2018年秋七年级数学上册第1章有理数1.2数轴相反数和绝对值第1课时新版沪科版

合集下载

七年级数学上册第1章有理数1.2数轴相反数与绝对值1.2.3绝对值课时作业新版湘教版

七年级数学上册第1章有理数1.2数轴相反数与绝对值1.2.3绝对值课时作业新版湘教版

绝对值(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·黄冈模拟)下面各对数中互为相反数的是( )A.2与-|-2|B.-2与-|2|C.|-2|与|2|D.2与-(-2)【解析】选A.因为-|-2|=-2,且2与-2互为相反数,所以A中2与-|-2|互为相反数.【知识归纳】化简题中的括号与绝对值化简或计算时,要按运算顺序进行,如果既有“括号”,又有“绝对值符号”,要注意运算顺序.(1)如果绝对值号里有括号,应该先化简括号,再求绝对值.(2)如果括号里有绝对值号,可以先求绝对值,再化简括号,也可以先化简括号,再求绝对值.2.下列说法中正确的是( )A.-|a|一定是负数B.若|a|=|b|,则a=bC.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数是负数【解析】选D.当a=0时,-|a|=0,故A错误;若|a|=|b|,则a=b或a=-b,故B,C错误.3.(2013·菏泽中考)如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【解析】选C.因为|a|>|c|>|b|,所以点A到原点的距离最大,点C到原点的距离其次,点B到原点的距离最小,又因为AB=BC,所以原点O的位置在点B与点C之间,且靠近点B的地方.【一题多解】排除法选C.若原点在A点左侧,则|c|>|b|>|a|,因此排除选项A;若原点在点A与点B之间,则|c|最大,因此排除选项B;若原点在点B与点C之间,则|a|最大,此时,若原点靠近点B,则|c|>|b|;若原点在点C的右边,则|a|>|b|>|c|,因此排除选项D.二、填空题(每小题4分,共12分)4.(2013·南充中考)-3.5的绝对值是.【解析】根据绝对值的意义,负数的绝对值是它的相反数,所以-3.5的绝对值是3.5.答案:3.55.(2014·黄冈中学质检)若|a|=|-3|,则a= .【解析】因为|a|=|-3|=3,所以a=3或-3.答案:3或-3【互动探究】若把|a|变为|-a|,则a= .【解析】因为|-a|=3,所以-a=±3,所以a=±3.答案:±36.当a为时,式子8-|2a-6|有最大值,最大值是.【解析】因为|2a-6|≥0,所以当|2a-6|=0,即2a-6=0,a=3时,8-|2a-6|有最大值,最大值是8.答案:3 8【知识归纳】绝对值的两个应用(1)若|a|+|b|=0,则a=b=0.(2)m-|a|有最大值m,m+|a|有最小值m.三、解答题(共26分)7.(8分)(2014·任县三中质检)计算:(1)|-5|+|-2|.(2)÷.(3)×|-24|.(4).【解题指南】先利用绝对值的意义去掉绝对值符号,再按四则运算进行计算.【解析】(1)|-5|+|-2|=5+2=7.(2)÷=÷=×=.(3)×|-24|=×24=4+54+32=90.(4)===.8.(8分)有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由原点向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:cm):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4cm,则此昆虫爬行过程中,它用了多少分钟?【解析】由题意知,这只昆虫所爬的路程为:|+3|+|-2|+|-3|+|+1|+|+2|+|-2|+|-1|+|+1|+|-3|+|+2|=20(cm),所以它所用的时间为:20÷4=5(min).【培优训练】9.(10分)北京航天研究院所属工厂,制造“嫦娥三号”上的一种螺母,要求螺母内径可以有±0.02mm的误差,抽查5个螺母,超过规定内径的毫米数记做正数,没有超过规定内径的毫米数记做负数,检查结果如下:+0.010,-0.018,+0.006,-0.002,+0.015.(1)指出哪些产品是合乎要求的?(即在误差范围内的)(2)指出合乎要求的产品中哪个质量好一些,哪个质量稍差一些?【解析】(1)因为|+0.010|=0.010<0.02,|-0.018|=0.018<0.02,|+0.006|=0.006<0.02,|-0.002|=0.002<0.02,|+0.015|=0.015<0.02,所以所抽查的产品都合乎要求.(2)绝对值越接近0质量越好,|-0.002|=0.002最接近0,所以质量好一些;|-0.018|=0.018最大,所以质量稍差一些.【变式训练】某工厂为组装学校的新桌椅,生产了一批配套的螺母.产品质量要求是:螺母的内径可以有0.20mm的误差.抽查7只螺母,超过规定内径的毫米数记做正数,不足规定的记做负数,检测结果如表:(单位:mm)(1)其中第几号螺母不合格?(2)第几号螺母的尺寸最标准?(3)误差最大的螺母与6号螺母相差多少mm?【解析】(1)2,3 (2)5(3)误差最大的螺母是2号,故|+0.30|+|-0.01|=0.31(mm),即误差最大的螺母与6号螺母相差0.31mm.文末学习倡导书:学习不是三天打鱼,两天晒网。

