 2z 8===,,; 即在丙机换了8次. 故答案为:8. 【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可. 12.180o . 【解析】 ∵BC ∥DE , ∴∠E=BFG ; ∵AB ∥EF ,∴∠B+∠GFB=180°; ∴∠E+∠B=180°. 故答案是:180°. 【点睛】此题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.还要注意数形结合思想的应用.13.4【解析】【分析】先据x2+x-1=0求出x2+x的值,再将x3+2x2+3化简为含有x2+x的代数式,然后整体代入即可求出所求的结果.【详解】解:∵x2+x-1=0,∴x2+x=1,x3+2x2+3=x(x2+x)+x2+3=x+x2+3=4.故答案为:4.【点睛】此题考查了提公因式法分解因式,从多项式中整理成已知条件的形式,然后利用“整体代入法”求代数式的值.14.3(x+2)(x﹣1)【解析】首先提公因式,然后运用十字相乘法分解因式.解:3x2+3x﹣6=3(x2+x﹣2)=3(x+2)(x﹣1).15.15【解析】【分析】根据题意可得不少于90分者为优秀,读图可得分数低于90分的作文篇数.再根据作文的总篇数为60,计算可得被评为优秀的论文的篇数.【详解】由图可知:优秀作文的频数=60-3-9-21-12=15篇;故答案为15.【点睛】本题属于统计内容,考查分析频数分布直方图和频数的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.16.12. 【解析】 试题分析:先把(x+12)提12,再把4x 2-1分解,然后约分即可. 试题解析:原式=12(2x+1)(2x-1)÷[(2x-1)(2x+1)] =12. 【考点】整式的混合运算.17.-1【解析】【分析】先求出02019,再求相反数.【详解】因为02019=1,所以02019的相反数是-1故答案为:-1【点睛】考核知识点:相反数,0指数幂.18.2(a+b )(a-b)【解析】【分析】取各分母系数的最小公倍数与字母因式的最高次幂的积,即可得到答案.【详解】 ∵22b a b -=2()b a b -,22a a b -=()()a ab a b -+,∴分式1a b +,22b a b -,22a ab -的最简公分母是:2(a+b)(a-b). 故答案是:2(a+b)(a-b).【点睛】本题主要考查分式的最简公分母,掌握“各分母系数的最小公倍数与字母因式的最高次幂的积” 叫做最简公分母,是解题的关键.19.6m >-且4m ≠-【解析】【分析】首先求出关于x 的方程232x m x +=-的解,然后根据解是正数,再解不等式求出m 的取值范围.【详解】解关于x 的方程232x m x +=-得x =m +6, ∵x−2≠0,解得x≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m≠−4.故答案为:m >−6且m≠−4.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.20.≠﹣53【解析】【分析】根据,分式有意义,可得答案.【详解】由题意,得3x+5≠0,解得x≠-53,故答案为≠-53. 【点睛】 本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.21.213x <<;1x > 或23x <;1x =;23x =. 【解析】(1)y 的值是正数,则分式的值是正数,则分子与分母一定同号,分同正与同负两种情况;(2)y 的值是负数,则分式的值是负数,则分子与分母一定异号,应分分子是正数,分母是负数和分子是负数,分母是正数两种情况进行讨论;(3)分式的值是0,则分子等于0,分母不等于0;(4)分式无意义的条件是分母等于0.解:(1)当10230x x ->⎧⎨->⎩或10230x x -<⎧⎨-<⎩时,即213x <<时,y 为正数; (2)当10230x x ->⎧⎨-<⎩或10230x x -<⎧⎨->⎩时,即x >1或x <23时,y 为负数; (3)当10230x x -=⎧⎨-≠⎩时,即1x =时,y 值为零;(4)当230x -=时,即23x =时,分式无意义. 点睛:本题主要考查分式的定义及分式的值.掌握分式的概念及分式的值为正或负时分子与分母的符号关系是解题的关键.22.(1)捐款平均数为13.5元;中位数为12.5元;(2)捐款额多于15元的学生数是全班人数的25%;(3)重病学生可以得到225元的救助.【解析】【分析】(1)根据平均数和中位数公式即可求解,(2)找到捐款多于15元的人数,与总人数相比即可,(3)找到重病学生在三种资助对象中的占比即可解题.【详解】(1)捐款平均数为581012151020625230281210522⨯+⨯+⨯+⨯+⨯+⨯+++++ =13.5元;∵共40人, ∴中位数应该是第20和第21人的平均数,∵第20人捐款10元,第21人捐款15元,∴中位数为12.5元;(2)捐款多于15元的有6+2+2=10人,故10÷40×100%=25%; (3)∵捐款共计540元,按照3:5:4的比例分配给灾区民众、重病学生、孤老病者三种被资助的对象,∴重病学生可以得到540×5354++=225元的救助. 【点睛】本题考查了条形统计图的实际应用,属于简单题,熟记公式是解题关键.23.-2x+10.【解析】【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,去括号合并即可得到结果;【详解】原式=x 2-2x+1-(x 2-9)=-2x+10.【点睛】此题考查整式的混合运算,解题关键在于熟练掌握运算法则.24.-10.【解析】试题分析:先利用完全平方公式和多项式乘以多项式把括号展开,再合并同类项,再把x 、y 的值代入即可求值.试题解析:原式=2222244(33)5y x xy y x xy xy y ++--+--=2222244335y x xy y x xy xy y ++-+-+-=xy x 222+- 当21,2=-=y x 时,原式=-10. 考点:1.整式的化简求值.25.(1)由乙施工队单独施工,完成整个工期需要60天;(2)若由甲乙施工队同时进场施工,完成整个工程需要24天.【解析】【分析】(1)设乙施工队单独施工需要x 天,根据甲施工队完成的工作量+乙施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】(1)设乙施工队单独施工需要x 天, 根据题意得:401440514140x---+= 解得:x=60,经检验,x=60是原分式方程的解.答:若由乙施工队单独施工,完成整个工期需要60天.(2)由题可得111244060⎛⎫÷+= ⎪⎝⎭(天) 答:若由甲乙施工队同时进场施工,完成整个工程需要24天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.26.m 2﹣4mn+4n 2【解析】试题分析:直接利用完全平方公式计算,要注意2n 是一个整体平方.试题解析:(m ﹣2n )2= m 2﹣2m 2n n +(2n )2= m 2﹣4mn +4n 2.27.(1)见解析;(2)75°;(3)见解析.【解析】分析:(1)由AC 平分∠DCB ,∠ACD =45°,可得∠BCD =90°,从而可证AD ∥BC ;(2)由AD∥BC可求∠ACB=∠ACD=45°,然后由三角形内角和可求出∠ABC的度数,再根据两直线平行,同位角相等可求出∠EAD的度数;;(3)过点O作OF∥AD,则OF∥BC,根据平行线的性质可得∠AOF=∠DAC,∠FOB=∠CBD,然后等量代换可得结论.详解:⑴证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°.∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;⑵∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC,∴∠DAC=∠ACB=45°,∴∠EAD=180°-∠DAC-∠BAC=180°-45°-60°=75°;⑶过点O作OF∥AD,∵AD∥BC,∴OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.点睛:本题考查了角平分线的定义,平行线的判定与性质,三角形内角和等于180°,熟练掌握平行线的判定与性质是解答本题的关键.28.1【解析】分析:首先根据符号的法则将原式进行化简,然后利用整体代入的思想求出代数式的值. 详解:解:x 13x x 2x 1+-- =(x+1)(x -1)-3x (x -2)=x 2-1-3x 2+6x =-2x 2+6x -1, ∵x 2-3x+1=0, ∴x 2-3x=-1. ∴原式=-2(x 2-3x )-1=2-1=1.故x 13x x 2x 1+--的值为1.点睛:本题主要考查的是利用整体思想求代数式的值以及新定义的运算法则的理解,属于中等难度的题型.明确新定义的运算法则是解决这个问题的关键.29.x=﹣2是方程的根【解析】试题分析:方程两边同时乘以x ﹣2,然后解一元一次方程,求出x 的值,最后进行验根即可.试题解析:去分母得,6+x ﹣2=﹣x ,移项,得x+x=2﹣6合并,得2x=﹣4,系数华为1,x=﹣2,经检验,x=﹣2是方程的根.考点:分式方程.30.112【解析】【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义计算即可求出值.【详解】原式=12+3﹣﹣+1=112. 【点睛】本题考查零指数幂、负整数指数幂法则、绝对值的代数意义,解题的关键是掌握零指数幂的计算、负整数指数幂法则、绝对值的代数意义.。
