保险精算学-趸缴纯保费(1)
保险精算第二版习题及答案

4.某人从 50 岁时起 ,每年年初在银行存入 5000 元 ,共存 10 年 ,自 60 岁起 ,每年年初从银行提出一笔款作为生 活费用 ,拟提取 10 年。年利率为 10%, 计算其每年生活费用。
5000a&&10
10
1
x 1i
a&&10
x 12968.7123
5.年金 A 的给付情况就是 :1~ 10 年 ,每年年末给付 1000 元;11~ 20 年 ,每年年末给付 2000 元 ;21~30 年 ,每年 年末给付 1000 元。年金 B 在 1~ 10 年,每年给付额为 K 元 ;11~20 年给付额为 0;21~ 30 年 ,每年年末给付 K 元,
的利率为 i3 6% ,求该笔投资的原始金额。
A(3) 1000 A(0)(1 i1)(1 i2 )(1 i3) A(0) 794.1
5.确定 10000 元在第 3 年年末的积累值 :
(1) 名义利率为每季度计息一次的年名义利率
6%。
(2) 名义贴现率为每 4 年计息一次的年名义贴现率 6%。
1
10000 a(3) 10000 a(3)
D 、 58
4
P(50 X 60) s 50
s 50 s(60) 10 q50
s(50)
P( X 70) s(70)
20 p50
s 70 s(50)
s(60)
保险精算第二版习题及答案
2、 已知 Pr[ 5< T(60) ≤ 6] =0、 1895,Pr[ T(60) > 5] =0、 92094,求 q60 。
1.1*1.086956522*1.061363551*1.050625
1.333265858
求趸缴纯保费活该保险的精算现值!

382.12
391.15 400.40 409.89 419.60 429.55 439.73 450.15
38
39 40
438.04
448.44 459.07
444.08
454.61 465.37
449.88
460.53 471.42
455.44
466.22 477.23
460.80
471.69 482.83
期初趸缴纯保费设为 A x ,期初一次性交费人数 以后每年死亡人数分别为
lx
,
d x、d x+1、d x+2、d x+3、
再考虑到资金折现,成立以下等式
第二节 死亡年末支付的趸缴纯保 费
l x A x = v d x + v 2l x+1 + v 3l x+ 2 + v d x + v 2d x+1 + v3d x+ 2 + Ax = lx
10万保额的趸缴纯保费 1830 54385 56215 元
从中可以看出:两全保险的储蓄功能远高于保障功能,同时 由于其保费费率较高,而且逆选择和道德风险较低,更适宜 于银邮渠道销售
第二节 死亡年末支付的趸缴纯保费
例2:某综合保险条款的保障如下,如20岁的被保险人在60 岁前死亡,死亡年末领取10万保险金,如生存到60岁, 每年可领取5000元年金,如活到80岁,再一次性支付 50万祝寿金问趸缴纯保费是多少?
上述 N x 即为精算转换函数
x n
现时支付法是将时刻t的年金给付额折现至签单时的现值 ,再将所有的现值相加或积分。 总额支付法是先求出在未来寿命期限内所有可能年金给 付额的现值,再求现值的数学期望 两种方法是等价的
人寿保险趸缴纯保费的厘定培训课件

P
10000
A50
10000
M 50 D50
1,028,986 10000
1,998,744
5148.16(元)
练习:变额保险金的终身寿险
5.2.2 定期寿险年末付的趸交纯保费
n1
A1 x ;n|
k1 k | qx
k0
n1
d k 1 xk
k0
lx
n1
d xk1 xk
k0 xl x
成为不容无视的因素。 保险赔付金额和赔付时间的不确定性 人寿保险的赔付金额和赔付时间依赖于被保险
人的生命状况。被保险人的死亡时间是一个随 机变量。这就意味着保险公司的赔付额也是一 个随机变量,它依赖于被保险人剩余寿命分布。 被保障人群的大数性 这就意味着,保险公司可以依靠概率统计的原 理计算出平均赔付并可预测将来的风险。
2000 M30 1000 M30 M35
D30
D30
622.09
5.2.3 延期的终身寿险
5.2.4 n年生死两全保险
它是指被保险人于保险期内死亡,或生存到期终 时,都支付给付金的一种保险形式。
例:假设20年生死两全保险的保额为1000元, 试求其在20岁签发保单的趸缴纯保费。
解: 所求趸缴纯保费
现时值正好等于将来的保险赔付金的期 望现时值。它的实质是在统计意义上的 收支平衡。是在大数场合下,收费期望 现时值等于支出期望现时值
主要险种的趸缴纯保费的厘定
n年期定期寿险 终身寿险 延期m年的终身寿险 n年期生存保险 n年期两全保险 延期m年的n年期的两全保险 递增终身寿险 递减n年定期寿险
所以死亡年末赔付方式是保险精算师在厘定 趸缴保费时通常先假定的理赔方式。
保险学 第二章 第四节 寿险趸缴纯保费

保险金给付的精算现值为:
E (Z )
m
v f x ( t ) dt
t
v
m
t t
p x x t dt
趸缴纯保费
m
Ax
m
v f x ( t ) dt
t
v
t t
m
p x x t dt
上式还可以表示为:
。
m
Ax
v
t t
0
p x x t dt
0 x 100
i 0 .1
f x (t )
s ( x t ) s( x)
1 100 x
当: x 30
A 30 :10 =
1 10
f x (t )
e
t
1 70
10 0
0
f x ( t ) dt
1 70
10
e
t
dt
0
1 70
e
t
0 . 063803
求: 解:
Ax
60 f x (t ) 0 t 60
Ax
60
e
t
0
60
f x ( t ) dt
60
e
t
1 60
dt
0
1 e
60
(三)、延期寿险的趸缴纯保费
1、延期m年的终身寿险趸缴纯保费 T m t m 0 0 Z bt v T 1 T m t m
4、延期的定期生存年金趸缴纯保费
第九讲 趸缴纯保费