2018年秋七年级数学上册第1章有理数1.4有理数的加减1.4.3加、减混合运算导学课件(新版)沪科版

2018年秋七年级数学上册第1章有理数1.4有理数的加减1.4.3加、减混合运算导学课件(新版)沪科版

1.4.3
加、减混合运算
【归纳总结】 有理数加、减混合运算解决实际问题时常用的思路: 通过正负数的实际意义将问题数学化,并列式计算,然后结合计算 结果确定实际问题的答案.
1.4.3
总结反思
加、减混合运算
知识点一
加法的运算律
1.加法交换律:两个数相加,交换加数的位置,和不变. 公式:a+b=b+a. 2.加法结合律:三个数相加,先把前两个数相加,或者先把后两 个数相加,和不变. 公式:(a+b)+c=a+(b+c).
升 30 降 20 升 17 升 18 降 20 单位 单位 单位 单位 单位
1.4.3
加、减混合运算
解:根据题意,得 160+(+30)+(-20)+(+17)+(+18)+(-20)=(160+ 30+17+18)+(-20-20)=225+(-40)=185(单位). 答:星期五该病人的收缩压为 185 单位.
1.4.3
目标突破
目标一
加、减混合运算
会运用加法运算律计算
例1
教材补充例题
计算:
(1)(-1.5)+20+(-8.5); (2)(-46)+(-18)+(-12).
1.4.3
加、减混合运算
解:(1)(-1.5)+20+(-8.5) =(-1.5)+(-8.5)+20 =-(1.5+8.5)+20 =-10+20 =10. (2)(-46)+(-18)+(-12) =(-46)+[(-18)+(-12)] =(-46)+(-30) =-76.
1.4.3
加、减混合运算
1 1 1 2 (2)(+ )-(+5)+(- )-(+ )+(+5 ) 2 3 4 3 1 1 1 2 =(+ )+(-5)+(- )+(- )+(+5 ) 2 3 4 3 1 1 1 2 =[(+ )+(- )]+[(- )+(+5 )+(-5)] 2 4 3 3 1 1 = + 4 3 7 = . 12