初中数学总复习试题及答案
初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<60 60≤x<70 70≤x<80 48A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值范围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值范围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<60 60≤x<70 70≤x<80 48A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值范围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。
人教版数学八年级下册期末综合培优复习题(四)(含答案)
期末综合培优复习题(四)一.选择题(每题3分,满分36分)1.下列一定是二次根式的是()A.B.C.D.2.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣13.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.已知n是一个正整数,是整数,则n的最小值是()A.3 B.5 C.15 D.455.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.若a=1﹣,b=1+,则代数式的值为()A.2B.﹣2C.2 D.﹣27.有20个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的()A.平均数B.加权平均数C.众数D.中位数8.已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x,y的方程组的解是()A.B.C.D.9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.11.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(每题3分,满分18分)13.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 14.使二次根式有意义的x 的取值范围是 .15.某公司招聘员工一名,某应聘者进行了三项素质测试,其中创新能力为70分,综合知识为80分,语言表达为90分,如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 分.16.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .17.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 度.18.如图,过点N (0,﹣1)的直线y =kx +b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围 .三.解答题 19.(6分)计算 (1)(3﹣2+)÷2 (2)×﹣(+)(﹣)20.已知一次函数y =(2m +1)x +3﹣m(1)若y 随x 的增大而减小,求m 的取值范围; (2)若图象经过第一、二、三象限,求m 的取值范围.21.(8分)为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图所示.(1)根据图示填写图表;平均数(分)中位数(分)众数(分)小学部85初中部85 100 (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(6分)如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13.求BC的长.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.24.(6分)已知y+m与x﹣n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时,y=﹣5,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点(2,﹣1),求平移后的直线的解析式.25.(9分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.参考答案一.选择题1. A .2. D .3. A .4. B .5. C .6. A .7. D .8. B .9. D 10. B .11. A . 二.填空题 13. y 1<y 2. 14. x ≤2. 15. 77. 16. 1≤k ≤. 17. 100或40. 18. <k ≤2. 三.解答题19.解:(1)原式=(9﹣+4)÷2=12÷2=6; (2)原式=﹣(5﹣3)=3﹣2 =1.20.解:(1)由2m +1<0,可得m <﹣, ∴当m <﹣时,y 随着x 的增大而减小; (2)由,可得﹣<m <3, ∴当﹣<m <3时,函数图象经过第一、二、三象限.21.解:(1)填表:小学部平均数 85( 分),众数85(分);初中部中位数 80( 分). 故答案为85,85,80.(2)小学部成绩好些.因为两个队的平均数都相同,小学部的中位数高,所以在平均数相同的情况下中位数高的小学部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,,∴,因此,小学代表队选手成绩较为稳定.22.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=15,AD=12,AC=13,∴BD===9,CD===5,∴BC=BD+CD=9+5=14.23.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.24.解:(1)已知y+m与x﹣n成正比例,设y+m=k(x﹣n),(k≠0),y=kx﹣kn﹣m,因为k≠0,所以y是x的一次函数;(2)设函数关系式为y=kx+b,因为x=2时,y=3;x=1时,y=﹣5,所以2k+b=3,k+b=﹣5,解得k=8,b=﹣13,所以函数关系式为y=8x﹣13;(3)设平移后的直线的解析式为y=ax+c,由题意可知a=8,且经过点(2,﹣1),可有2×8+c=﹣1,c=﹣17,平移后的直线的解析式为y=8x﹣17.25.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.。
初中数学中考专项复习有理数(解答题)复习习题401-500(含答案解析)
初中数学中考专项复习有理数(解答题)复习习题401-500(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.若|x+3|+(y-2)2=0,求x y+2(x+y)的值.2.在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.53.如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.4.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.5.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).6.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停在点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时,请你结合数轴求出|x A﹣x E |﹣|x E﹣x F |+ |x F﹣x B |= .(直接写出答案)7.把下列各数在数轴上表示出来,按从小到大的顺序用“<”连接起来.+(﹣2),-(-1)100,0,412,﹣|﹣2.5|,﹣(﹣3)8.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是_________________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.9.已知一个数轴上有A,B,C三点,它们所表示的数分别为2,﹣3,x.(1)若点C是线段AB的中点,请直接写出x的值;(2)若OC=OB﹣OA,求出x的值;(3)若2AC+13OB=7,求x的值.10.先化简,再求值:2222222a b a ba ab b b a a ab⎛⎫-+÷⎪-+--⎝⎭,其中,a b满足b=.11.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2) 若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值② 求b 、c 之间的数量关系③ P 是数轴上B ,C 两点之间的一个动点设点P 表示的数为x .当P 点在运动过程中,bx +cx +|x -c |-10|x +a |的值保持不变,求b 的值 12.已知22223A a b ab =-+-,2221255B a b ab =---. (1)化简:()()232A B A B +--; (2)当12a +与2b 互为相反数时,求(1)中化简后的式子值. 13.先化简,再求值:22223322232x y xy x x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足2|3|(31)0x y -++=14.计算: (1)111(24)836⎛⎫-+⨯-⎪⎝⎭; (2)20131|2|(1)322-⨯--÷⨯;(3)2211(10.5)[2(3)]3---⨯⨯--;(4)817(36)76⎛⎫⨯-⨯-⨯ ⎪⎝⎭. 15.在数轴上表示下列各数,再将其按从大到小的顺序用“>”连接起来 |3|,﹣5,0,﹣2.5,﹣22,﹣(﹣1). 16.如图,a 、b 、c 在数轴上的位置如图所示,(1)请用“<”或“>”判断下列代数式的大小;+a b ______0,a c +______0,c b -______0; (2)试化简a b a c c b +++--17.外卖小哥骑车从商家出发,向东骑了3千米到达小林家,继续骑2.5千米到达小红家,然后向西骑了10千米到达小明家,最后返回商家。