×k q x = h A
1 x:n
h
A1 =
x:n
n + h −1 k =h
∑v
k +1
×k q x ×t +h qx
令t = k − h∑ v
t =0 n −1 h t +1
n −1
t + h +1
= ∑ v × v × h px ×t qx+h
t =0 h
= v × h px × ∑ v ×t qx+h
k =0 n −1
M x − M x + n + Dx + n = Dx
例题
设年龄25岁的人购买离散型的保额为5000元 的30年两全保险,试求该保单的趸缴纯保费.
2.1.3 延期保险
保额为1,h年延期的n年定期保险 n + h −1
h
A1 =
x:n
∑v
k =h
k +1
×k q x
M x+h − M x+h+n = Dx
1 = ( M x + M x+1 + M x+2 + ... + M x+n−1 − nM x +n ) Dx 1 ( Rx − Rx+n − nM x +n ) = Dx
( IA) 1
x: n
1 = ( Rx − Rx + n − nM x + n ) Dx
2 递增的终身寿险
( IA) x = ∑ (k + 1)v k +1 k qx
基本符号
(x)
—— 投保年龄。 ——人的极限年龄 ——保险金给付函数。 ——贴现函数。
保险精算第四章

1. 设生存函数为()1100xs x =-(0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10Ā的值。
(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。
1010130:10001010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t ttt x x t tt tx x t x s x t s x p s x xAv p dt dt Var Z A Avp dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2.设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。
(2)该保单自35岁~39岁各年龄的自然保费之总额。
(3)(1)与(2)的结果为何不同?为什么? (1)法一:4113536373839234535:53511000()1.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:4113536373839234535:53511000() 5.7471.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++=∑ 法二:1354035:53510001000M M A D -=查换算表1354035:53513590.2212857.61100010001000 5.747127469.03M M A D --===(2)1353535:1351363636:1361373737:1371383838:138143.581000100010001000 1.126127469.03144.471000100010001000 1.203120110.22145.941000100010001000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D =============== 1393939:1393536373839148.050 1.389106615.43150.551000100010001000 1.499100432.541000() 6.457C p AD p p p p p =====++++=(3)1112131413523533543535:535:136:137:138:139:11353637383935:5A A vp A v p A v p A v p A Ap p p p p =++++∴<++++3. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算: (1)1:20x A 。
新编第二章 人寿保险的精算现值(趸缴纯保费)资料PPT课件

5、精算现值(Actuarial Present Value)的定义
? 将保险人未来随机给付“现值”的数学期望,称为精算现值。依据收支相等
(或等价交换)的原则,又将精算现值称为趸缴纯保费。 (指签单时刻)
6、涉及的变量及生命函数:
X :新生儿寿命, T (x) : (x) 的余命, K (x) : (x) 的取整余命,
x
s(x) Pr(X x) , s(x) e0 sds ,
t px 1 t qx , fT (t) t pxxt ,
t qx P rT[ x( )t ,]
x
s( x) s(x)
第一节 离散型人寿保险模型
*** 讨论保额固定的离散型人寿保险 ***
考虑一个保险计划:被保险人在 x 岁投保,在T (x) 年后 死亡, K(x) [T (x)] ,在死亡的保单年度末给付bK 1 ,则给 付的现值随机变量为: Z K 1bK 1 (离散型随机变量)。 (以下讨论中总假设 bK 1 1,利率不变:1 i e )
对等
2、从保险人角度看
纯保费(购买) 保险利益(保险金)
收入
- - -毛- 保费
附加保费
费用附加 利润附加 安全附加
支-出- - -
3、从保险人角度看,收入与支出的不确定性
收入的不确定 ---- 缴费年限、是否退保、缴费总额等均不确定。
支出的不确定 ---- 保险金是否给付、给付时间、费用支出等均不确定。
n
t
0
fT
(t)dt
n 0
e t
t
pxxt dt
Var(Z ) E(Z 2 ) [E(Z )]2
en 2 t
0
fT
(t)dt
保险精算学4-1

例:某人立有遗嘱:其儿子年满21岁时可获得 其5万元遗产。其子现年12岁,因有急事需提前 支取这笔遗产。若利率为6%,利用表CL1的生 命表求其子现在可以支取的金额。
解:50000 9 E12 50000 v9 9 p12
50000 1.069 l21 l12
50000 0.5918985 991353 995225
29479.78 (元)
例:某个体在20岁投保的3年期生存保险,生存 保险金为1000元。共有1000个20岁的个体投保, 已知
q20 0.01, q21 0.02, q22 0.03.
利率i=0.025. 计算每人一次性缴纳的保费。并分 析保险人在这个保单组的资金变动情况。假设群 体未来死亡人数符合生命表中的分布。
第三节 定期寿险
1、死亡年末赔付
死亡年末赔付的含义
死亡年末陪付是指如果被保险人在保障期内发生保 险责任范围内的死亡 ,保险公司将在死亡事件发生 的当年年末给予保险赔付。
由于赔付时刻都发生在死亡事件发生的当年年末, 所以死亡年末陪付时刻是一个离散随机变量,它距 保单生效日的时期长度就等于被保险人签约时的整 值剩余寿命加一。这正好可以使用以整值年龄为刻 度的生命表所提供的生命表函数。所以死亡年末赔 付方式是保险精算师在厘定趸.0922
0
70
1
1.21t
0 10
0.0922 0.055
70 ln1.21
例
证明
1
1
1
Ax:n Ax:m m Ex Axm:nm
A1 x:n
A1 x:m
m Ex
A1 x m:n m
3、不同给付时刻精算现值之间的关系