沪科版七年级数学上册 第一章 有理数 1.2 数轴、相反数和绝对值 同步练习 含答案

沪科版七年级数学上册 第一章 有理数  1.2 数轴、相反数和绝对值 同步练习 含答案

第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。

七年级数学上册第1章有理数1.2数轴、相反数和绝对值教案(新)沪科

七年级数学上册第1章有理数1.2数轴、相反数和绝对值教案(新)沪科

七年级数学上册第1章有理数1. 2数轴、相反数和绝对值教案(新)沪科第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将数在数轴上表示出来,能说出数轴上的点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜测,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?o是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生感受到把实际问题抽象成数学问题的过程,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25C用正数表示;0℃用数表示;零下10C用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?〔5〕原点向右0. 5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线〔通常是水平的直线〕,在这条直线上任取一点0,叫做原点,用这点表示数0〔相当于温度计上的0C〕;第二步:规定这条直线的一个方向为正方向〔一般取从左到右的方向,用箭头表示出来〕.相反的方向就是负方向〔相当于温度计0C以上为正,0℃以下为负〕;第三步:适当地选取一条线段的长度作为单位长度,也就是在.的右面取一点表示1,0与1 之间的长就是单位长度〔相当于温度计上占1小格的单位长度〕.在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1, 2, 3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1, -2, -3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小确实定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,熟悉并掌握判断一条直线是不是数轴的依据. 三、例题讲解师:同学们,下而我们一起来做几个例题.【例1】判断以下图中所画的数轴是否正确;如果不正确,指出错在哪里. ft 4 1 । 1। 1 1 ।0 -3 -2-1 0 1 2 3〔1〕〔2〕12 '3 4 5~k ⑶〔4〕【分析】原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,〔1〕缺少单位长度;〔2〕缺少正方向;〔3〕缺少原点;〔4〕单位长度不一致.【例2】说出以下图所示的数轴上A, B, C, D各点表示的数.B AC D111 I I 1 I 1 ,-3.5 -3 -2 -1 0 1 2【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理, 点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2, -1, 0, -3, +3. 5;(2)-5,0,+5, 15, 20;(3)-1 500, -500, 0, 500, 1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适中选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的水平,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示以下各数的点:6与-6, -3与3, T. 5与1. 5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6, -3与3, -1. 5与1. 5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数〞的含义是相反数是成对出现的,因而不能说“-6是相反数〞 .“0 的相反数是0〞是相反数定义的一局部.这是由于0既不是正数,也不是负数,它到原点的距离就是0, 0是唯一的相反数仍等于它本身的数.三、例题讲解教师出例如题.【例1】判断以下说法是否正确:(1)-5是5的相反数.()22) 5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()【答案】⑴J (2) V (3) V (4)X【例2】(1)分别写出5、-7、-3、+11. 2的相反数;(2)指出-2. 4是什么数的相反数.【答案】(1)5的相反数是-5. -7的相反数是7. -3的相反数是3. +11. 2的相反数是-11. 2.我们通常在一个数的前面添上,表示这个数的相反数.例如,-(-4)=4,-(+5. 5)=5. 5;同样,在一个数前而添上“+〞,表示这个数本身.例如,+(-4)二-4, + (+12)= 12.(2)-2. 4是2. 4的相反数.【例3】化简以下各数:(1)-(+10); (2) + (-0. 15); (3) + (+3); (4)-(-20).【答案】(1)-(+10)=-10; (2) + (-0. 15) =-0. 15; (3)+(+3) =+3=3; (4)-(-20) =20.四、稳固练习课本练习的第r3题.【答案】1. 5, -1, 3, 2. 6,-1. 2,0. 9,--.22.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3. C五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数, 相反数是成对出现的.3.正号“ + 〞的功能是对一个数的符号予以确认;而负号“-〞的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个数的绝对值,会在一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的水平,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个己知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数〞的理解.教学过程一、复习导入师:同学们,我们先做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5, 3. 5, 0及它们的相反数所对应的点.2.在数轴上找出到原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发答复相反数的定义.从几何方面可以说在数轴上原点两旁,离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点到原点的距离都是6,所以-6和6的绝对值都是6, 记作-6|= 61=6.同理可知-41 =4, 1+1. 71=1. 7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)I +2 F,=;(2)0二;(3)-3三, -0.2k.师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数〔正数〕的绝对值有什么特点,在原点左边的点表示的数〔负数〕的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:〔1〕一个正数的绝对值是它本身;〔2〕0的绝对值是0; 〔3〕一个负数的绝对值是它的相反数.即①假设a>0,那么@,@假设葭0,那么a|=-a;③假设a=0,那么a =0.3.绝对值的非负性.由绝对值的定义可知:不管有理数a取何值,它的绝对值总是正数或0〔通常也称非负数〕,绝对值具有非负性,即|a| 20.三、例题讲解【例1】求以下各数的绝对值:-7, -4.75, 10. 5.【答案】I案1=7; |-4. 75 =4. 75; 10. 51=10. 5【例2】计算:⑴0. 32|+ 0.3!;(2) 1-4. 2|-|4. 2|;分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.【答案】(1)0.62; (2)0.四、稳固练习课本练习的第r5题.3 1【答案】1 .略2. 3,1. 5,0,5, 0.02, - ,100 3. (1)17 (2)1 (3)0 (4)6 4.D4 61 15. 8, 8,一,一4 4五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方而考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.。

沪科版七年级数学上册第一章有理数数轴、相反数和绝对值第1课时教案

沪科版七年级数学上册第一章有理数数轴、相反数和绝对值第1课时教案

沪科版七年级数学上册第一章有理数数轴、相反数和绝对值第1课时教案一、教学背景(一)教材分析本章在展示了负数引进的必要性,并初步学习了有理数分类之后,给出了数轴的概念,学习数轴,既可以加深对有理数分类的理解,也是为学习相反数、绝对值和有理数大小比较作准备,初中阶段的一元一次不等式、一元一次不等式组都需要借助数轴来直观展示其解集,数轴知识更是学习函数的基础。

因此,无论是数轴本身的工具作用,还是数学中数形结合思想的应用,对学生后期数学学习都起着相当重要的作用。

(二)学情分析学生刚进入初中,本来对负数概念就难以理解,现在让他们学习用图形来表示有理数,无疑超出了他们的认知范围。

因此,要考虑初一学生感性大于理性的年龄特点,同时考虑到数学来源于生活,服务于生活的学科特点,应选择学生看得见,想得出的生活素材作为媒介,将新知识由浅入深,层层递进的展现出来。