中考复习——初中数学经典四边形习题50道(附答案)
1.已知:在矩形 ABCD 中, _A
AEBD 于 E,∠DAE=3∠BAE ,
求:∠EAC 的度数。
_O
_E _B
2.已知:直角梯形 ABCD 中,BC=CD=a _A
且∠BCD=60,E、F 分别为梯形的腰
AB、
_E
DC 的中点,求:EF 的长。
_D
_C _D
_F
_A
_D
_E
证:ADEF 是平行四边形。
_D
_E
_B
_C _F
_F
_A
_A
14、在四边形 ABCD 中,AB=CD,
_P
P、Q 分别是 AD、BC 中点,M、N
_D
_B
_C
分别是对角线 AC、BD 的中点,
求证:PQMN。
_N
_M
_B
_Q
19、M、N 为ABC 的边 AB、AC 的中点,E、F 为边 AC 的
G,BG= 4 2 ,则ΔCEF 的周长为( )
A.8 B.9.5
C.10
D.11.5
正确的
A.③② B.③④ C.①④② D.②③④
例 4.13.在下列命题中,是真命题的是( )
A.两条对角线相等的四边形是矩形 B.两条对角线互相垂
直的四边形是菱形 C.两条对角线互相平分的四边形是平行
四边形 D.两条对角线互相垂直且相等的四边形是正方形
_D _E
_A
_C
8 、在正方形 ABCD 中,直 _G
_A
_D
_C
线 EF 平
行 于 对 角 线 AC ,与 边
_G
_F
ABBC 、的交 点为 E 、
初中数学 第十九章《四边形》单元总复习题(含答案)
第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖块;(2)第n个图形中有白色地面砖块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD为菱形,∠A=60°, 对角线BD长度为10c m,则此菱形的周长c m.6.已知正方形的一条对角线长为8c m,则其面积是__________c m2.7.平行四边形ABCD中,AB=6c m,AC+BD=14c m,则∠AOC的周长为_______.8.在平行四边形ABCD中,∠A=70°,∠D=_________, ∠B=__________.9.等腰梯形ABCD中,AD∠BC,∠A=120°,两底分别是15c m和49c m,则等腰梯形的腰长为______.10.用一块面积为450c m2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条c m.11.已知在平行四边形ABCE中,AB=14cm,BC=16cm,则此平行四边形的周长为cm. 12.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明图19-2图19-1ABCDO图19-3(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm . 16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . 20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:∠矩形; ∠菱形; ∠等腰三角形(腰与底边不相等); ∠等边三角形; ∠平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )A .∠∠B .∠∠∠C .∠∠∠∠D .∠∠∠∠∠22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )AB C D图19-611图19-4 A BCO图19-523.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形. 27.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从∠AB //CD ;∠AB =CD ;∠BC //AD ;∠BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .∠∠ B .∠∠ C . ∠∠ D . ∠∠29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BDC .当AC ∠BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A .1个B .2个C .3个D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A D CB F E 图19-7 ·A .矩形B .菱形C .正方形D .菱形、矩形或正方形 35.如图19-8,直线a ∠b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∠AB 交AC 于点E ,DF ∠AC 交AB于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∠CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在∠ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MNA BC D EF图19-9 图19-10 图19-11 D A EBC图19-12交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是∠ABC 的角平分线,DE ∠AC 交AB 于点E ,DF ∠AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ∠DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ∠AB 于F ,如果AB =6,EF =5,AE B CF O N M D图19-13 A EB DC F1图19-142O图19-15 A BN M C D O AD求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:∠画出的圆应符合比例要求; ∠为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ∠MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图19-19, 中,DB=CD , 70=∠C ,AE ∠BD 于E .试求DAE ∠的度数.D A B C ME N图19-18图19-17ABCD47.如图19-20, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21∠),使AB=CD,EF=GH ;(2)摆放成如图∠的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图∠),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图∠),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图∠) (图∠) (图∠) (图∠)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.图19-19图19-20图19-21ABCD图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE =15°,试求∠COE的度数。
部编人教版初中数学七下--期末复习(4) 二元一次方程组--(附答案)
