导数与圆锥曲线内容总结
圆锥曲线的导数知识点总结
圆锥曲线的导数知识点总结在微积分中,导数是一个非常重要的概念。
导数可以用来描述曲线在某一点的斜率,以及曲线在该点的变化率。
在这篇文章中,我们将讨论圆锥曲线的导数,并总结相关的知识点。
圆锥曲线是指由一个平面直线在一个固定的点上旋转而成的曲线。
常见的圆锥曲线包括圆、椭圆、抛物线和双曲线。
在这篇文章中,我们将讨论这些不同类型的圆锥曲线的导数,并总结它们的特点。
首先,让我们来看看圆的导数。
圆的方程可以表示为 x^2 + y^2 = r^2,其中 r 表示圆的半径。
我们可以使用隐式求导法来求得圆在任意点的导数。
首先,我们对方程两边同时对 x求导,得到 2x + 2y(dy/dx) = 0。
然后,解出 dy/dx,得到 dy/dx = -x/y。
这就是圆在任意点的导数公式。
从这个式子中我们可以看出,圆的导数是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。
接下来,让我们来看看椭圆的导数。
椭圆的一般方程可以表示为 x^2/a^2 + y^2/b^2 = 1。
我们可以使用同样的方法来求得椭圆在任意点的导数。
首先,对方程两边分别对 x 和 y 求导,得到 2x/a^2 + 2y/b^2(dy/dx) = 0。
然后,解出 dy/dx,得到 dy/dx = -x(a^2/b^2)/y。
和圆一样,椭圆的导数也是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。
抛物线是另一种常见的圆锥曲线。
对于一般的抛物线方程 y = ax^2 + bx + c,我们可以使用求导法则来求得抛物线在任意点的导数。
对 y 关于 x 求导,得到 dy/dx = 2ax + b。
可以看出,抛物线的导数是一个关于 x 的线性函数。
这意味着抛物线在每个点的导数都是一条直线,斜率由抛物线的二次项系数 a 决定。
最后,让我们来看看双曲线的导数。
对于一般的双曲线方程 x^2/a^2 - y^2/b^2 = 1,我们可以使用同样的方法来求得双曲线在任意点的导数。
拉格朗日中值定理圆锥曲线-概述说明以及解释
拉格朗日中值定理圆锥曲线-概述说明以及解释1.引言1.1 概述拉格朗日中值定理以及圆锥曲线作为数学中的两个重要概念,都在不同领域发挥着重要的作用。
拉格朗日中值定理是微积分中的一个基本定理,它为我们提供了一种有力的工具,用于研究函数在某个区间内的性质。
而圆锥曲线则是解析几何中的一个重要分支,它涉及到平面上的曲线形状与其代数方程之间的联系。
拉格朗日中值定理是法国数学家拉格朗日于18世纪所提出的,在微积分学中占据着举足轻重的地位。
它描述了函数在某个闭区间内连续且导数存在的条件下,必然存在着某个点,使得该点的导数等于函数在该区间两端点的函数值之差与两端点之差的比值。
也就是说,拉格朗日中值定理给出了函数在某个区间内平均变化率等于瞬时变化率的条件。
这个定理被广泛应用于微积分、最优化等领域,为我们研究函数的增减性、最值等问题提供了便利。
而圆锥曲线是一个由平面与一个圆锥相交所形成的曲线。
它的特点是在平面上的每个点,到一个定点和一个定直线的距离之比是一个常数,该常数称为离心率。
由于离心率的不同取值,圆锥曲线可以分为椭圆、抛物线和双曲线三种类型。
椭圆是离心率小于1的情况,抛物线是离心率等于1的情况,而双曲线是离心率大于1的情况。
圆锥曲线的研究在解析几何、物理学、工程学等领域中有着广泛的应用。
它们可以描述光学系统中的折射和反射现象,也可以用于建模天体运动的轨迹等。
通过对拉格朗日中值定理和圆锥曲线的研究,我们可以深入理解函数的变化规律以及几何形状的特性。
这两个概念的结合为我们提供了一种数学工具的扩展和应用的可能性。
在本文中,我们将首先介绍拉格朗日中值定理的基本原理和证明方法,然后探讨圆锥曲线的定义和性质,最后总结两者的研究意义。
通过这样的分析,我们可以更好地理解这两个概念在数学和相关学科中的重要性和应用价值。
1.2文章结构文章结构:本文主要分为引言、正文和结论三个部分。
1. 引言部分会对拉格朗日中值定理和圆锥曲线进行概述,明确文章的主要研究内容和目的。
圆锥曲线解题技巧归纳
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
圆锥曲线解题技巧之八利用曲线的导数解题
圆锥曲线解题技巧之八利用曲线的导数解题圆锥曲线解题技巧之八:利用曲线的导数解题圆锥曲线是高中数学中重要的内容之一,解题时我们常常会遇到需要利用曲线的导数进行求解的情况。
本文将介绍一些常见的圆锥曲线解题技巧,帮助读者更好地理解和掌握这一知识点。
一、圆锥曲线的导数概念回顾在解题之前,我们首先对圆锥曲线的导数概念进行回顾。
圆锥曲线的导数,可以理解为曲线在某点处的切线斜率。
利用导数,我们可以求解曲线的切线方程,进而分析曲线的性质和特点。
二、利用导数求解直线与圆锥曲线的交点有时我们需要求解直线与圆锥曲线的交点,可以利用导数来进行求解。
假设直线方程为y=kx+b,圆锥曲线方程为y=f(x),我们可以通过以下步骤进行求解:1. 将直线方程代入圆锥曲线方程,得到一个关于x的方程f(x)-kx-b=0。
2. 求解方程f(x)-kx-b=0,得到曲线与直线的交点的横坐标x。
3. 将求得的横坐标x代入直线方程,得到交点的纵坐标y。
三、利用导数求解切线方程在解题过程中,有时我们需要求解曲线某点处的切线方程。
我们可以利用导数来求解切线方程,具体步骤如下:1. 求取曲线方程的导数,得到导函数。
2. 将导函数的值与给定点的坐标代入切线方程的公式y-y₁=k(x-x₁),其中k为导函数的值。
通过以上步骤,我们可以得到曲线某点处的切线方程,进而分析曲线在该点的切线斜率和特性。
四、利用导数求解曲线的凹凸性和拐点曲线的凹凸性和拐点是研究曲线特性的重要内容。
我们可以利用导数来求解曲线的凹凸性和拐点:1. 求取曲线方程的二阶导数,得到二阶导函数。
2. 判断二阶导函数的正负性:若二阶导函数大于0,则曲线在该点凹向上;若二阶导函数小于0,则曲线在该点凹向下。
3. 求解二阶导函数等于0的点,这些点即为曲线的拐点。
通过以上步骤,我们可以分析曲线的凹凸性和拐点,进一步掌握曲线的性质以及解题过程中的一些特殊情况。
结语本文介绍了利用圆锥曲线的导数进行解题的一些技巧和方法。
圆锥曲线不联立 导数压轴不求导