二、教学目标1.知识与技能:掌握数轴的概念,能读出数轴上任意一点所表示的有理数,能将任意一个有理数在数轴上表示出来。

2.过程与方法:通过线的长短、角的大小、时间和温度可以借助刻度尺、量角器、钟表和温度计来表示,在老师的引导下,类比联想到我们学过的数可以用图形来表示。

通过量角器的使用需要知道起点和方向和单位刻度,联想到数轴的三要素。

通过例题的学习加深对知识的理解。

3.情感、态度与价值观:学生经历了由身边熟悉的物品提升到抽象的数学知识,感受到数学跟生活紧密相连,经历由自己思考、归纳得出新知,可以体验到成功的喜悦,通过合作讨论,感知团结的力量。

三、教学重点和教学难点1.教学重点:正确理解数轴的概念及其三要素,正确掌握数轴的画法和用数轴上的点表示给定的有理数。

2.教学难点:数轴概念的得出过程,数形结合思想的应用。

四、教学方法分析和学习方法指导1.教学方法分析:根据学情,以学生学习用具、教室里的钟和学生熟悉的温度计为突破口,引出数可以用图形来表示,引导学生联想我们学过的有理数是否也可以用图形来表示;以量角器的示数需要知道刻度起点,单位刻度和旋转方向,引出数轴的三要素;通过例题和练习,掌握数轴的定义和作用,并为下节课的相反数和绝对值的学习做准备。

沪科版七年级上册数学第1章 有理数 有理数与数轴、相反数、绝对值关系应用的五种常见类型

沪科版七年级上册数学第1章 有理数  有理数与数轴、相反数、绝对值关系应用的五种常见类型

提示:点击 进入习题
11 见习题
答案显示
1.下列说法中,错误的是( C ) A.负整数和负·分·数统称为负有理数 B.正整数、0、负整数统称为整数 C.正有理数与负有理数组成全体有理数 D.3.14是小数,也是分数
2.把下列各数分别填入相应的括号内.
-13,0.618,-3.14,260,-2 021,67,0,0.3,π.
解:这些数的绝对值分别为 2 022,21,3.8,0, 43,34,0.001.
(2)上面的数中,哪个数的绝对值最大?哪个数的绝 对值最小?
解:2022的绝对值最大,0的绝对值最小.
(3)由(1)(2)探究: ①有理数中哪个数的绝对值最小? ②解任:何有一理个数有中理0的数绝的对绝值对最值小是.什么数?有负数吗?
(2)电子蚂蚁P从点B出发,以3个单位长度/s的速度向左 运动,同时另一只电子蚂蚁Q从点A出发,以2个单 位长度/s的速度向右运动,经过多长时间这两只电 子蚂蚁在数轴上相距35个单位长度?
解:相遇前,两只电子蚂蚁在数轴上相距35个单位 长度时,(100-35)÷(2+3)=13(s); 相遇后,两只电子蚂蚁在数轴上相距35个单位长度 时,(35+100)÷(2+3)=27(s),即经过13s或27s这 两只电子蚂蚁在数轴上相距35个单位长度.
解:a<0,b>0,c<0.
(2)化简3a+|2a|+|b|.
【点拨】化简时,既用到了a,b的正负性, 同时还用到了a,b互为相反数这一条件.
解:因为a,b互为相a|+|b|=3a-2a+b=a+b=0.
8.已知有理数:2 022,+21,-3.8,0,43,-34, -0.001. (1)写出上面这些数的绝对值;
a表示5,-a表示-5.

七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 数轴教案(新版)新人教版-(新版)新人教

七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 数轴教案(新版)新人教版-(新版)新人教

课型:新授课课时:一课时年级:七年级一、教材分析本节内容选自某某教育数学七年级上册第1章第2节第一课时《数轴》,衔接正负数及有理数分类的相关概念。

数轴是理解有理数的概念与运算的重要工具,通过它不但可以让学生理解有理数的概念,还可以利用它来解决一些实际问题。

此外,数轴非常直观地把数与点结合起来,渗透着初步的数形结合思想,对以后的知识概念及实际问题的解决起着举足轻重的作用。

二、学情分析(1)知识掌握上,七年级的学生刚刚学习有理数,对有理数的概念理解不一定很深刻,所以在介绍数轴时应全面系统地回顾有理数的相关概念(尤其是有理数的分类)。

(2)学生学习本节课的知识障碍:数轴概念和数轴的三要素。

学生不理解数轴的概念与要素,就容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

(3)由于七年级学生具有好动性,注意力容易分散,对一些概念、问题缺乏深入思考,所以在教学中应抓住学生的心理特点,一方面要运用直观生动的形象激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要抓住核心概念,突出强调,并设置相关问题启发学生思考。