期末复习(四) 二元一次方程组考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2 2 D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③ ②+③得3x=9.解得x=3. 将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a<2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元? (2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元. (2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩ B.53323x y y x -==+⎧⎨⎩ C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( ) A.1,2 B.1,-2 C.-1,2 D.-1,-2 5.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩ B.636x y x y +=-=⎧⎨⎩ C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元 二、填空题(每小题4分,共20分)11.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.a 与b 的运算 a+2b 2a+b 3a+2b 运算的结果2412.已知1x y ==⎧⎨⎩是二元一次方程组1nx my -=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元. (1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1xy==⎧⎨⎩代入方程组,ax y bx by a+=-=⎧⎨⎩,得1,1.a bb a+=-=⎧⎨⎩整理,得1,1.a ba b-=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13 xy==-⎧⎨⎩,3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1. 把y=1代入③,得x=4+1=5.∴原方程组的解为51. xy==⎧⎨⎩,4.15.根据题意,得25,5 1.x yx y-=-=+⎧⎨⎩解得3,1.xy==⎧⎨⎩6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C 11.6 12.2 13.-11 14.214 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩,(2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3. ④-②,得2x=12,即x=6. ④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.读 万 卷 书 行 万 里 路实用文档 精心整理 11 将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得 50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z==-⎧⎨⎩不合题意,舍去.故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
初中数学总复习分章节测试题与答案(完整版)
2012年 第一章 有理数的概念一、选择题:1.下列命题中,正确的是 ( ) A 有限小数是有理数 B 无限小数是无理数 C 数轴上的点与有理数一一对应 D 数轴上的点与实数一一对应2.四位同学画数轴如下图所示,你认为正确的是 ( )A B C D3.下列说法正确的是 ( ) A 绝对值较大的数较大 B 绝对值较大的数较小 C 绝对值相等的两数相等 D 相等两数的绝对值相等4.若a 与b 互为相反数,则下列式子成立的是 ( ) A 0=-b a B 1=+b a C 0=+b a D .0=ab5.数轴上原点和原点左边的点表示的数是 ( ) A 负数 B 正数 C 正数或零 D 负数或零6.下列比较中,正确的是 ( )A331212-<<- B212313-<<- C 210->-> D 201-><- 7.a--是一个 ( )A 正数 B 负数 C 正数或零 D 负数或零8.下列命题中正确的是 ( )A 3和-是互为相反数 B 3和-3是互为倒数 C 绝对值为3的数是-3D -3的绝对值是39.数x 由四舍五入得到的近似数是35.0,数x 不可能是 ( ) A 35.049 B 34.974C 35.052 D 34.95910.若a 为实数,下列代数式中,一定是负数的是 ( )A 2a - B 2)1(+-a C a - D )1(+--a11.若)(21++n m b a ·)(35212b a b a m n =-,则n m +的值为 ( ) A 1 B 2 C 3 D -312.据6月4日《苏州日报》报道,今年苏州市商品房销售量迅速增加,1~4月商品房销售金额高达1 711 000 00O 元,这个数用科学计数法表示是 ( )A 1.711×610B 1.711×910C 1.711×1010D 1711×61013.在0,1-,1,2的四个数中,最小的数是 ( ) A. 0 B 1- C 1 D. 214.张玲身高h ,由四舍五入后得到的近似数为1.5米,正确表示h 的值是 ( ) A 1.43米 B 1.56米 C 1.41≤ h ≤ 1.51 D 1.41≤ h <1.55 二、填空题:14.2001年3月,国家统计局公布我国总人口为129533万人.如果以亿为单位保留两位小数,可以写成约为____________亿人;15.计算:)3()20()100(---⨯-= ;16.2)1(-的相反数是_______;17.已知5,10=-=b a ,代数式)(b a --的值是 ; 18.如果ba b a ><<,0,0,那么0____b a -;如果ba b a <<<,0,0,那么___b a -0;19.21的倒数的相反数的3次幂等于 ;20.把3729000-用科学记数法可表示为 ; 21.41030.3⨯有 个有效数字,它精确到 位; 22.方程275=+x 的解的2003次幂是 ; 23.若0<m ,则_____=+m m ,若0>m ,则______=+m m ,若0=m ,则______=+m m ;24.0)4(|3||2|2=+-+-++z y x ,则.____=+zy x x 25.观察下列算式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;……通过观察,用你所发现的规律写出811的末位数字是 ;26.已知:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52; ……… 根据前面各式的规律,可猜测:1+3+5+7+…+_____12=+n ;27.观察下列等式:41314313121321211211-=;-=;-=⨯⨯⨯; ……。
初中数学总复习考点题型分类专题训练04 整式
初中数学总复习考点题型分类专题训练04 整式一、选择题6.(2019·泰州)若2a -3b =-1,则代数式4a2-6ab+3b 的值为( ) A .-1 B .1 C .2 D .3 【答案】A 【解析】因为2a -3b =-1,4a2-6ab+3b =2a(2a -3b)+3b =-2a+3b =-(2a -3b)=-1,故选A.7.(2019·滨州)若8xmy 与6x3yn 的和是单项式,则(m+n )3的平方根为( ) A .4 B .8 C .±4 D .±8【答案】D【解析】∵8xmy 与6x3yn 的和是单项式,∴m=3,n=1,∴(m+n )3=43=64,∵(±8)2=64,∴(m+n )3的平方根为±8.故选D .5. (2019·威海) 下列运算正确的是( ) A .(a2)3=a5 B .3a2+a =3a3 C .a5÷a2=a3(a ≠0) D .a (a +1)=a2+1 【答案】C【解析】根据幂的乘方法则,得(a2)3=a6,故A 错误;根据同类项的定义及合并同类项法则,知3a2与a 不是同类项,不能合并, 故B 错误; 根据同底数幂的除法法则,得a5÷a2=a3(a ≠0),故C 正确; 根据单项式乘多项式法则,得a (a +1)=a2+a ,故D 错误. 6.(2019·盐城)下列运算正确的是( )【答案】B【解析】,)(,32,,63232213372525a a a a a a a a a a a a a a ===+==÷==⋅⨯-+故选B. 4.(2019·青岛)计算223(2)(3)m m m m --+g g 的结果是( ) A. 8m5 B. -8m5 C. 8 m5 D. -4m5+ 12m5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m2·(-m3+3m3)= 4m2·2m3=8m5,故选A. 2.(2019·山西)下列运算正确的是( ) A.2a+3a =5a2 B.(a+2b)2=a2+4b2 C.a2·a3=a6 D.(-ab2)3=-a3b6 【答案】D【解析】A.2a+3a =5a,故A 错误;B.(a+2b)2=a2+2ab+4b2,故B 错误;C.a2·a3=a5,故C 错误;D.(-ab2)3=-a3b6,正确,故选D.2.(2019·淮安)计算2a a ⋅的结果是( ) A.3a B.2a C.3a D.22a 【答案】A【解析】2a a ⋅321a a ==+.3.(2019·株洲)下列各式中,与233x y 是同类项的是( ) A .52x B .323x y C .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。
初中数学总复习题及答案
初中数学总复习题及答案一、选择题1. 下列哪个选项不是有理数?A. -3B. 0C. πD. √2答案:C2. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 5 × 0D. 4 ÷ 4答案:C二、填空题1. 一个数的立方等于它本身,这个数可以是______。
答案:-1,0,12. 一个直角三角形的两个直角边分别为3和4,斜边的长度是______。
答案:53. 如果一个圆的半径为r,则圆的面积是______。
答案:πr²三、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
解:长方体的体积V = a × b × c2. 某工厂生产一批零件,合格率为95%,如果生产了200个零件,求不合格的零件数。