圆锥曲线不联立导数压轴不求导在数学领域,圆锥曲线和导数都是非常重要且广泛应用的概念。
然而,很多人在学习过程中都会对圆锥曲线的联立和导数的压轴求导感到困惑。
本文将从简到繁地分析这两个主题,帮助读者更深入地理解它们的内涵和应用。
一、圆锥曲线不联立圆锥曲线是指平面上由一个固定点F(称为焦点)和一个固定直线L (称为准线)决定的点P到焦点和准线的距离之比是一个常数e(离心率)的点集合。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
在解析几何和微积分中,研究圆锥曲线的方程和性质对于理解曲线的形状和运动规律起着至关重要的作用。
然而,在学习圆锥曲线时,很多人会感到困惑的一个重要问题就是联立。
联立是指将两个或多个方程进行组合,通过求解共同满足的解来研究曲线的交点、相切点等问题。
而有些情况下,圆锥曲线并不需要进行联立,例如在研究特定类型的曲线时,可以直接利用曲线的性质和方程来解决问题,无需进行联立。
以双曲线为例,其方程为x^2 /a^2 - y^2 /b^2 = 1。
我们要求证曲线上一点处的切线斜率不等于2。
这时,我们可以直接利用双曲线的导数性质而无需进行联立方程。
这种情况下,圆锥曲线不需要联立,通过直接利用曲线的性质即可解决问题。
二、导数压轴不求导导数是微积分中的一个非常重要的概念,它描述了函数在某一点的变化率。
求导是微积分中的一个核心技能,通过求导可以研究函数的增减性、凹凸性、极值等重要性质。
然而,在实际应用中,有时候我们并不需要通过求导来得到导数的具体数值,而是通过导数的性质和变化规律来分析问题。
当我们要研究函数的增减性或曲线的凹凸性时,可以通过导数的符号和零点来分析,而无需进行具体的导数计算。
这就是所谓的“导数压轴不求导”,即在分析问题时,可以通过导数的性质和规律来得到结论,而无需进行具体的导数计算。
另外,有时候我们也可以通过导数的定义和极限的性质来得到导数的性质和应用,而无需进行具体的导数计算。
这种情况下,导数的计算变得次要,而导数的性质和变化规律成为了重要的研究对象。
圆锥曲线和导数
圆锥曲线和导数圆锥曲线1.位置关系的判定方法一般有两种:(1)代数方法:转化为方程根个数的判定(2)几何方法:通过图形本身的特征,寻找存在交点个数的位置关系,列等量(不等)关系式.2. 直线与椭圆(双曲线)的综合(1)设:设交点A(x1,y1),B(x1,y1),设直线l:y=kx+b,椭圆(双曲线)C:mx2+ny2=1(mn>0椭圆,mn<0双曲线);(2)联(硬解定理):联立直线方程与椭圆(双曲线)方程{mx2+ny2=1,消去y得:{y=kx+b(nk2+m)x2+2kbnx+nb2-1=0Δ=nk2-mnb2+m>0,{x1+x2=-2kbn/nk2+m,{y1+y2=2mb/nk2+m,{x1x2=nb2-1/nk2+m {y1y2=mb2-k2/nk2+m根系关系是一种设而不求的思想(设点不求点,用系数代替),其目的是代入到与交点有关的关系式中,实现多元归一.(3)化:条件(结论)几何性质转化为几何等量关系再转化为坐标运算弦长公式,|EF|=√(x1+x2)2+(y1-y2)2=√1+k2|x1-x2|=√1+k2•√(x1+x2)2-4x1x2;|EF|=√(x1+x2)2+(y1-y2)2=√1+k2•√Δ/|nk2+m|=√1+k2•√nk2-mnb2+m/|nk2+m|(硬解定理).以AB为直径的圆经过原点O⇒OE⊥OF⇒x1x2+y1y2=0⇒nb2-1+mb2-k2/nk2+m=0,即(n+m)b2=1+k2(硬解定理).(4)整:抓住元,将结论表示成某参(一般为斜率或点坐标等)的函数式;(5)算:根据结论不同问法选取不同的求解策略求解取值范围一般有两种解题策略:①利用题设中或明或暗的不等式关系构造不等式解得范围;②选择合适的参数构造目标函数,转化为函数值域问题.对于比较复杂的动态过程,理顺动态因素之间的从属关系、先后关系.3. 一般性质结论在平面直角坐标系中,A、B、C为平面内不共线的三点,向量CA=(x1,y2),向量CB=(x2,y2),则S△ABC=1/2|x1y2-x2y1|.在平面直角坐标系中,A、B、C为平面内不共线的三点,且三点坐标分别为A(x1,y2),B(x2,y2),C(x0,y0),O为坐标原点,则S⇒AOB=1/2|x1y2-x2y1|,S⇒ABC=1/2|(x1-x0)(y2-y0)-(x2-x0)(y1-y0)|.对椭圆x2/a2+y2/b2=1,过原点的两条直线l1和l2分别与椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S,若直线l1与l2的斜率之积为-b2/a2(在x轴)或-a2/b2(在y轴),则(1)x12+x22=a2;(2)y12+y22=b2;(3)S=2ab.(在x轴)或(1)x12+x22=b2;(2)y12+y22=a2;(3)S=2ab.(在y轴)4.焦点三角形的相关结论以椭圆x2/a2+y2/b2=1(a>b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若∠F1PF2=θ,则(1)|PF1|+|PF2|=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1+cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan(θ/2).以双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若⇒F1PF2=θ,则(1)||PF1|-|PF2||=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1-cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan-1(θ/2).4. 结论:抛物线E:x2=2py第一象限上一动点P的切线,与椭圆C:x2/a2+y2/b2=1(a>b>0)交于不同的两点A、B,线段AB中点为D,直线OD与过点P且垂直于x轴的直线交于点M,则点M在定直线y=-pb2/a2上,当且仅当a2=4b2时,S1/S2的最大值为定值9/4;5.