九年级数学导学案13—14
新北师大版九年级上册数学导学案
第二章一元二次方程第一节认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?答:设五个连续整数中间的一个数为x,由题意可列方程,得_________________________.三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那铁皮各角应切去多大的正方形?你能设出未知数,列出相应的方程吗?归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+b x+c=0(a、b、c为常数,a≠0)这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;b x是一次项,b是一次项系数;c是常数项.跟踪练习:1.下列方程中,是一元二次方程的是()A.x2+2y-1=0B.x+2y2=5C.2x2=2x-1D.x2+1x-2=02.将方程(x+3)2=8x化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?跟踪练习:1.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是______.2.已知方程(m+2)x2+(m+1)x-m=0,当m满足______时,它是一元一次方程;当m满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x=0.A .1个B .2个C .3个D .4个2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( ) A .5x 2-4x -4=0 B .x 2-5=0 C .5x 2-2x +1=0 D .5x 2-4x +6=03.下列方程是一元二次方程的是( ) A. 12=-y x B. 2560x x ++= C.()()230x x ++= D. 122,3x x =-=-4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( ) A. 3,4,5a b c ===- B. 3,5,4a b c ==-= C. 3,4,5a b c =-=-=- D. 3,4,5a b c ==-=-二、能力提升1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数. 2.已知关于x 的方程(m -2)x |m |+3x -4=0是一元二次方程,那么m 的值是( )A .2B .±2C .-2D .1第一节 认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为___________列表:x0 1 2 3 4 5 6 7 8 x2-36问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为x m,则长为_________.根据题意,得________.整理,得______________.列表:x 5 6 7 8 9 10 11x2+2x三、自主提问探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b+c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过() A.1B.2C.3D.42.根据关于x的一元二次方程x2+p x+q=0,可列表如下:则方程x2+p x+q=0的正数解满足( )A.0<x<B.<x<1 C.1<x<D.<x<二、能力提升1.根据下表得知,方程x2+2x-10=0的一个近似解为x≈_________.(精确到2﹣826,输出结果如表:分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A. <x<B. <x<C. <x<D. <x<3.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018B. 2008C. 2014D. 2012第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x2=9,则x=______.3.填上适当的数,使下列等式成立.(1)x2+12x+____=(x+6)2;x2-6x+_____=(x-3)2.三、自主提问探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程例1:用配方法解方程x2-2x-3=0归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.跟踪练习:用配方法解方程:x2+2x-1=0.作业案一、过关习题1.用配方法解方程x2?2x?1=0,原方程应变形为()A. (x?1)2=2B. (x+1)2=2C. (x?1)2=1D. (x+1)2=12.用配方法解方程x2+4x-5=0,则x2+4x+____=5+____,所以x1=______,x2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x-8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( )A.x2=-2,解方程,得x=±2B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x1=74,x2=14D .(2x +3)2=25,解方程,得2x +3=±5,x 1=1,x 2=-4 5.解下列方程: (1)()2590x --=(2)4(x +6) 2-9=0(3)x 2-10x +25=7 (4)x 2-14x =8 (5)x 2+3x =1 (6)x 2+2x +2=8x +4 二、能力提升1.若2246130a a b b ++-+=,则a b +=( ) A. 1 B.1- C. 5 D. 5-2.若a ,b ,c 是△ABC 的三条边,且a 2+b 2+c 2+50=6a +8b +10c ,试判断这个三角形的形状.第二节 用配方法解一般一元二次方程(2)学习目标:1.理解配方法的意义,会用配方法解一般一元二次方程. 2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程. 学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材 二、感知填空1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是____________. 三、自主提问探究案一、探究一:用配方法解二次项系数不为1的一元二次方程 例1:用配方法解方程2x 2-6x +1=0用配方法求解一般一元二次方程的步骤是什么?归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上( )A.2)27( B .72 D.2)47(-2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭ D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得 ( ) A. 232722x ⎛⎫-= ⎪⎝⎭ B.232924x ⎛⎫-= ⎪⎝⎭ C. 236924x ⎛⎫-=⎪⎝⎭ D. 235124x ⎛⎫-= ⎪⎝⎭4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x 二、能力提升先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根. 