解:不合格的零件数= 200 × (1 - 95%) = 200 × 0.05 = 103. 一个数列的前三项为1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
解:第4项 = 1 + 2 + 3 = 6第5项 = 2 + 3 + 6 = 11以此类推,可以发现这是一个斐波那契数列,但起始值不同。
通过计算可得第10项的值为55。
四、应用题1. 某班级有40名学生,其中男生和女生的比例为3:2。
求班级中男生和女生各有多少人。
解:设男生人数为3x,女生人数为2x,根据题意有 3x + 2x = 40,解得 x = 8。
所以,男生人数为3 × 8 = 24,女生人数为2 × 8 = 16。
2. 某商店购进一批商品,进价为每件50元,标价为每件100元。
商店决定进行促销,顾客购买满200元可以享受8折优惠。
如果一位顾客购买了4件商品,求他需要支付的金额。
解:首先计算4件商品的原价:100 × 4 = 400元。
初中数学总复习第四章几何初步知识与三角形第14课时三角形与全等三角形习题(含答案)
第14课时 三角形与全等三角形知能优化训练一、中考回顾1.(2020湖南益阳中考)如图,▱ABCD 的对角线AC ,BD 交于点O ,若AC=6,BD=8,则AB 的长可能是( )A.10B.8C.7D.62.(2020湖南湘潭中考)如图,∠ACD 是△ABC 的外角,若∠ACD=110°,∠B=50°,则∠A=( )A.40°B.50°C.55°D.60°3.(2021四川成都中考)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定△ABE ≌△ADF 的是( )A.BE=DFB.∠BAE=∠DAFC.AE=ADD.∠AEB=∠AFD4.(2021云南中考)如图,在四边形ABCD 中,AD=BC ,AC=BD ,AC 与BD 相交于点E ,求证:∠DAC=∠CBD.△ADC 与△BCD 中,AD =BC ,AC =BD ,CD =CD ,∴△DAC≌△CBD(SSS),∴∠DAC=∠CBD.5.(2020四川南充中考)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE,求证:AB=CD.AB⊥BD,DE⊥BD,AC⊥CE,∴∠ABC=∠CDE=∠ACB=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CED,BC=DE,∠ABC=∠CDE,∴△ABC≌△CDE.故AB=CD.二、模拟预测1.一副三角板有两个直角三角形,按如图所示的方式叠放在一起,则∠α的度数是( )A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F.若BF=AC,则∠ABC的大小是( )A.40°B.45°C.50°D.60°3.如图,点P在∠MON的平分线上,点A,B在∠MON的两边上,要使△AOP≌△BOP,则需要添加一个条件是 .(解析不唯一)4.若a,b,c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是 .<c<55.如图,一个五边形木架,要保证它不变形,至少要再钉上 根木条.6.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=50°,∠B=35°,则∠ECD等于 ..5°7.在边长为1的等边三角形ABC中,中线AD与中线BE相交于点O,则OA长度为 .8.如图,四边形ABCD与四边形DEFG都是正方形,连接AE,CG,求证:AE=CG.四边形ABCD与四边形DEFG都是正方形,∴AD=CD,GD=DE,∠ADC=∠GDE=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG.9.(1)问题发现:如图甲,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为 ;②线段AD,BE之间的数量关系是 .(2)拓展探究:如图乙,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.①60° ②AD=BE①可证△CDA≌△CEB.∴∠CEB=∠CDA=120°.又∠CED=60°,∴∠AEB=120°-60°=60°.②可证△CDA≌△CEB,∴AD=BE.(2)∠AEB=90°.AE=2CM+BE.理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角三角形DCE中,CM为斜边DE上的高.∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.。
初中数学一元二次方程根与系数关系专项复习题4(附答案详解)
初中数学一元二次方程根与系数关系专项复习题4(附答案详解)1.若一元二次方程x 2+2x+m=0没有实数根,则m 的取值范围是( )A .m≤12B .m >1C .m≤1D .m <12.下列关于一元二次方程x 2+bx +c =0的四个命题①当c =0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p 是方程x 2+bx +c =0的一个根,则1p是方程cx 2+bx +1=0的一个根; ③若c <0,则一定存在两个实数m <n ,使得m 2+mb +c <0<n 2+nb +c ;④若p ,q 是方程的两个实数根,则p ﹣q其中是假命题的序号是( )A .①B .②C .③D .④3.设a ,b 是方程x 2+x ﹣2019=0的两个实数根,则a+b+ab 的值为( )A .2018B .-2018C .2020D .-20204.若一元二次方程220x x --=的两根为1x ,2x ,则()()12111x x x ++-的值是( )A .4B .2C .1D .﹣2 5.已知关于x 的一元二次方程2304x x a --+= 有两个不相等的实数根,则满足条件的最小整数a 的值为( )A .-1B .0C .2D .16.已知α,β是一元二次方程2x 4x 30--=的两实数根,则代数式()()α3β3--的值是( )A .7B .1C .5D .6-7.已知一元二次方程2()0a x m n ++=(a≠0)的两根分别为-3,1,则方程2(2)0a x m n +-+=(a≠0)的两根分别为( )A .1,5B .-1,3C .-3,1D .-1,58.若关于x 的方程x 2+(a 2﹣1)x +a =0的两根互为相反数,则a 的值为( ) A .1 B .﹣1 C .0 D .±19.若x 1、x 2是方程2x 2﹣4x ﹣1=0的两个根,则x 1+x 2=( )A .1B .﹣2C .1或﹣1D .210.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 11.关于x 的方程x 2﹣5x+p 2﹣2p+5=0的一个根为1,则实数p 的值是_____,另一根为_____12.已知一元二次方程x 2+2x ﹣1=0的两实数根为x 1,x 2,则x 1x 2的值为_____. 13.关于x 的方程kx 2+3x -1=0有实数根,则k 的取值范围是__________.14.如果关于x 的二次三项式26x x m -+在实数范围内不能分解因式,那么m 的取值范围是______.15.若x 1=﹣3是关于x 的方程x 2+kx ﹣3=0的一个根,x 2是另一个根,则x 1+x 2=________ . 16.方程2230x ax -+=有一个根是1,则另一根为______,a 的值是______.17.阅读材料:如果a ,b 分别是一元二次方程210x x +-=的两个实数根,则有210a a +-=,210b b +-=;创新应用:如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式2222008n mn m -++的值是_______ .18.关于x 的一元二次方程x 2+ax ﹣2a =0的一个根是3,则它的另一根是_____. 19.已知α,β是方程x 2+2017x +1=0的两个根,则(α2+2018α+1)(β2+2018β+1)的值_____.20.关于x 的一元二次方程x 2+5x +2=0的两个实数根为x 1,x 2,则x 1+x 2=_____. 21.已知关于x 的一元二次方程2x 2x m 10-+-=()1当m 取何值时,这个方程有两个不相等的实根?()2若方程的两根都是正数,求m 的取值范围;()3设1x ,2x 是这个方程的两个实数根,且2212121x x x x -=+,求m 的值.22.己知关于x 的方程2210x x a +-+=没有实数根,试判断关于x 的方程20x ax a ++=的根的情况.23.已知关于x 的一元二次方程22(21)10x k x k -+++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若123x x +=,求k 的值及方程的根.24.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值;25.已知x 1,x 2是一元二次方程kx 2﹣2kx +k +1=0的两个实数根.(1)若x 1,x 2满足(2x 1﹣x 2)(x 1﹣2x 2)=2,求出此时k 的值;(2)是否存在k 的整数值,使得1221x x x x +的值为整数,若存在,求出k 的值;若不存在,请说明理由.26.已知x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,使得(3x 1-x 2)(x 1-3x 2)=-80成立,求其实数a 的可能值27.