曲线一般性质总结:圆锥曲线:过圆锥曲线E:ax2+bxy+cy2+dx+ey+f=0上任一点P(x0,y0)引两条弦PA、PB,若k PA k PB=k或k PA+k PB=k(k≠a/c椭圆双曲线,k≠0抛物线),则直线AB经过定点.曲线过定点题型方法归纳:①参数元关法②探索定点③关系法6.[答题模板]第一步:假设结论存在.第二步:以存在为条件,进行推理求解.第三步:明确规范表述结论,若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设.第四步:反思回顾,查看关键点、易错点及解题规范.7. 椭圆与双曲线焦点弦性质总结:圆锥曲线上的一点P(x0,y0)到焦点的线段称为焦半径.焦半径常考公式;焦半径公式(I):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=|a+ex0|,|PF2|=|a-ex0|.焦半径公式(Ⅱ):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=b2/a-ccosα(椭圆)或|PF1|=b2/|a+ccosα|(双曲线),|PF2|=b2/a+ccosβ(椭圆)或|PF2|=b2/|a-ccosβ|(双曲线),其中α、β为焦半径PF1、PF2与x轴正半轴所成的角焦点弦长公式:若椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)的焦点弦AB,设其倾斜角为α,有|AB|=2ab2/|a2-c2•cos2α|.焦点弦定理已知焦点在x轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF= λ向量FB,则曲线C的离心率e满足等式:|ecosθ|=|λ-1/λ+1|,e=√1+k2|λ-1/λ+1|推论已知焦点在y轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF=λ向量FB,则曲线C的离心率e满足等式:|esinθ|=|λ-1/λ+1|,e=√1+k-2|λ-1/λ+1|.8.抛物线性质总结:过抛物线C:y2=2px(p>0)的焦点F作直线l交抛物线于A(x1,y1),B(x2,y2)两点,且A在x轴上方,直线l的倾斜角为θ,A、B在准线上的射影分别为P,Q,线段PQ的中点为R,AB的中点为M.(1)y1•y2=-p2;x1•x2=p2/4;(2)k2=2p/y1+y2;(3)|AF|=x1+p/2=p/1-cosθ,|BF|=x1+p/2=p/1+cosθ(4)|AF|-1+|BF|-1=2/p;(5)|AB|=2p/sin2θ (6)S△OAB=p2/2sinθ;在直角梯形APQB中;(7)⇒PFQ=90o(以PQ为直径的圆与AB相切),⇒ARB=90o(以AB为直径的圆与准线相切);①|AF|,|RF|,|BF|成等比数列;②|AF|,|AR|,|AB|成等比数列;③|BF|,|BR|,|AB|成等比数列;(8)直角梯形APQB对角线过原点O;(9)以AF(或BF)为直径的圆与y轴相切;若过焦点作直线l的垂线n交抛物线于C、D两点,倾斜角为α.(10)|AB|-1+|CD|-1=1/2p;(11)|AB|+|CD|=8p/sin22α⇒[8p,+∞);(12)|AB|•|CD|=16p2/sin22α⇒[16p2,+∞);(13)⇒APF的面积,⇒PFQ的面积的一半,⇒BQF的面积,成等比数列;(12)若向量AF=λ向量FB,则cosθ=|λ-1|/|λ+1|,√1+k l2=|λ+1|/|λ-1|9.曲线性质总结:曲线C:x2=2py与直线l:y=kx+b(b>0)交于M、N两点.结论1:曲线C在点M、N处的切线的交点Q的横坐标与两点的横坐标成等差数列,即2x Q=x m+x N.结论2:曲线C在点M、N处的切线的交点Q的轨迹为y=-b;结论3:过直线y=-b上任一点做曲线C的切线,切点分别为M、N,则直线MN恒过定点T(0,b);结论4:当直线l经过曲线C的焦点时,有MQ⊥NQ.10.结论已知椭圆C:x2/a2+y2/b2=1或y2/a2+x2/b2=1(a>b>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A、B,线段AB 的中点为M.(1)直线OM的斜率与l的斜率的乘积为定值-b2/a2或-a2/b2;(2)若l过点(a,b),延长线段OM与C交于点P,当四边形OAPB 为平行四边形时,则直线l的斜率k l=(4±√7)/3•b/a或k l=(4±√7)/3•a/b.11. 一般性结论:已知椭圆C:x2/a2+y2/b2=1(a>b>0),点A为椭圆上的动点,点B为直线y=ab/c上的动点,若OA丄OB,则直线AB与圆x2+y2=b2相切. 导数1.求过某点处的切线方程解题过程①确定切点P(x0,y0);②求导f'(x);③求斜率k=f'(x0);④点斜式y-y0=k(x-x0)(*)⑤将点P代入切线;⑥将求得的切点代入(*).三次函数切线条数:过三次函数f(x)=ax3+bx2+cx+d(a≠O)图象的对称中心作切线l,则坐标平面被切线l和函数f(x)的图象分割为四个区域,有以下结论:(1)当定点P在中心N或在I和Ⅲ区域时,过点P的切线有1条;(2)当定点P在函数f(x)或切线l上且不在N时,过点P的切线有2条;(3)当定点P在Ⅱ或在Ⅳ区域时,过点P的切线有3条.记法:内一,上二,外三2.隐零点估值与代换解法(1)分而治之寻找充分条件,逐个求解不等式;(2)找点过程中放缩的出发点是使不等式能解,易解;(3)结合“点”所在的区间,以及各部分的“阶”,进行放缩.3. 极值点偏移对数不等式lnx1-lnx2>2(x1-x2)/x1+x2偏移.4.构造法的经验总结有两点:①因为图象y=e x变化递增的速度比y=lnx快,所以才去“分家”构造新函数的形式,而此时的关键是构造怎样的函数形式.②联想到常见幂函数、指数函数、对数函数两两组合构成的新函数. (1)幂函数与指数函数的组合:y=x+e x,y=x-e x,y=xe x,y=e x/x,y=x/e x,y=x n e x,y=e x/x n,y=x n/e x;(2)幂函数与对数函数的组合:y=x+lnx,y=xlnx,y=x/lnx,y=lnx/x,y=x n lnx,y=lnx/x n,y=x n/lnx.5.(1)以导数为工具证明超越不等式大致有三种不同的思路:①直接化为最值(或确界);②调整结构,分离函数,证最小值大于最大值;③部分放缩与函数逼近.(2)证明超越不等式的通性通法为直接化为最值,会涉及导函数的隐零点,也就是无法求出导函数具体零点,这时一般有两个处理方式:①整体代入化为代数式;②缩小导函数隐零点的范围,从而达到确定最值符号.。