第三节 用公式法求解一元二次方程学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材 二、感知填空1.方程3x 2-x =2化成一般形式后,式中( )A .a =3,b =-1,c =2B .a =2, b =1,c =-2C .a =3,b =-1,c =-2D .a =3,b =1,c =-2 2.用配方法解下列方程:(1)x 2-x -1=0 (2)2x 2-4x =1三、自主提问探究案一、探究一:探索一元二次方程的求根公式 例1:用配方法解方程:ax 2+b x +c =0(a ≠0).归纳总结:由上可知,一元二次方程ax2+b x+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+b x+c=0,当b2-4a c≥0时,将a、b、c代入式子x=-b±b2-4ac2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根.二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0(2)3x2-23x+1=0(3)4x2+x+1=0. 归纳总结:(1)当Δ=b2-4a c>0时,一元二次方程ax2+b x+c=0(a≠0)有两个不相等的实数根,即x1=-b+b2-4ac2a,x2=-b-b2-4ac2a;(2)当Δ=b2-4a c=0时,一元二次方程ax2+b x+c=0(a≠0)有两个相等实数根即x1=x2=-b2a;(3)当Δ=b2-4a c<0时,一元二次方程ax2+b x+c=0(a≠0)没有实数根.作业案一、过关习题1.下列一元二次方程中,有两个不相等的实数根的方程是()A.x2-3x+1=0B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=02.关于x的一元二次方程2x+(k-4)x2+6=0没有实数根,则k的最小整数值是()A. -1B. 2C. 3D. 53.把一元二次方程x2=3(2x-3)化为一般形式是_________,b2-4a c=0,则该方程根的情况为___________.4.方程2x2-5x=7的两个根分别为x1=________,x2=__________.二、能力提升1.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,求实数k的取值范围.2.已知关于x的一元二次方程(x-3)(x-4)=a2(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程有一个根是1,求a的值及方程的另一个根.第四节用因式分解法求解一元二次方程学习目标:1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.学习重点:用因式分解法解一元二次方程.学习难点:理解因式分解法解一元二次方程的基本思想.预习案一、预习教材二、感知填空1.将下列各式分解因式:(1)x2-2x(2)x2-4x+4(3)x2-16(4)x(x-2)-(x-2)2.分解因式法解一元二次方程的根据是:若a·b=0,则a=____或b=_____.如:若(x+2)(x-3)=0,那么x+2=0或者________.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.三、自主提问探究案一、探究一:用因式分解法解下列方程(1)5x 2+3x =0 (2)7x (3-x )=4(x -3) (3)9(x -2)2=4(x +1)2.跟踪练习:解下列方程:x 2-5x +6=0作业案一、过关习题1.如果(x -1)(x +2)=0,那么以下结论正确的是( )A .x =1或x =-2B .必须x =1C .x =2或x =-1D .必须x =1且x =-22.方程x 2-3x =0的解为( )A .x =0B .x =3C .x 1=0,x 2=-3D .x 1=0,x 2=33.方程29180x x -+=的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为 . 4.解下列方程(1) x 2=2x+35 (2)2(1)160x --= (3) 3(1=22x x x --)二、能力提升1.已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.2.阅读下面的例题:解方程220x x --=的过程如下:(1)当0x ≥时,原方程化为220x x --=,解得: 12x =, 21x =-(不合题意,舍去).(2)当0x <时,原方程可化为220x x +-=,解得: 12x =-, 21x =(不合题意,舍去).所以,原方程的解是: 12x =, 22x =-.请参照例题解方程: 2110x x ---=第五节 一元二次方程的根与系数的关系学习目标:1.掌握一元二次方程两根的和、两根的积与系数的关系.2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数.3.会利用根与系数的关系求关于两根代数式的值.学习重点:根与系数的关系及运用.学习难点:定理发现及运用.预习案一、预习教材二、感知填空1.一元二次方程ax 2+b x +c =0(a ≠0)的求根公式是_________________________________.2.一元二次方程3x 2-6x =0的两个根是_______________3.一元二次方程x 2-6x +9=0的两个根是________________三、自主提问探究案一、探究一:一元二次方程的根与系数的关系例1:解下列方程,将得到的解填入下面的表格中,观察表中x 1+x 2,x 1·x 2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?归纳总结:一般地,对于关于x 的一元二次方程ax 2+b x +c =0(a ≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+b x +c =0的求根公式知x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a ,能得出以下结果:x 1+x 2=-b a,x 1·x 2=c a . 二、探究二:一元二次方程根与系数关系定理的应用例2;已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值.例3:若一元二次方程2x 2+3x -1=0的两个根为212221211121,,x x x x x x ++)()( 跟踪练习:1.设一元二次方程x 2-6x +4=0的两实根分别为x 1和x 2,则(x 1+x 2)-x 1·x 2=( )A .-10B .10C .2D .-22.设a ,b 是方程x 2+x -2016=0的两个不相等的实数根,则a 2+2a +b 的值为_________.作业案一、过关习题1.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为( )A .2B .3C .4D .82.若α,β是方程x 2-2x -3=0的两个实数根,则α2+β2的值为( )A .10B .9C .7D .53.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_______.4.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A. B. C. D.二、能力提升1. 已知x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k =_______.2.已知关于x 的一元二次方程()28170x m x m --+-=.(1)m 为何值时,方程有一根为零?