三、教学目标【知识技能】1.掌握数轴的概念,并理解其三要素;2.了解数轴上点的位置关系,了解点与数之间的关系;3.了解初步的数形结合思想。

【数学思考】1.经历有理数的“数”与数轴“形”特点的探究过程,体会数形结合的数学思想。

2.通过观察数轴上点的位置关系,加深对有理数的相关概念的思考;【问题解决】通过探究、绘制数轴,解决与有理数相关的问题,提高分析问题、解决问题的能力。

【情感态度】1.在画图操作、观察、归纳总结的过程中,体验数形结合的数学思想方法,感悟数学图像的对称美;2.在合情推理的过程中,体会数学的严谨性。

四、教学重难点【重点】,正确掌握数轴画法和用数轴上的点表示有理数;【难点】正确理解有理数与数轴上点的对应关系。

五、教法与学法【教法】启发式教学法、问题解决法、画图法等;【学法】自主学习法、合作学习法、探究式学习法等。

七年级数学上册第1章有理数1-1正数和负数第2课时有理数的分类教案新版沪科版

七年级数学上册第1章有理数1-1正数和负数第2课时有理数的分类教案新版沪科版

1.1正数和负数第2课时有理数的分类教学目标1.理解有理数的概念,掌握有理数的分类方法;2.会把所给的有理数填入相应的集合;3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想。

教学重难点【教学重点】有理数的概念和对有理数进行正确的分类。

【教学难点】对有理数进行正确的分类及分类的标准。

课前准备课件、教具等。

教学过程一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃.这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.二、合作探究探究点一:有理数的概念【类型一】有理数的有关概念例1 下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( ) A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数 解析:根据有理数的有关概念,整数包括1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D. 方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.【类型二】对数“0”的理解例2 下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.探究点二:有理数的分类例3 把下列各数填入相应的括号内:-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1. 正数:{ };负数:{ };整数:{ };分数:{ }.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.解:正数:{8,334,3101,2,3.14,37,0.618}; 负数:{-10,-712,-10%,-67,-1}; 整数:{-10,8,2,0,-67,-1};分数:{-712,334,-10%,3101,3.14,37,0.618}. 方法总结:在填数时要逐个考察给出的每一个数,看它是什么数,是否属于某一类数;逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象.探究点三:和正、负有关的规律探究问题例4 观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,…. 解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数是,此数为-n ;当n 为偶数时,此数为1n. 解:(1)7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016;(2)-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016. 方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.三、板书设计1.有理数的概念2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数 教学反思本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程.避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.。

2018七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值教案新版沪科版

2018七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值教案新版沪科版

绝对值教学目标:1.借助数轴初步理解绝对值的概念,熟悉绝对值符号,理解绝对值的几何意义和作用;2.给一个数,能求它的绝对值.3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力. 教学重点:绝对值的几何意义,代数定义的导出.教学难点:负数的绝对值是它的相反数.创设情境,复习导入问题1:在练习本上画一个数轴,并标出表示-6,212,0及它们的相反数的点. 学生活动:一个学生板演,其他学生在练习本上画.【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.二.探索新知,导入新课师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢? 学生活动:思考讨论,很难得出答案.师:在数轴上标出到原点距离是6个单位长度的点.学生活动:一个学生板演,其他学生在练习本上做.师:显然A 点(表示6的点)到原点的距离是6,B 点(表示-6的点)到原点距离是6个单位长吗?学生活动:产生疑问,讨论.师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值. 【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识. 师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;6的绝对值是表示6的点到原点的距离,6的绝对值是6.提出问题2:(1)-3的绝对值表示什么?(2)212的绝对值呢?(3)a 的绝对值呢?学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答.绝对值的概念:一个数a 的绝对值是数轴上表示数的a 点到原点的距离.数a 的绝对值是|a |.【教法说明】由-6,6,-3,212这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点.(),,33302028282-=-=-=....观察上面这三组题目会发现:(1)组中要求绝对值的数全是正数,而求出的绝对值也是正数,恰恰是它本身,而(2)组中0的绝对值是0,(3)组中要求绝对值的数全是负数,而求得的绝对值全都是正数,因而全都是其相反数,由此可以得到:(1)一个正数的绝对值是它本身。