(同步讲解)圆锥曲线知识点总结
圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。
通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。
(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。
(2).重视圆锥曲线性质与数列的有机结合。
(3).重视解析几何与立体几何的有机结合。
高考再现:2011年(文22)在平面直角坐标系x O y中,已知椭圆C:+ y2 = 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x = -3于点D(-3,m).(1)求m2 + k2的最小值;(2)若∣OG∣2 =∣OD∣·∣OE∣, ①求证:直线l过定点;②试问点B、G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+ = 1相交于P(x1,y1),Q(x2,y 2)两个不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(1)证明:+和+均为定值;(2)设线段PQ 的中点为M ,求∣OM ∣·∣PQ ∣的最大值;(3)椭圆C 上是否存在三点D, E, G ,使得S △ODE = S △ODG = S △OEG =?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009年山东卷)设m ∈R,在平面直角坐标系中,已知向量a =(mx,y+1),向量b =(x,y-1),a⊥b ,动点M(x,y)的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA⊥OB(O 为坐标原点),并求出该圆的方程; (3)已知m=1/4,设直线l 与圆C:x 2+y 2=R 2(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值. 一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于)的点的轨迹叫做椭圆。
[圆锥曲线与导数]文字素材1 新人教a版选修1-1
圆锥曲线与导数的专题复习建议圆锥曲线和导数这两块内容在高考中的地位不言而喻,经过第一轮的复习学生关于圆锥曲线和导数的基础知识有了较为系统的认识,那么在第二轮复习中应着重强调本章综合题型解题方法的归纳与总结及与其他知识点的交汇处命题的研究与探讨,本文结合圆锥曲线与导数的特点就专题复习提出自己的一些个人建议,供广大同行参考。
【圆锥曲线的专题复习】解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。
而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。
所以,如何做好这章的专题复习是每位高三数学教师的当务之急。
(一)圆锥曲线的特点研究圆锥曲线,无外乎抓住其方程和曲线两大特征。
它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。
高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。
结合历届高考对本章的考查以及历届学生对本章的反映,此专题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。
因此,在很大程度上成为学生能力和心理上的一道难以逾越的障碍。
(二)考纲对圆锥曲线的阐述考试内容:椭圆及其标准方程,椭圆的简单几何性质,椭圆的参数方程。
双曲线及其标准方程,双曲线的简单几何性质。
抛物线及其标准方程,抛物线的简单几何性质。
考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的初步应用。
(三)圆锥曲线专题复习的备课基于圆锥曲线的特点,我们在复习之前的备课非常关键。
涉及圆锥曲线的题型相对比较集中,如圆锥曲线的弦长求法,标准方程的求法,与圆锥曲线有关的几何性质问题、最值问题、证明问题、角的问题以及圆锥曲线的综合应用问题。
圆锥曲线常用的二级结论
圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。
2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。
3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。
4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。
5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。
6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。
7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。
10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。
圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。
圆锥曲线知识点总结大全
圆锥曲线知识点总结大全终于要学习圆锥曲线知识点了,高二数学本身的知识体系而言,它主要是对数学知识的深入学习和新知识模块的补充。