(2)m 为何值时,方程的两个根互为相反数?(3)是否存在m ,使方程的两个根互为倒数?若存在,请求出m 的值;不存在,请说明理由.第六节 应用一元二次方程(1)学习目标:1.使学生会用一元二次方程解应用题.2.进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.3.通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.学习重点:运用面积和速度等公式建立数学模型并运用它们解决实际问题. 学习难点:寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,则AB=_____cm. 2.在△ABC中,D、E分别是AB,AC的中点,若BC=10cm,则DE=_____cm.三、自主提问探究案一、探究一:利用一元二次方程求解几何问题例1:用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个矩形长是多少?跟踪练习:一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角形的面积是多少?作业案一、过关习题1.用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是( ) A.375cm2B.500cm2C.625cm2D.700cm22.一块矩形耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖两条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m2,那么水渠的宽为()A.2m B.4m C.1m D.3m3.一个矩形的面积是48平方厘米,它的长比宽多8厘米,设矩形的宽x厘米,应满足方程_____________.解方程求得x=______.二、能力提升1.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.2.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.第六节应用一元二次方程(2)学习目标:1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.学习重点:会用一元二次方程求解营销类问题.学习难点:将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.利润=_____________;2商品的利润率=_______________3.商品的总利润=一件商品的利润×销售商品的数量.三、自主提问.探究案一、探究一:利用一元二次方程求解营销类问题例1:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?跟踪练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?二、探究二:利用一元二次方程求解增长率问题例2:某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月均增长率。
人教版九年级上册数学全册导学案
人教版九年级上册数学全册导学案《21.1一元二次方程》导学案 NO :01班级_______姓名_______小组_______评价_______一、学习目标1、认识一元二次方程及根的概念;2、掌握一元二次方程的一般形式,并会将任何一个一元二次方程化成一般形式。
二、自主学习1、一元二次方程的概念(1)阅读教材引例,在练习本上自己按题意列出方程并整理,写出最后的方程 是 ;说一说这个方程是 元 次方程。
(2)用类似的方法研究问题1、问题2,经整理后的两个方程分别是 ; ;它们都是 元 次方程。
(3)归纳总结:含有 个未知数,且未知数的最高次数为 的整式方程叫做一 元二次方程。
说一说一元二次方程有哪些特点?(与同学认真交流)2、一元二次方程的一般形式阅读教材:一元二次方程的一般形式 (抄写三遍)。
说一说哪 一项是二次项?系数是多少?有什么要求?哪一项是一次项?一次项系数是多 少?哪一项是常数项?(与同学认真交流课堂展示)3、一元二次方程的根阅读教材,说一说什么叫一元二次方程的根?它有什么特点?(与同学认真交流。
)自学检测:1、若关于x 的方程023)1(=---x x m n是一元二次方程,则m ≠ _,n =______;2、方程1)12)(3(-=+-x x x 写成一般式是 ;二次项是 ____; 一次项系数是 。
三、合作探究1、下列方程中,是一元二次方程的有①2x=-2 ②32=x ③2y 2-3y+1=0④x -3y=4⑤11=-x x⑥5x 2=x 2、根不为x =-2的方程是( )A 、022=+x xB 、5x+10=0C 、0232=+-x xD 、083=+x3、如果ax 2-x -12=0是x 的一元二次方程,则a 的取值范围是如果(m -3)011=++-x xm 是x 的一元二次方程,则m 的取值是_________4、将下列方程化成一元二次方程的一般形式,并写出二次项系数、一次项系数和 常数项。
优品课件之九年级数学上册全册导学案(人教版含答案)
九年级数学上册全册导学案(人教版含答案)第二十一章一元二次方程 21.1 一元二次方程 1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)•(50-2x)=3600__,化简整理,得__x2-75x+350=0__.① 问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.② 探究: (1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程. 1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程. 2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式: ax2+bx +c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程? (1)x3-2x2+5=0;(2)x2=1; (3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1); (5)x2-2x=x2+1; (6)ax2+bx+c=0. 解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程. 2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10. 点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0. ∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可. 2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4. 解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x2=0; (2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0; (5)(x+3)2=(x-3)2; (6)9x2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是. 2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-34. 3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0. 