2024秋七年级数学上册第1章有理数1.2数轴、相反数和绝对值3绝对值教案(新版)沪科版

2024秋七年级数学上册第1章有理数1.2数轴、相反数和绝对值3绝对值教案(新版)沪科版
3.数轴操作法:让学生在数轴上表示不同数的绝对值,直观地感受绝对值的意义。通过数轴操作,帮助学生建立数与形之间的联系,提高直观想象能力。
4.小组讨论法:我将组织学生进行小组讨论,分享彼此对绝对值的理解和应用。通过讨论,激发学生的思考,培养学生的逻辑推理和数学建模素养。
5.游戏化教学:设计一些关于绝对值的数学游戏,让学生在游戏中巩固知识,提高学习兴趣。
2.数学建模:利用数轴表示绝对值,培养学生运用数学知识解决实际问题的能力,培养学生的数学建模素养。
3.直观想象:通过数轴直观表示绝对值,培养学生建立数与形之间的联系,提高学生的直观想象能力。
4.数据分析:在学习绝对值的过程中,培养学生收集、处理、分析数据的能力,培养学生运用数据分析问题、解决问题的能力。
在行为习惯方面,学生的学习态度、课堂纪律、作业完成情况等方面也存在差异。有的学生学习态度端正,课堂纪律良好,能够按时完成作业;而有的学生在这些方面则存在一定问题。针对这种情况,教师需要在教学过程中加强课堂管理,关注学生的学习态度,及时纠正不良行为习惯,引导学生树立正确的学习观念。
综合分析,学生在知识、能力、素质等方面具有一定的基础,但还存在一定程度的差异。在教学过程中,教师应关注学生的个体差异,针对不同层次的学生进行差异化教学,充分调动学生的积极性和主动性,激发学生的学习兴趣,提高学生的数学素养。同时,加强课堂管理,引导学生树立正确的学习观念,培养良好的学习习惯。
教学反思与改进
在教学过程中,我发现一些学生在理解绝对值的概念和性质时存在困难。他们对于数轴上的点的位置和绝对值的表示方法不够清晰。为了改进这个问题,我计划在未来的教学中采取以下措施:
1.加强数轴的直观教学:我会在课堂上更加注重数轴的直观教学,通过具体的例子和实际操作,帮助学生更好地理解和掌握数轴的概念和应用。例如,我会在黑板上画出一个数轴,让学生在上面标出不同的点,并计算它们的绝对值。

沪科版初中数学-目录

沪科版初中数学-目录

沪科版初中数学-目录备注:七年级上册:1-5七年级下册:6-11八年级上册:12-17八年级下册:18-22九年级上册:23-25九年级下册:26-28第1章有理数1.1正数和负数1.2数轴1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数第2章整式加减2.1用字母表示数2.2代数式2.3整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2二元一次方程组3.3消元解决方程组3.4用一次方程(组)解决问题第4章直线与角4.1多彩的几何图形4.2线段、射线、直线4.3线段的长短比较4.4角的表示与度量4.5角的大小比较4.6作线段与角第5章数据处理5.1数据的收集5.2数据的整理5.3统计图的选择5.4从图表中获取信息第6章实数6.1平方根立方根6.2实数第7章一元一次不等式与不等式组7.1不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组第8章整式乘除与因式分解8.1幂的运算8.2整式乘法8.3平方差公式与完全平方公式8.4整式除法8.5因式分解第9章分式9.1分式及其基本性质9.2分式的运算9.3分式方程第10章相交线平行线与平移10.1相交线10.2平行线的判定10.3平行线的性质10.4平移第11章频率分布11.1频数与频率11.2频数分布第12章平面直角坐标系12.1平面上点的坐标12.2图形在坐标系中的平移第13章一次函数13.1函数13.2一次函数-13.3一次函数与一次方程、一次不等式13.4二元一次方程组的图象解法第14章三角形中的边角关系14.1三角形中的边角关系14.2命题与证明第15章全等三角形15.1全等三角形15.2三角形全等的判定第16章轴对称图形与等腰三角形16.1轴对称图形16.2线段的垂直平分线16.3等腰三角形16.4角的平分线第17章勾股定理17.1勾股定理17.2勾股定理的逆定理第18章二次根式18.1二次根式18.2二次根式的运算第19章一元二次方程19.1一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5一元二次方程的应用第20章四边形20.1多边形内角和20.2平行四边形20.3矩形菱形正方形20.4梯形第21章数据的集中趋势21.1平均数21.2中位数与众数21.3从部分看总体第22章数据的离散程度22.1极差22.2方差、标准差第23章二次函数与反比例函数23.1二次函数23.2二次函数y=a某^2的图象和性质23.3二次函数y=a某^2+b某+c的图象和性质23.4二次函数与一元二次方程23.5.二次函数的应用23.6反比例函数第24章相似形24.1比例线段24.2相似三角形的判定24.3相似三角形的性质24.4相似多边形的性质24.5位似图形第25章解直角三角形25.1锐角三角函数25.2锐角三角函数值25.3解直角三角形及其应用第26章圆26.1旋转26.2圆的对称性26.3圆的确定26.4圆周角26.5直线与圆的位置关系26.6三角形的内切圆26.7圆与圆的位置关系26.8正多边形与圆26.9弧长与扇形面积第27章投影与视图27.1投影27.2三视图第28章概率初步28.1随机事件28.2等可能情形下的概率计算28.3用频数估计概率。