圆锥曲线知识点总结有哪些你知道吗?一起来看看圆锥曲线知识点总结,欢迎查阅!圆锥曲线知识点大全圆锥曲线的应用【考点透视】一、考纲指要1.会按条件建立目标函数研究变量的最值问题及变量的取值范围问题,注意运用数形结合、几何法求某些量的最值.2.进一步巩固用圆锥曲线的定义和性质解决有关应用问题的方法.二、命题落点1.考查地理位置等特殊背景下圆锥曲线方程的应用,修建公路费用问题转化为距离最值问题数学模型求解,如例1;2.考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,如例2;3.考查双曲线的概念与方程,考查考生分析问题和解决实际问题的能力,如例3.【典例精析】例1:(2004?福建)如图,B地在A地的正东方向4km 处,C地在B地的北偏东300方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是( )A.(2-2)a万元B.5a万元C. (2+1)a万元D.(2+3)a万元解析:设总费用为y万元,则y=a?MB+2a?MC∵河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.,∴曲线PG是双曲线的一支,B 为焦点,且a=1,c=2.过M作双曲线的焦点B对应的准线l的垂线,垂足为D(如图).由双曲线的第二定义,得=e,即MB=2MD.∴y= a?2MD+2a?MC=2a?(MD+MC)≥2a?CE.(其中CE是点C到准线l的垂线段).∵CE=GB+BH=(c-)+BC?cos600=(2-)+2×=. ∴y≥5a(万元).答案:B.例2:(2004?北京,理17)如图,过抛物线y2=2px(p0)上一定点P(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.解析:(1)当y=时,x=.又抛物线y2=2px的准线方程为x=-,由抛物线定义得,所求距离为.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.由y12=2px1,y02=2px0,相减得:,故.同理可得,由PA、PB倾斜角互补知, 即,所以, 故.设直线AB的斜率为kAB, 由,,相减得, 所以.将代入得,所以kAB是非零常数.例3:(2004?广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)解析:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020).设P(x,y)为巨响发生点,由A、C同时听到巨响声,得|PA|=|PC|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|-|PA|=340×4=1360.由双曲线定义知P点在以A、B为焦点的双曲线上,依题意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,故双曲线方程为.用y=-x代入上式,得x=±680,∵|PB||PA|,∴x=-680,y=680,即P(-680,680),故PO=680.答:巨响发生在接报中心的西偏北450距中心680 m处.【常见误区】1.圆锥曲线实际应用问题多带有一定的实际生活背景, 考生在数学建模及解模上均不同程度地存在着一定的困难, 回到定义去, 将实际问题与之相互联系,灵活转化是解决此类难题的关键;2.圆锥曲线的定点、定量、定值等问题是隐藏在曲线方程中的固定不变的性质, 考生往往只能浮于表面分析问题,而不能总结出其实质性的结论,致使问题研究徘徊不前,此类问题解决需注意可以从特殊到一般去逐步归纳,并设法推导论证.【基础演练】1.(2005?重庆) 若动点()在曲线上变化,则的最大值为( )A. B.C. D.22.(2002?全国)设,则二次曲线的离心率的取值范围为( )A. B.C. D.3.(2004?精华教育三模)一个酒杯的轴截面是一条抛物线的一部分,它的方程是x2=2y,y∈[0,10] 在杯内放入一个清洁球,要求清洁球能擦净酒杯的最底部(如图),则清洁球的最大半径为( )A. B.1 C. D.24. (2004?泰州三模)在椭圆上有一点P,F1、F2是椭圆的左右焦点,△F1PF2为直角三角形,则这样的点P有( )A.2个B.4个C.6个D.8个5.(2004?湖南) 设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|, |FP3|,...组成公差为d的等差数列,则d的取值范围为.6.(2004?上海) 教材中坐标平面上的直线与圆锥曲线两章内容体现出解析几何的本质是.7.(2004?浙江)已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1,(1)若直线AP 的斜率为k,且|k|?[],求实数m的取值范围;(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.8. (2004?上海) 如图, 直线y=x与抛物线y=x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B) 的动点时, 求ΔOPQ面积的最大值.9.(2004?北京春) 2003年10月15日9时,神舟五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A距地面200km,远地点B 距地面350km.已知地球半径R=6371km.(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约,问飞船巡天飞行的平均速度是多少km/s?(结果精确到1km/s)(注:km/s即千米/秒)关于双曲线知识点总结双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或.②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P 在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证:=.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.双曲线方程知识点在高考中属于比较重要的考察点,希望考生认真复习,深入掌握。
高二数学圆锥曲线与导数
一、导数1.导数的概念:f ′(x )= ,导函数也简称导数.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. ⑴函数f(x)在点x 0处有导数,则函数f(x)的曲线在该点处必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x 0处有切线,函数f(x)在该点处不一定可导。