学生总结本堂课的收获与困惑.(2分钟) 1.一元二次方程的概念以及怎样利用概念判断一元二次方程. 2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟) 21.2 解一元二次方程 21.2.1 配方法(1) 1. 使学生会用直接开平方法解一元二次方程. 2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次――转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟) 问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm. 探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4? 方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到 __x+3=±2__ ,方程的根为x1= __-1__,x2=__-5__. 归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 解下列方程: (1)2y2=8;(2)2(x-8)2=50; (3)(2x-1)2+4=0; (4)4x2-4x+1=0. 解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3; (3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=12. 点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.用直接开平方法解下列方程: (1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11. 解:(1)-1±73;(2)-1±26;(3)4±113. 点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根. 2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.解:±1. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程: (1)3(x-1)2-6=0 ; (2)x2-4x+4=5; (3)9x2+6x+1=4; (4)36x2-1=0; (5)4x2=81; (6)(x+5)2=25; (7)x2+2x+1=4. 解:(1)x1=1+2,x2=1-2;(2)x1=2+5,x2=2-5;(3)x1=-1,x2=13;(4)x1=16,x2=-16;(5)x1=92,x2=-92;(6)x1=0,x2=-10;(7)x1=1,x2=-3. 学生总结本堂课的收获与困惑.(2分钟) 1.用直接开平方法解一元二次方程. 2.理解“降次”思想. 3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0? 学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2) 1.会用配方法解数字系数的一元二次方程. 2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x-a)2=b的过程. (2分钟) 1.填空: (1)x2-8x+__16__=(x-__4__)2; (2)9x2+12x+__4__=(3x+__2__)2; (3)x2+px+__(p2)2__=(x+__p2__)2. 2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.一、自学指导.(10分钟) 问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.探究:怎样解方程x2+6x-16=0? 对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x2+6x=16,两边都加上__9__即__(62)2__,使左边配成x2+bx+(b2)2的形式,得__x2__+6__x__+9=16+__9__,左边写成平方形式,得 __(x+3)2=25__,开平方,得 __x+3=±5__,(降次) 即 __x+3=5__或__x+3=-5__,解一次方程,得x1=__2__,x2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程: (1)3x2-1=5;(2)4(x-1)2-9=0; (3)4x2+16x+16=9. 解:(1)x=±2;(2)x1=-12,x2=52;(3)x1=-72,x2=-12. 归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax2+bx+c=0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a; (4)方程两边同时加上一次项系数一半的平方; (5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空: (1)x2+6x+__9__=(x+__3__)2;(2)x2-x+__14__=(x-__12__)2; (3)4x2+4x+__1__=(2x+__1__)2. 2.解下列方程: (1)x2+6x+5=0; (2)2x2+6x+2=0;(3)(1+x)2+2(1+x)-4=0. 解:(1)移项,得x2+6x=-5,配方得x2+6x+32=-5+32,(x+3)2=4,由此可得x+3=±2,即x1=-1,x2=-5. (2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方得x2+3x+(32)2=(x+32)2=54,由此可得x+32=±52,即x1=52-32, x2=-52-32. (3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2. 点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟) 如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0, (x-7)2=25, x-7=±5,∴x1=12,x2=2, x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC 面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x的方程: (1)2x2-4x-8=0;(2)x2-4x+2=0; (3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5; (2)x1=2+2,x2=2-2; (3)x1=14+174,x2=14-174; (4)x1=62,x2=-62. 2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2. ∴(xy)z=[2×(-3)]-2=136. 学生总结本堂课的收获与困惑.(2分钟) 1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2 公式法 1. 理解一元二次方程求根公式的推导过程,了解公式法的概念. 2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导. (2分钟) 用配方法解方程: (1)x2+3x+2=0;(2)2x2-3x+5=0. 