湘教版七年级上册数学第1章 有理数 数轴、相反数与绝对值 数轴 授课课件

湘教版七年级上册数学第1章 有理数 数轴、相反数与绝对值 数轴 授课课件

感悟新知
总结
知3-讲
有关移动的题目,一要看准移动的方向;二要 注意移动的距离.
感悟新知
知3-练
1.如图,数轴上A,B两点所表示的数分别是-4和
2,点C是线段AB的中点,则点C所表示的数是
________. -1
感悟新知
知3-练
2.如图,数轴上表示-2 的点 A 到原点的距离是( B )
A.-2 B.2 C.-12
感悟新知
例3 画一条数轴,并标出表示下列各数的点: 知2-练
-5,1.5,-3.5,4.5,-1 , 7 . 2 10
解:所画数轴及各数在数轴上对应的点如图所示.
感悟新知
总结
知2-讲
在数轴上标点主要分两步:一是根据数的正负性 确定点在原点的左侧还是右侧,二是根据数值自大 小确定点离原点几个单位长度。
感悟新知
(4)怎样移动A,B,C中的两个点,才能使三个 知3-练 点表示的数相同?有几种移动的方法?
解:使三个点表示的数相同共有三种移动方法: 第一种:把点A向右移动2个单位,点C向左移动5 个单位;第二种:把B点向左移动2个单位,C点 向左移动7个单位;第三种:把A点向右移动7个 单位,B点向右移动5个单位.
感悟新知
结论
要点精析:
数轴的两个基本的应用:
一是知点读数,二是知数画点,
即:数
点(形),
它是最直观知知的点数读画数数点形结合体.
知2-讲
感悟新知
结论
知2-讲
易错警示:虽然教轴上的一个点可以表示一个有理 数,一个有理数也可以用一个点表示, 但数轴上的点并不都表示有理数,比如π 这样的数也能用数轴上的点来表示,但 它不是有理数.
感悟新知

沪科版七年级数学上册第一章有理数 1.2.1 数轴课件 (共28张PPT)

沪科版七年级数学上册第一章有理数 1.2.1 数轴课件 (共28张PPT)

接着又向东走-70米,此时元元的位置在

甲说:元元在玩具店东边20米处;
乙说:元元在玩具店西边40米处。
甲乙两人无法找到统一的答案,谁也说服不了谁,
作为同学的你,能否用一个简明有效的方法帮助
他们解决纷争呢?
CA
解:如图
文 书B

所以元所元示最后的-位30置在0 文3具0 店40 。60 90
归纳:用 示数 的轴 数表 可示大数可时小,,根但据整具体体必情须况保, 持每 一个 致单 。位表
某人从A地向东走10米,然后折回向西 走3米,又折回向东走6米,问此人在A地 哪个方向?距离是多少?
10米
3米 6米 BD C
随堂练习:
1、 填空 (1)与原点的距离为5个单位长度的点有_2___个,这样的点所 表示的数是_+_5_、__-_5. (2) 在数轴上与表示数2的点距离为3个单位长度的12 点所表示的 数是_+_5_和__-1__.
5℃
0℃
-10 ℃
5 0 -10
而下
这降 温
些到 度
数达 计
就某 的
是个 汞
我点 柱
们, 随
所就 着
学会 温
的对 度
有 理 数 。
应 一 个 读 数
的 上 升 或 者
从温度计我们可以得到一些启发—— 用直线上的点来直观地表示有理数。
画一条水平直线, 在直线上取一点表示0,并把这个点叫原点, 选取某一长度作为单位长度, 规定直线上向右的方向为正方向,就得到下面的数轴。
有理数
整数
正整数 零
负整数
分数 正分数
负分数
有理数
正有理数 0
负有理数

2018年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数和绝对值 第3课时 绝对值教案1 (新版)沪科版

2018年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数和绝对值 第3课时 绝对值教案1 (新版)沪科版