如f(x)=在x=0有切线,但不可导。
⑵函数y=f(x)在点x 0处的导数的几何意义是指:曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率,即曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率是f ′(x 0),切线方程为y -f(x 0)=f ′(x 0)(x -x 0)例:1.(20XX 年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______。
2.点P 在曲线y =x 3-x +上移动,设点P 处切线的倾斜角为,求的范围. 3.求导公式:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ; (a x )′=a x ln a ;(ln x )′=;(log a x )′=log a e …… 4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )=(x )±g ′(x ), [c ·f (x )=c (x ) ;(uv )′=u ′v +uv ′;()′= (v ≠0). 5.导数的应用:(一).用导数求函数单调区间的一般步骤. ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f ′(x);⑶令f ′(x)>0,或者“0≥”所得x 的范围(区间)为函数f(x)的单调增区间; 令f ′(x)<0,或者“0≤”得单调减区间.特别注意:已知函数式求其单调性与已知单调区间求参数的范围的区别。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
圆锥曲线论+导数极限论
圆锥曲线论+导数极限论
圆锥曲线论是数学中的一个分支,主要研究圆锥曲线的性质和特征。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
这些曲线在几何上具有一些独特的性质,例如焦点、直径、离心率等。
导数极限论是微积分中的一个重要内容,主要研究函数的导数和极限的性质。
导数是函数在某一点处的变化率,通过导数可以确定函数的斜率和函数的极值点。
极限是函数接近某一值时的趋势,通过极限可以判断函数的收敛性和发散性。
在圆锥曲线论中,导数极限论常常被用来证明圆锥曲线的一些性质。
例如,通过求曲线上某一点处的切线的斜率,可以证明这一点处的离心率等于焦距与直径的比值。
导数极限论也可以用来求解圆锥曲线的一些问题。
例如,通过求解极限可以确定曲线的渐近线和极值点。
综上所述,导数极限论在圆锥曲线论中扮演着重要的角色,它能够帮助我们理解和解决圆锥曲线的问题。
高等数学知识点总结
高等数学知识点总结高等数学知识点总结1高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,*面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,序列及其应用。
这部分是高考的重点和难点部分,主要产生一些综合题。
第四,不平等。
本文主要考察不等式的解法和证明,很少单独考察,主要是通过解题中的大小比较。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明*行或垂直,求角和距离。
第七,解析几何。
是高考的难点,计算量大,一般包含参数。
高考数学基础知识的考查全面,突出重点。
扎实的数学基础是成功解题的关键。
鉴于数学高考对基础知识和基本技能的强调,必须全面系统地复习高中数学基础知识,正确理解基本概念,正确掌握定理、原理、规律、公式,形成记忆和技能。
以恒变。
数学思想方法考试是在更高层次上对数学知识的抽象和概括的考试,是与数学知识相结合的。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用**的数学观点**材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面也就是对每个章节、每个知识点的再认识、再记忆、再应用。
数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高中数学圆锥曲线选知识点总结
高中数学圆锥曲线选知识点总结高中数学圆锥曲线是高中数学的一门重要内容,主要包括椭圆、双曲线和抛物线三种基本曲线。
以下是一份完整的高中数学圆锥曲线选知识点总结:1.定义:圆锥曲线是平面上的一条曲线,它是由一个交角不为直角的平面截一个圆锥所得到的截面图形。
2.椭圆:椭圆是一条平面曲线,它的定义是所有到两个给定点的距离之和等于定值的点所形成的轨迹。
椭圆的性质包括离心率、焦点、焦距、长轴、短轴、半焦距等。
3.双曲线:双曲线是一条平面曲线,它的定义是所有到两个给定点的距离之差等于定值的点所形成的轨迹。
双曲线的性质包括离心率、焦点、焦距、渐近线等。
4.抛物线:抛物线是一条平面曲线,它的定义是所有到一个给定点的距离等于定值的点所形成的轨迹。
抛物线的性质包括焦点、焦距、准线、对称轴、顶点等。
5.圆锥曲线的参数方程:圆锥曲线也可以用参数方程表示,例如椭圆的参数方程为x = a cos t,y = b sin t;双曲线的参数方程为x = a sec t,y = b tan t;抛物线的参数方程为x = at^2,y = 2at。
6.圆锥曲线的应用:圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用。
例如,在天文学中,行星轨道和彗星轨道就是圆锥曲线;在工程学中,喷气式飞机的外形和空气动力学研究中也常常使用圆锥曲线。
7.椭圆的方程:椭圆的标准方程为(x^2 / a^2) + (y^2 / b^2) = 1,其中a和b分别为椭圆长轴和短轴的长度。
可以通过椭圆的焦点坐标和离心率求得椭圆的方程。
8.双曲线的方程:双曲线的标准方程为(x^2 / a^2) - (y^2 / b^2) =1,其中a和b分别为双曲线的顶点到两条渐近线的距离。