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.28.已知关于x 的一元二次方程x 2+(2m +1)x +m 2 + 1=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1,x 2,且满足221215x x +=,求实数m 的值.29.已知关于的一元二次方程: 2(5)40x k x k +-+-=;(1)求证:无论k 为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及k 的值.30.已知关于x 的一元二次方程2210.x x m -+-=(1)当m 取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m 的取值范围;(3)设12,x x 是这个方程的两个实根,且2212121-=+x x x x ,求m 的值.参考答案1.B【解析】【分析】根据方程的系数结合根的判别式即可得出△=4-4m <0,解之即可得出结论.【详解】∵方程x 2+2x+m=0没有实数根,∴△=22-4m=4-4m <0,解得:m >1.故选B .【点睛】本题考查了根的判别式以及解一元一次不等式,熟练掌握“当△<0时,方程无实数根”是解题的关键.2.D【解析】【分析】根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【详解】当c =0,b≠0时,△=b 2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p 是方程x 2+bx+c =0的一个根,∴p 2+bp+c =0,∴1+b p +2c p=0, ∴1p是方程cx 2+bx+1=0的一个根,②是真命题; 当c <0时,抛物线y =x 2+bx+c 开口向上,与y 轴交于负半轴, 则当﹣2b <m <0<n 时,m 2+mb+c <0<n 2+nb+c ,③是真命题; p+q =﹣b ,pq =c ,(p ﹣q )2=(p+q )2﹣4pq =b 2﹣4c ,则|p ﹣q|④是假命题,故选:D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D【解析】【分析】根据根与系数的关系得到a+b=-1,ab=-2019,然后利用整体代入的方法计算代数式的值.【详解】解:根据题意得a+b=-1,ab=-2019,所以a+b+ab=-1-2019=-2020.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,1212,b c x x x x a a+=-=. 4.A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得121x x =+,122x x =-,所以()()12111x x x ++-=12121x x x x ++-11(2)4=+--=.故选:A .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.5.D【分析】根据根的判别式即可求出a 的范围.【详解】由题意可知:△>0,∴1﹣4(﹣a +34)>0, 解得:a >12故满足条件的最小整数a 的值是1,故选D .【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.6.D【解析】【分析】先根据根与系数的关系得到α+β=4,αβ=﹣3,再把α﹣3)(β﹣3)展开,变形为αβ﹣3(α+β)+9,然后利用整体代入的方法计算即可.【详解】根据题意得:α+β=4,αβ=﹣3,所以α﹣3)(β﹣3)=αβ﹣3(α+β)+9=﹣3﹣3×4+9=﹣6. 故选D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a=. 7.B【解析】【分析】利用换元法令2y x =-,可得到y 的值,即可算出x 的值,即方程()220a x m n +-+=(a≠0)的两根.记2y x =-,则()220a x m n +-+=即()20a y m n ++=的两根为-3,1故2x y =+=-1,3.故选B.【点睛】本题主要考查换元法和解一元二次方程.8.B【解析】【分析】利用根与系数的关系得到−(a 2−1)=0,解方程得到a =1或a =−1,然后利用方程有无实数解确定a 的值.【详解】解:根据题意得﹣(a 2﹣1)=0,解得a =1或a =﹣1,而a =1时,原方程化为x 2+1=0,方程没有实数解,所以a 的值为﹣1.故选:B .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=b a -,x 1·x 2=c a . 9.D【解析】【分析】直接利用根与系数的关系得出,x 1+x 2=-b a,代入数值即可. 【详解】∵x 1,x 2是方程2x 2−4x−1=0的两个根,x 1+x 2=2,故答案选:D.【点睛】本题考查的知识点是根与系数的关系,解题的关键是熟练的掌握根与系数的关系.【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=-42=-2,x1x2=-12,所以A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,所以C选项错误;∵x1为一元二次方程2x2+4x-1=0的根,∴2x12+4x1-1=0,∴x12+2x1=12,所以D选项正确.故选D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.11.1 4【解析】【分析】根据一元二次方程的根的定义、一元二次方程的定义求解.【详解】解:∵x=1是方程的根,由一元二次方程的根的定义,可得1﹣5+p2﹣2p+5=0,解此方程得到p=1.设方程的另一根为α,∴1+α=5,∴α=4,∴另一根为4,故答案为1,4.【点睛】本题主要考查了一元二次方程的解,解题的关键是得出关于p的一元二次方程.12.﹣1.【解析】【分析】根据一元二次方程的根与系数的关系,即可得出答案.【详解】解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,∴x1•x2=11-=﹣1.故答案为:﹣1.【点睛】本题考查的一元二次方程根与系数的关系,比较简单,需要熟练掌握韦达定理.13.k≥9 4 -【解析】【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k =0;当方程是一元二次方程时,必须满足下列条件:①二次项系数不为零;②△=b2−4ac≥0.【详解】解:当k=0时,方程为3x−1=0,有实数根;当k≠0时,△=b2−4ac=9+4k≥0,解得:k≥94 -,综上可知,当k≥94-时,方程有实数根;故答案为:k≥9 4 -.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.14.9m>【解析】 【分析】因二次三项式26x x m -+在实数范围内不能分解因式,所以26x x m -+=0无实数根,据此求解即可. 【详解】∵二次三项式26x x m -+在实数范围内不能分解因式, ∴26x x m -+=0无实数根, ∴∆=36-4m<0, ∴9m >. 故答案为:9m >. 【点睛】本题考查了一元二次方程根的判别式,以及因式分解法解一元二次方程:若一元二次方程ax 2+bx+c=0的两根为x 1,x 2,那么一元二次方程可整理为a(x -x 1)(x -x 2)=0. 15.﹣2 【解析】 【分析】根据根与系数的关系得到x 1• x 2 = -3,再解一次方程求出x 2,进而求出x 1+x 2的值. 【详解】解:∵x 1=-3是关于x 的方程x 2+kx ﹣3=0的一个根,x 2是另一个根, ∴x 1•x 2=-3, ∴x 2=1,∴x 1+ x 2=-3+1=-2, 故本题答案为-2. 【点睛】本题主要考查了根与系数的关系以及一元二次方程的解的知识,解答本题的关键是掌握根与系数的关系,此题难度不大. 16.3, 2. 【解析】 【分析】设方程的另一根为x 2,根据根与系数的关系得到−1•x 2=3,求出x 2,再根据1+x 2=2a ,得出1+3=2a ,再解方程即可. 【详解】解:设方程的另一根为x 2, 根据题意得1•x 2=3, 则x 2=3; ∵1+x 2=2a , ∴1+3=2a , ∴a =2; 故答案为3,2. 【点睛】本题考查了一元二次方程根与系数的关系,若方程的两根为x 1,x 2,则x 1+x 2=−ba,x 1x 2=c a. 17.2019 【解析】 【分析】由题意,m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,则可将m ,n 看作是一元二次方程23-=x x 的两个实数根,然后可利用根与系数的关系求出代数式的值. 【详解】由题意,可将m ,n 看作是一元二次方程23-=x x 的两个实数根,则1m n +=,3=-mn , 所以原式=()2322008+-++n mn m =2622008+-++n mn m =()22014+-+m n mn =()2132014⨯--+ =2019 【点睛】本题考查一元二次方程根与系数的关系,将m ,n 看作是一元二次方程23-=x x 的两个实数根是本题的关键.18.6.【解析】【分析】把x=3代入方程x2+ax﹣2a=0得出9+3a﹣2a=0,求出a=﹣9,方程为x2﹣9x+18=0,设方程的另一个根为b,得出b+3=9,求出即可.