第3课时 绝对值1.理解绝对值的概念及其几何意义;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数.(难点)一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头. 问题:1.在数轴上表示这一情景.2.两只小狗它们所跑的路线相同吗?3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.这样就必须引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的代数与几何意义【类型一】 求一个数的绝对值-3的绝对值是( )A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________. 解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23,故填23或-23. 方法总结:绝对值等于某一个数(0除外)的值有两个,它们互为相反数.探究点二:绝对值的非负性及含绝对值的计算【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可得|a -3|≥0,|b -2015|≥0.解:由题意得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】 含绝对值的化简计算化简:⎪⎪⎪⎪⎪⎪-35=______;-|-1.5|=______;|-(-2)|=______. 解析:⎪⎪⎪⎪⎪⎪-35=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a |=a ;若a =0,则|a |=0;若a<0,则|a |=-a .【类型三】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克;(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品. 方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0)或|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:略.
18.如图,点 A 表示的数是-4(单位长度为 1).
(1)在数轴上标出原点; (2)指出点 B 所表示的数; (3)在数轴找一点 C,它与 B 点的距离为 2 个单位长度,那么 C 点表示什么 数?
解:(1)原点在点 A 的右侧距点 A4 个单位长度处,图略; (2)点 B 表示 3; (3)C 点表示 1 或 5.
19. 在数轴上, 一只蚂蚁从原点出发, 它先向右爬了 4 个单位长度到达点 A, 再向右爬了 2 个单位长度到达点 B,然后又向左爬了 10 个单位长度到达点 C. (1)画出数轴并标出 A、B、C 三点在数轴上的位置; (2)写出 A、B、C 三点表示的数; (3)根据点 C 在数轴上的位置,点 C 可以看作是蚂蚁从原点出发,向哪个方 向爬了几个单位长度得到的?
D )
B.-2 D.4 )
11.下列语句中,错误的是( B
A.数轴上,原点位置的确定是任意的 B.数轴上,正方向可以是从原点向右,也可以是从原点向左 C.数轴上,单位长度可根据需要任意选取 D.数轴上,与原点的距离等于 8 的点有两个
12.下列语句:①数轴上的点只能表示整数;②数轴上的一个点只能表示一 个数;③数轴上两个不同的点可以用同一个有理数表示;④数轴上的点所表 示的数都是有理数;⑤所有的有理数都可用数轴上的点来表示.其中正确的 有( B A.1 个 C.3 个 ) B.2 个 D.4 个
13.如图,数轴上所标出的点中,相邻两点间的距离相等,则点 A 表示的数 为( C )
A.30 C.60
B.50 D.80
14.如图,数轴上一动点 A 向左移动 2 个单位长度到达点 B,再向右移动 5 个单位长度到达点 C.若点 C 表示的数为 1,则点 A 表示的数为(
D )
A.7 C.-3
B.3 D.-2
15.如图,数轴上的点 A 向左移动 2 个单位长度得到点 B,则点 B 表示的数 是
-1
.
16.小红在做作业时,不小心将墨水洒在一个数轴上.如图所示,根据图中 标出的数值,则墨迹盖住的整数共有
12
个.
17.请画出数轴,并在数轴上表示下列各数: 2 4 -2,5,0,2.5,-3.5,3,-3
易错点:明确移动方向,需分类讨论.
自我诊断 3.把在数轴上表示-2 的点移动 3 个单位长度后,所得到的对应点 表示的数是
- 5或 1
.
1.关于数轴,下列说法最准确的是( A.一条直线 B.有原点、正方向的一条直线 C.有单位长度的一条直线
D )
D.规定了原点、正方向、单位长度的直线
2.如图,在数轴上点 M 表示的数可能是(
数学 七年级 上册•HK
2018年秋
第1章 有理数
1.2 数轴、相反数和绝对值 第1课时
认识数轴
规定了 原点 、 正方向 和
单位长度
的直线叫做数轴.
自我诊断 1.下列图形为四位同学画的数轴,其中正确的是(
D
)
数轴上的点与有理数之间的关系
任意一个有理数,都可以用数轴上的 一 个点来表示. )
1 自我诊断 2.在数轴上表示-3、0、5、3的点中,在原点右边的点有( B A.1 个 C.3 个 B.2 个 D.4 个
1 7.数轴上表示-22的点与表示 3.1 的点之间有 分别是 -2、-1、0、1、2、3 .
6
个整数点,这些整数
8.在下面数轴上 A、B、C、D 各点分别表示什么数?
解:A:2,B:-1,C:0.5;D:-2.5.
1 9 9.在数轴上表示出-2、3、-1.25、-5、4、50%.
解:略.
10.(扬州中考)若数轴上表示-1 和 3 的两点分别是点 A 和点 B,则点 A 和 点 B 之间的距离是( A.-4 C.2
C
)
A.1.5 C.-2.4
B.-1.5 D.2.4
3.在数轴上,表示-2.75 的点最可能是(
D )
A.点 E C.点 G
B.点 F D.点 H
4.a、b、c 在数轴上的位置如图,则 a、b、c 所表示的数是( D
)
A.a、b、c 均为正数
B.a、b、c 均为负数
C.a、b 是正数,c 是负数 D.a、b 是负数,c 是正数 5.在数轴上,在原点的左侧,距原点 6 个单位长度的点表示的数为 -6 . 6. 在数轴上, -0.01 表示 A 点, -0.1 表示 B 点, 则离原2)A、B、C 三点表示的数分别为 4、6、-4; (3)点 C 可以看作是蚂蚁从原点出发,向左爬了 4 个单位长度得到的.
相关文档
最新文档