同样可以通过双曲线的焦点坐标和离心率求得双曲线的方程。
9.抛物线的方程:抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c为常数。
抛物线的顶点坐标为(-b / 2a, c - b^2 / 4a),焦距为1 / 4a。
高中立体几何知识点总结
高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。
四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。
线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。
已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。
两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。
要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。
空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。
扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。
规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结2三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
山东省高中数学知识点总结
山东省高中数学知识点总结一、函数与导数1. 函数的概念与性质:函数的定义、函数的表达方式、函数的奇偶性、单调性、周期性、最值问题。
2. 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数的性质与图像。
3. 函数的运算:函数的四则运算、复合函数、反函数、参数方程与极坐标方程。
4. 导数与微分:导数的定义、求导法则、隐函数与参数方程求导、高阶导数、微分的概念与应用。
5. 导数的应用:利用导数研究函数的单调性、极值与最值、曲线的切线与法线、洛必达法则、泰勒公式。
二、三角函数与解三角形1. 三角函数的基本概念:正弦、余弦、正切、余切、正割、余割的定义与性质。
2. 三角函数的图像与性质:周期性、奇偶性、单调性、最值问题。
3. 三角恒等变换:基本恒等式、和差公式、倍角公式、半角公式、和差化积与积化和差。
4. 解三角形:正弦定理、余弦定理、三角形面积公式、三角形的解法。
5. 三角函数的应用:解决实际问题、三角方程的解法。
三、数列与数学归纳法1. 数列的概念与表示:数列的定义、通项公式、递推关系。
2. 等差数列与等比数列:定义、通项公式、求和公式、性质。
3. 数列的极限:数列极限的概念、性质、极限存在的条件。
4. 数学归纳法:数学归纳法的原理、证明方法、应用。
5. 无穷数列:无穷等比数列、级数的概念与收敛性。
四、平面向量与解析几何1. 向量的基本概念:向量的定义、向量的加法、数乘、数量积。
2. 向量的几何运算:向量的线性运算、向量的数量积、向量的叉积。
3. 向量在几何中的应用:平面向量的坐标表示、向量的投影、向量方程的几何意义。
4. 圆的方程:圆的标准方程、一般方程、参数方程。
5. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
五、立体几何1. 空间几何体:多面体、旋转体的结构特征、表面积与体积公式。
2. 空间直线与平面:直线与平面的位置关系、直线与平面的方程。
3. 空间向量:空间向量的基本概念、空间向量的运算、空间向量的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期期中复习一、导数1.导数的概念:f ′(x )= 0lim→∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. ⑴函数f(x)在点x 0处有导数,则函数f(x)的曲线在该点处必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x 0处有切线,函数f(x)在该点处不一定可导。
如f(x)=x 在x=0有切线,但不可导。
⑵函数y=f(x)在点x 0处的导数的几何意义是指:曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率,即曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率是f ′(x 0),切线方程为y -f(x 0)=f ′(x 0)(x -x 0)如:①(2004年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______.(2x -y +4=0).②点P 在曲线y =x 3-x +32上移动,设点P 处切线的倾斜角为α,求α的范围. 解:∵tan α=3x 2-1, ∴tan α∈[-1,+∞). 当tan α∈[0,+∞)时,α∈[0,2π); 当tan α∈[-1,0)时,α∈[43π,π).∴α∈[0,2π)∪[43π,π).3.求导公式:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x)′=e x; (a x)′=a xln a ;(ln x )′=x 1;(log a x )′=x1log a e.. 4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ),[c ·f (x )]'=c f '(x ). ;(uv )′=u ′v +uv ′;(v u )′=2vv u v u '-' (v ≠0). 5.导数的应用:(一).用导数求函数单调区间的一般步骤. ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f ′(x);⑶令f ′(x)>0,或者“0≥”所得x 的范围(区间)为函数f(x)的单调增区间; 令f ′(x)<0,或者“0≤”得单调减区间.特别注意:已知函数式求其单调性与已知单调区间求参数的范围的区别。