解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟) 问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a. 分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根,当b2-4ac<0时,方程没有实数根. (2)x=-b±b2-4ac2a叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫做公式法. (4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根. (5)一般地,式子b2-4ac 叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x2-3x=0;(2)3x2-23x+1=0;(3)4x2+x+1=0. 解:(1)x1=0,x2=32;有两个不相等的实数根;(2)x1=x2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.方程x2-4x+4=0的根的情况是( B ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有一个实数根 D.没有实数根 2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14. 3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根. 证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0. 对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x2-3x-32=0; (2)16x2-24x+9=0; (3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0; (3)x2+4x+8=2x+11;(4)x(x-4)=2-8x; (5)x2+2x=0 ; (6)x2+25x+10=0. 解:(1)x1=3,x2=-4;(2)x1=2+32,x2=2-32;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2;(6)无实数根.点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的; (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=-b±b2-4ac2a(b2-4ac≥0)中,可求得方程的两个根; (3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟) 1.求根公式的推导过程. 2.用公式法解一元二次方程的一般步骤:先确定a,b,c的值,再算出b2-4ac的值、最后代入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟) 21.2.3 因式分解法 1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程. 2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想. (2分钟) 将下列各题因式分解: (1)am +bm+cm=(__a+b+c__)m; (2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟) 问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s) 设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,① 思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x=0或10-4.9x=0,② ∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m. 点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法. (2)如果a•b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.说出下列方程的根: (1)x(x-8)=0;(2)(3x+1)(2x-5)=0. 解:(1)x1=0,x2=8;(2)x1=-13,x2=52. 2.用因式分解法解下列方程: (1)x2-4x=0; (2)4x2-49=0; (3)5x2-20x+20=0. 解:(1)x1=0,x2=4; (2)x1=72,x2=-72; (3)x1=x2=2. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.用因式分解法解下列方程: (1)5x2-4x=0;(2)3x(2x+1)=4x+2; (3)(x +5)2=3x+15. 解:(1)x1=0,x2=45; (2)x1=23,x2=-12;(3)x1=-5,x2=-2. 点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式. 2.用因式分解法解下列方程: (1)4x2-144=0; (2)(2x-1)2=(3-x)2; (3)5x2-2x-14=x2-2x+34; (4)3x2-12x=-12. 解:(1)x1=6,x2=-6; (2)x1=43,x2=-2; (3)x1=12,x2=-12; (4)x1=x2=2. 点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程: (1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0; (5)(x-4)2=(5-2x)2. 解:(1)x1=0,x2=-1; (2)x1=0,x2=23; (3)x1=x2=1; (4)x1=112,x2=-112; (5)x1=3,x2=1. 点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__; (2)将方程左边分解成两个一次式的__乘积__; (3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m. 则可列方程2πx2=π(x+5)2. 解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52) m. 学生总结本堂课的收获与困惑.(2分钟) 1.用因式分解法解方程的根据由ab=0得 a =0或b=0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系 1. 理解并掌握根与系数的关系:x1+x2=-ba,x1x2=ca. 2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 自学1:完成下表:方程 x1 x2 x1+x2 x1x2 x2-5x+6=0 2 3 5 6 x2+3x-10=0 2 -5 -3 -10 问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律. 答:x1+x2=-p,x1x2=q. 自学2:完成下表:方程 x1 x2 x1+x2 x1x2 2x2-3x-2=0 2 -12 32 -1 3x2-4x+1=0 13 1 43 13问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.答:x1+x2=-ba,x1x2=ca. 自学3:利用求根公式推导根与系数的关系.