【详解】解:把x=3代入方程x2+ax﹣2a=0得:9+3a﹣2a=0,解得:a=﹣9,即方程为x2﹣9x+18=0,设方程的另一个根为b,则b+3=9,解得:b=6,故答案为6.【点睛】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是求出a的值和得出b+3=9.19.1.【解析】【分析】根据一元二次方程的解以及根与系数的关系即可得出α2+2017α=﹣1、β2+2017β=﹣1、αβ=1,将(α2+2018α+1)(β2+2018β+1)转化为αβ代入数据即可得出结论.【详解】∵α、β是方程x2+2017x+1=0的两根,∴α2+2017α=﹣1,β2+2017β=﹣1,αβ=1,∴(α2+2018α+1)(β2+2018β+1)=αβ=1.故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是根据题意得到两根之积的值.20.﹣5.【分析】根据根与系数的关系求解即可. 【详解】∵x 1、x 2是一元二次方程x 2+5x +2=0的两个实数根, ∴x 1+x 2=﹣5; 故答案为:﹣5. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 21.(1)m <2;(2)m >1;(3)m=4. 【解析】 【分析】(1)令∆>0列式求解即可;(2)令x 1x 2>0,结合(1)的结论求解即可;(3)用含m 的式子表示出x 1x 2与x 12+x 22的值,把所给代数式变形为1+x 1x 2=(x 1+x 2)2,代入x 1x 2与x 12+x 22的值即可求出m 的值. 【详解】解:(1)∵△=(-2)2-4(m-1)=-4m+8>0, ∴m <2时,方程有两个不相等的实数根;(2)设x 1,x 2是这个方程的两个实根,则x 1>0,x 2>0, ∴x 1x 2=m-1>0, ∴m >1,∴方程的两根都是正数,m 的取值范围是:1<m≤2; (3)∵x 1+x 2=2,x 1x 2=m-1, ∴1-x 1x 2=x 12+x 22, ∴1+x 1x 2=(x 1+x 2)2, ∴1+m-1=22, ∴m=4.本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.22.有两个不相等的实数根. 【解析】 【分析】根据关于x 的方程2210x x a +-+=没有实数根,求出a 的求值范围;再表示关于x 的方程20x ax a ++=,24(4)a a a a ∆=-=-,即可判断该方程根的情况.【详解】解:∵方程2210x x a +-+=没有实数根 ∴240b ac ∆=-< ∴2241(1)0a -⨯⨯-+< 解得:0a <关于x 的方程20x ax a ++=,24(4)a a a a ∆=-=- ∵0a < ∴(4)0a a ->∴关于x 的方程20x ax a ++=有两个不相等的实数根. 【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式与根的情况之间的关系是解题关键. 23.(1)34k >;(2)11x =,22x = 【解析】 【分析】(1)由方程有两个不相等的实数根,可知△>0,据此可得关于k 的不等式,解不等式即可求(2)由根与系数的关系结合已知可求得k 的值,进而可求得原方程的根. 【详解】(1)∵关于x 的一元二次方程22(21)10x k x k -+++=有两个不相等的实数根, ∴△>0,即[]()22(21)4110k k -+-⨯⨯+>,整理得,430k ->, 解得:34k >, 故实数k 的取值范围为34k >; (2)∵方程的两个根分别为12x x 、, ∴12213x x k +=+=, 解得:1k =,∴原方程为2320x x -+=, ∴11x =,22x =. 【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程等,熟练掌握相关知识是解题的关键. 24.(1)12k ≤;(2)k =-3 【解析】 【分析】(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0;(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1;②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1); 【详解】解:(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0 解得12k ≤(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1 解得k 1=k 2=1 ∵12k ≤∴k 1=k 2=1不合题意,舍去②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1) 解得k 1=1,k 2=-3 ∵12k ≤∴k =-3综合①、②可知k =-3 【点睛】一元二次方程根与系数关系,根判别式. 25.(1)k =﹣3;(2)存在,k =0,﹣2. 【解析】 【分析】(1)根据根与系数的关系得到x 1+x 2=2,x 1x 2=1k k+,代入代数式解方程即可得到结论; (2)根据根与系数的关系得到x 1+x 2=2,x 1x 2=1k k +,求得1221x x x x +=221212x x x x +=2121212()2x x x x x x +-=1421k k k k+-⨯+=11k k -+于是得到结论. 【详解】(1)根据题意得k ≠0且△=(﹣2k )2﹣4k (k +1)≥0, 解得k ≤0; ∵x 1+x 2=2,x 1x 2=1k k+, ∵x 1,x 2满足(2x 1﹣x 2)(x 1﹣2x 2)=2, ∴2(x 1+x 2)2﹣9x 1x 2=8﹣9(1)k k+=2,∴k =﹣3; (2)存在,理由:∵x 1+x 2=2,x 1x 2=1k k+, ∴1221x x x x +=221212x x x x +=2121212()2x x x x x x +-=1421k k k k+-⨯+=2×11k k -+的为整数, ∴k =0,﹣2时,1221x x x x +的值为整数. 【点睛】本题考查了根的判别式、根与系数的关系,掌握根的判别式、根与系数的关系是解决问题的关键. 26.a=-335. 【解析】 【分析】利用一元二次方程根与系数的关系可得x 1+x 2=-(3a-1),x 1•x 2=2a 2-1,根据(3x 1- x 2)(x 1-3 x 2)=-80,可得关于a 的方程,即可求出a 的值,利用判别式检验即可得答案. 【详解】∵x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,a=1,b=(3a-1),c=2a 2-1, ∴x 1+x 2=-b a =-(3a-1),x 1•x 2=ca=2a 2-1, ∵(3x 1-x 2)(x 1-3x 2)=-80,∴3x 12-10x 1x 2+3x 22=-80,即3(x 1+x 2)2-16x 1x 2=-80, ∴3[-(3a-1)]2-16(2a 2-1)=-80, ∴5a 2+18a-99=0, ∴a=3或-335, 当a=3时,方程x 2+(3a-1)x+2a 2-1=0的△<0, ∴不合题意,舍去 ∴a=-335【点睛】本题综合考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法27.(1)a=12;(2)详见解析.【解析】【分析】(1)将x=1带入方程中即可求出a的值(2)两个不相等的实根,用判别式求出a的值即可. 【详解】解:(1)将x=1代入x2+ax+a-2=0中,得1+a+a-2=0.解得a=1 2(2)证明:∵Δ=a2-4(a-2)=(a-2)2+4.∵(a-2)2≥0,∴(a-2)2+4>0.∴不论a取何实数,方程都有两个不相等的实数根.【点睛】此题重点考察学生对一元二次方程的解的应用,熟练掌握一元二次方程的解法是解题的关键.28.(1)m≥34;(2)m=2.【解析】【分析】(1)令△≥0即可求出m的取值范围;(2)将x12+x22=15转化为(x1+x2)2-2x1x2=15,再代入计算即可解答.【详解】解:(1)由题意有△=(2m+1)2-4(m2+1)≥0,解得m≥34.即实数m的取值范围是m≥34.(2)由x 12+x 22=15得(x 1+x 2)2-2x 1x 2=15, ∵x 1+x 2=-(2m+1),x 1x 2=m 2+1, ∴[-(2m+1)]2-2(m 2+1)=15, 即m 2+2m-8=0, 解得m=-4或m=2. ∵m≥34, ∴m=2.故实数m 的值为2. 【点睛】本题考查根的判别式与根与系数的关系,熟悉完全平方公式是解题的关键. 29.(1)详见解析;(2)2k =,21x = 【解析】 【分析】(1)根据根的判别式得出△=(k ﹣3)2≥0,从而证出无论k 取任何值,方程总有实数根. (2)先把x =2代入原方程,求出k 的值,再解这个方程求出方程的另一个根. 【详解】(1)证明:(方法一)222(5)4(4)69(3)0k k k k k ∆=---=-+=-Q …. ∴无论k 为何值时,方程总有实数根.(方法二)将1x =代人方程,等式成立,即1x =是原方程的解, 因此,无论k 为何值时,方程总有实数根, (2)把2x =代人方程解得2k =, 解方程2320x x -+=得21x = 【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.30.(1)2m <;(2)12m <<;(3)m 无解.. 【解析】【分析】(1)由根的判别式得出不等式,求出不等式的解集即可;(2)由根与系数的关系得出不等式,求出不等式的解集即可;(3)由根与系数的关系得出x 1+x 2=2,x 1x 2=m-1,将2212121-=+x x x x 变形后代入,即可求出答案.【详解】解:(1)∵这个方程有两个不相等的实根∴>0∆,即()()224110--⨯⨯->m解得2m <.(2)由一元二次方程根与系数的关系可得: 122x x +=,121⋅=-x x m ,∵方程的两根都是正数∴120x x ⋅>,即10m ->∴1m >又∵2m <∴m 的取值范围为12m <<(3)∵2212121-=+x x x x∴2212121212122+-=++x x x x x x x x即()212121+=+x x x x ,将122x x +=,121⋅=-x x m 代入可得: 2112+-=m ,解得4m =.而2m <,所以m=4不符合题意,故m 无解.【点睛】本题考查了由一元二次方程根的情况求参数,根与系数的关系,熟练掌握根的情况与△之间的关系与韦达定理是关键.。