如:1.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是A.0B.1C.2D.3 解析:f '(x )=3x 2-a 在[1,+∞ )上,f '(x )≥0恒成立,即a ≤3x 2在[1,+∞)上恒成立,∴a ≤3. 答案:D ,评述:f (x )在该区间上为增(减)函数⇒f '(x )≥0(≤0)在该区间上恒成立,. 2..若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________.解析:y ′=-4x 2+b ,若y ′值有正、有负,则b >0. 答案:b >03.设f (x )=x 3-22x -2x +5.(1)求f (x )的单调区间;(2)当x ∈[1,2]时,f (x )<m 恒成立,求实数m 的取值范围.解:(1)f '(x )=3x 2-x -2=0,得x =1,-32.在(-∞,-32)和[1,+∞)上'()f x >0,f (x )为增函数;在[-32,1]上f '(x )<0,f (x )为减函数.所以所求f (x )的单调增区间为(-∞,-32]和[1,+∞),单调减区间为[-32,1].(2)当x ∈[1,2]时,显然f '(x )>0,f (x )为增函数,f (x )≤f (2)=7.∴m >7.(二).用导数求函数极值与最值的一般步骤.1.若函数f (x )有导数,它的极值可在方程f '(x )=0的根处来考查,求函数y =f (x )的极值方法如下: ①求函数的定义域②求导数f '(x );③求方程f '(x )=0的根;④检查f '(x )在方程f '(x )=0的根的左右的值的符号,如果左负右正,那么函数y =f (x )在这个根处取得极小值;如果左正右负,那么函数y =f (x )在这个根处取得极大值.2.比较函数在闭区间[a ,b ]内所有的极值,以及f (a )和f (b ),最大者为最大值,最小者为最小值.如:.直线y =a 与函数f (x )=x 3-3x 的图象有三个互不相同的公共点,求a 的取值范围. 解:先求函数f (x )的单调区间,由f '(x )=3x 2-3=0,得x =±1.当x <-1或x >1时,f '(x )>0;当-1<x <1时,f '(x )<0. ∴在(-∞,-1)和(1,+∞)上,f (x )=x 3-3x 是增函数;在(-1,1)上,f (x )=x 3-3x 是减函数,由此可以作出f (x )=x 3-3x 的草图(如图).由图可知,当且仅当-2<a <2时,直线y =a 与函数f (x )=x 3-3x 的图象有三个互不相同的公共点.(06.山东卷)设函数f (x )=a x -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间。
解:由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1ax f x a x -=≥-+ (1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减,(2)当0a >时,由'()0,f x =解得1.x a ='()f x 、()f x 随x 的变化情况如下表从上表可知当1(1,)x a ∈-时,'()0,f x <函数()f x 在1(1,)a-上单调递减. 当1(,)x a ∈+∞时,'()0,f x >函数()f x 在1(,)a+∞上单调递增. 综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.当0a >时,函数()f x 在1(1,)a -上单调递减,函数()f x 在1(,)a+∞上单调递增. 点评:分类讨论是高考的热点之一,要揣摩其分类的原因和标准。
四、定积分: 1.定积分定义:⎰∑=-=bai ni f nab dx x f )(lim )(1ξ,(一般了解即可) 2.定积分的几何意义: 当f(x)在[]b a ,上大于0时,⎰badx x f )(表示由直线0),(,=≠==y b a b x a x ,和曲线f(x)y =所围成曲边梯形的面积; 当f(x)在[]b a ,上小于0时,⎰badx x f )(表示由直线0),(,=≠==yb a b x a x ,和曲线f(x)y =所围成曲边梯形的面积的相反数.注意:有些定积分可通过几何意义求出,如求0-⎰,因为0-⎰表示41圆的面积,故-⎰=π.3.定积分的性质:①=⎰ba dx x kf )(k ⎰badx x f )(;②⎰±b a dx x f x f ])(21)([=⎰badx x f )(1±⎰badx x f )(2③⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )( (其中b c a <<)4.微积分基本定理:⎰badx x f )(=)()()(a F b F x F b a -=(其中)()(x f x F =').如:计算由直线4y x =-与曲线22y x =所围成的平面图形的面积(先求出交点坐标A (2,-2)B (8,4),法一对x 积分需要分段积分,法二对y 积分不需要分段积分,答案为:18)二、圆锥曲线1.圆锥曲线的两个定义:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)8=表示的曲线是_____(答:双曲线的左支) 抛物线的定义:平面上到定点的距离等于到定直线的距离的动点的轨迹。
特别要注意:解题时要尽量多的考虑使用定义。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>);焦点在y 轴上时2222b x a y +=1(0a b >>)。
如:已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为(答:11(3,)(,2)22---);(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
如(1)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=); (2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。