(韦达定理) ax2+bx+c=0的两根x1=__-b+b2-4ac2a__,x2=__-b-b2-4ac2a__. x1+x2=-ba,x1x2=ca. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x2-3x-1=0 ;(2)2x2+3x-5=0; (3)13x2-2x=0. 解:(1)x1+x2=3,x1x2=-1; (2)x1+x2=-32,x1x2=-52; (3)x1+x2=6,x1x2=0. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 1.不解方程,求下列方程的两根之和与两根之积. (1)x2-6x-15=0; (2)3x2+7x-9=0; (3)5x-1=4x2. 解:(1)x1+x2=6,x1x2=-15; (2)x1+x2=-73,x1x2=-3; (3)x1+x2=54,x1x2=14. 点拨精讲:先将方程化为一般形式,找对a,b,c. 2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.解:另一根为32,k=3. 点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答. 3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值. (1)1α+1β;(2)α2+β2;(3)α-β. 解:(1)-35;(2)19;(3)29或-29. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积: (1)x2-3x=15; (2)5x2-1=4x2; (3)x2-3x+2=10; (4)4x2-144=0. 解:(1)x1+x2=3,x1x2=-15; (2)x1+x2=0,x1x2=-1; (3)x1+x2=3,x1x2=-8; (4)x1+x2=0,x1x2=-36. 2.两根均为负数的一元二次方程是( C ) A.7x2-12x+5=0 B.6x2-13x-5=0 C.4x2+21x+5=0 D.x2+15x-8=0 点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟) 不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值. 1.先化成一般形式,再确定a,b,c. 2.当且仅当b2-4ac≥0时,才能应用根与系数的关系. 3.要注意比的符号:x1+x2=-ba(比前面有负号),x1x2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟) 21.3 实际问题与一元二次方程(1) 1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟) 问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x+1)(x+1)__人患了流感.则列方程: __(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得 x1=__2__,x2=__4__,∴原来的两位数为24或42. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为( ) A.x(x+1)=2550 B.x(x-1)=2550 C.2x(x+1)=2550 D.x(x-1)=2550×2 分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别. 2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟) 1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A.2和4 B.6和8 C.4和6 D.8和10 2.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟) 1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题. 2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(2) 1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b 为增长(或降低)后的量.一、自学指导.(10分钟) 自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01) 绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则 11月份的营业额为__5000(1+x)__元, 12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2; n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n. 解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%) 分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x•80%;第二次存,本金就变为1000+2000x•80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x•80%+(1000+2000x•80%)x•80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%. 答:所求的年利率是12.5%. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟) 青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%. 答:水稻每公顷产量的年平均增长率为8%. 点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟) 1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义. 2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟) 21.3 实际问题与一元二次方程。
人教版 九年级数学上册全册导学案
第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.②探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x =-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-x2=0; (2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-3 4.3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为__2x两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=2x2=2.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p 或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)用直接开平方法解下列方程:(1)3(x-1)2-6=0 ; (2)x2-4x+4=5;(3)9x2+6x+1=4; (4)36x2-1=0;(5)4x2=81; (6)(x+5)2=25;(7)x2+2x+1=4.