初中数学竞赛专题复习 第四篇 组合 第29章 图论初步试题
第29章 图论初步29。
1.1* 某大型晚会有2009个人参加,已知他们每个人至少认识其中的一个人.证明:必有一个人至少认识其中的二个人.解析 2009这个数目较大,我们先考虑:某小型晚会有5人参加,已知他们每个人至少认识其中的一个人.证明:必有一个人至少认识其中的二个人.用5个点1v 、2v 、3v 、4v 、5v 表示5个人,如果两个人彼此认识(本章中的“认识"都是指相互认识),就在表示这两个人的顶点之间连一条边.对顶点功来说,由于1v 所表示的人至少认识其他4个人的一个,不妨设1v 与2v 认识,即1v 和2v 相邻,同样,设3v 与4v 相邻,如图所示.对于顶点5v 来说,无论它与1v 、2v 、3v 、4v 哪个相邻,都会出现一个顶点引出两条边的情况.于是问题得以解决.v 1vv 3v 4v 5用同样的方法可以证明,对2009个人来说,命题成立.其实,把2009换成任意一个大于l 的奇数,命题也成立. 29.1。
2* 在一间房子里有n (n 〉3)个人,至少有一个人没有和房子里每个人握手,房子里可能与每个人都握手的人数的最大值是多少?解析 用n 个顶点表示n 个人,若某两个人握过手,就在他们相应的顶点之间连一条边,这样就得到了一个图G .因为不是任何两个人都握过手,所以G 的边数最多是完全图n K (即n 个点每两点之间恰连一条边)的边数减1,去掉的那条边的两个端点v 和v '所表示的两个人未握过手.所以房子里可能与每个人都握手的人数的最大值是2n -. 29。
1.3*** 九名数学家在一次国际数学会议上相遇,发现他们中的任意三个人中,至少有两个人可以用同一种语言对话.如果每个数学家至多可说三种语言,证明至少有三个数学家可以用同一种语言对话.解析 用9个点1v ,2v ,…,9v 表示这九名数学家,如果某两个数学家能用某种语言对话,就在他们相应的顶点之间连一条边并涂以相应的颜色.我们要证明的是:存在三个顶点i v 、j v 、k v ,使得边(i v ,j v )和(i v ,k v )是同色的.这样的,i v 、j v 、k v 这三名数学家就能用同一种语言对话. 下面就顶点1v ,分两种情形:(1)1v 与2v ,…,9v 均相邻,由于每个数学家至多能说三种语言,所以每一个顶点引出的边的颜色至多是三种.根据抽屉原理知,从1v 发出的8条边中至少有2条是同色的,不妨设为(1v ,2v )、(1v ,3v ).于是1v 、2v 、3v 所表示的三名数学家能用同一种语言对话.见图(a ).(a)(b)vv 3v 4569v 32v(c)v 1v 2v 3v 4v 5v 6v 7v 8123456791011128(2)1v 与2v ,3v ,…,9v 中的至少一点不相邻,不妨设功与功不相邻.由于任意三个数学家中,至少有两个人可以用同一种语言对话,所以,3v ,4v ,…,9v 中的每一个不是和研相邻就是和功相邻,根据抽屉原理可知,其中至少有4个点与1v 或2v 相邻.不妨设3v 、4v 、5v 、6v 与1v 相邻,如图(b ),再对1v 引出的这4条边用抽屉原理可得,至少有2条边是同色的,设为(1v ,3v )、(1v ,4v ).于是1v 、3v 、4v 所表示的三名数学家能用同一种语言对话. 评注 若本题中的九改成八,则命题不成立.反例如图(c )所示.图中每条边旁的数字表示不同的语种. 29.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题七
1、如果关于x的一元二次方程2
kx10
-+=有两个不相等的实数根,那么k的取值范围是【】
A.k<1
2
B.k<
1
2
且k≠0 C.﹣
1
2
≤k<
1
2
D.﹣
1
2
≤k<
1
2
且k≠0
2、一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是【】
A.100(1+x)=121 B. 100(1-x)=121 C. 100(1+x)2=121 D. 100(1-x)2=121
A.
4、甲乙两班进行植树活动,根据提供信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比
甲班的人数多3人;③甲班每人植树数是乙班每人植树数的3
4
.若设甲班人数为x人,求两班人数分别是多
少,正确的方程是【】
A.903129
=
x4x+3
⨯ B.
903129
=
x34x
⨯
-
C.
390129
=
4x3x
⨯
-
D.
390129
=
4x x+3
⨯
5、设242
a2a10b2b10
+-=--=
,,且1-ab2≠0,则
5
22
ab+b3a+1
a
⎛⎫
-
⎪
⎪
⎝⎭
=
▲ .
6、如果关于x的不等式组:
3x-a0
2x-b0
≥
⎧
⎨
≤
⎩
,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有
序数对(a,b)共有▲ 个。
7、把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。
8、先阅读理解下面的例题,再按要求解答下列问题: 例题:解一元二次不等式x 2﹣4>0 解:∵x 2﹣4=(x+2)(x ﹣2) ∴x 2﹣4>0可化为 (x+2)(x ﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
解不等式组①,得x >2, 解不等式组②,得x <﹣2,
∴(x+2)(x ﹣2)>0的解集为x >2或x <﹣2, 即一元二次不等式x 2
﹣4>0的解集为x >2或x <﹣2. (1)一元二次不等式x 2﹣16>0的解集为 ; (2)分式不等式
的解集为 ;
(3)解一元二次不等式2x 2
﹣3x <0.
9、问题:已知方程2x +x 1=0-,求一个一元二次方程,使它的根分别是已知方程根的2倍。
解:设所求方程的根为y ,则y=2x ,所以y x=
2
把y
x=2代入已知方程,得2
y y +1=022⎛⎫
- ⎪⎝⎭
化简,得:2y +2y 4=0- 故所求方程为2y +2y 4=0-
这种利用方程根的代换求新方程的方法,我们称为“换根法”。
请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)
(1)已知方程2x +x 2=0-,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: ;
(2)已知关于x 的一元二次方程()2ax +bx+c=0a 0≠有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。
10、 “?”的思考
下框中是小明对一道题目的解答以及老师的批阅。
我的结果也正确
小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?” 结果为何正确呢?
(1)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样……
(2)如图,矩形A′B′C′D′在矩形ABCD 的内部,AB∥A′B′,AD∥A′D′,且AD :AB=2:1,设AB 与A′B′、BC 与B′C′、CD
与
C′D′、DA 与D′A′之间的距离分别为a 、b 、c 、d ,要使矩形A′B′C′D′∽矩形ABCD ,a 、b 、c 、d 应满足什么条件?请说明理由.
11、如果方程2
0x px q ++=的两个根是12,x x ,那么
1212,.,x x p x x q +=-=请根据以上结论,解决下列问题:
(1)已知关于x 的方程2
0,(0),x m x n n ++=≠求出一个一元 (2)二次方程,使它的两个根分别是已知方程两根的倒数; (3)已知a 、b 满足2
2
15a 50,1550a
b
b ---==-,求
a b b
a
+
的值;
(4)已知a 、b 、c 满足0,16a b c abc ++==求正数c 的最小值。
12、已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.
(1)求证:无论m 取何值,原方程总有两个不相等的实数根;
(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=,求m 的值和此时方程的两根.
13、某商家经销一种绿茶,用于装修门面已投资3000元。
已知绿茶每千克成本50元,在第一个月的试销时间内发现。
销量w (kg )随销售单价x (元/ kg )的变化而变化,具体变化规律如下表所示
.
C
D
D'
C'
B'B
A'
A
c b d
a
设该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?。