解:(1)x1=1+2,x2=1-2;(2)x1=2+5,x2=2-5;(3)x1=-1,x2=1 3;(4)x1=16,x2=-16;(5)x1=92,x2=-92;(6)x1=0,x2=-10;(7)x1=1,x2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程.2.理解“降次”思想.3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x-a)2=b的过程.(2分钟)1.填空:(1)x2-8x+__16__=(x-__4__)2;(2)9x2+12x+__4__=(3x+__2__)2;(3)x2+px+__(p2)2__=(x+__p2__)2.2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.探究:怎样解方程x2+6x-16=0?对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x2+6x=16,两边都加上__9__即__(62)2__,使左边配成x2+bx+(b2)2的形式,得__x2__+6__x__+9=16+__9__,左边写成平方形式,得__(x+3)2=25__,开平方,得__x+3=±5__,(降次)即__x+3=5__或__x+3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0;(3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52; (3)x 1=-72,x 2=-12. 归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.填空:(1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=(x -__12__)2; (3)4x 2+4x +__1__=(2x +__1__)2.2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0;(3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x2+6x=-5,配方得x2+6x+32=-5+32,(x+3)2=4,由此可得x+3=±2,即x1=-1,x2=-5.(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方得x2+3x+(32)2=(x+32)2=54,由此可得x+32=±52,即x1=52-32,x2=-52-32.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根,当b2-4ac<0时,方程没有实数根.(2)x=-b±b2-4ac2a叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0;(2)3x2-23x+1=0;(3)4x2+x+1=0.解:(1)x1=0,x2=32;有两个不相等的实数根;(2)x1=x2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0 ; (6)x2+25x+10=0.解:(1)x1=3,x2=-4;(2)x1=2+32,x2=2-32;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=-b±b2-4ac2a(b2-4ac≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a,b,c的值,再算.出b2-4ac的值、最后代.入求根公式求解.3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x +1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-13,x2=52.2.用因式分解法解下列方程:(1)x2-4x=0; (2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4; (2)x1=72,x2=-72;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x1=112,x2=-112;(5)x1=3,x2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52) m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x1+x2=-ba,x1x2=ca.2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律. 答:x1+x2=-p,x1x2=q.自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理)ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0;(3)5x-1=4x2.解:(1)x1+x2=6,x1x2=-15;(2)x1+x2=-73,x1x2=-3;(3)x1+x2=54,x1x2=14.点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.解:另一根为32,k=3.点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.(1)1α+1β;(2)α2+β2;(3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)x2-3x=15; (2)5x2-1=4x2;(3)x2-3x+2=10; (4)4x2-144=0.解:(1)x1+x2=3,x1x2=-15;(2)x1+x2=0,x1x2=-1;(3)x1+x2=3,x1x2=-8;(4)x1+x2=0,x1x2=-36.2.两根均为负数的一元二次方程是(C)A.7x2-12x+5=0 B.6x2-13x-5=0C.4x2+21x+5=0 D.x2+15x-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.3.要注意比的符号:x1+x2=-ba(比前面有负号),x1x2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x+1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%) 分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,。
九年级数学导学案答案.doc
九年级数学导学案答案相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段:对于四条线段a、b、c、d,如果其中两条线ac段的长度的比与另两条线段的长度的比相等,即?,那bd么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0・618?。
这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:放大镜下的图形和原来的图形相似吗?哈哈镜中的形象与你本人相似吗?你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:2厘米,3厘米,4厘米,1厘米1. 5厘米,2. 5厘米,4. 5厘米,6. 5厘米1. 1厘米,2. 2 厘米,3. 3厘米,4. 4厘米1厘米,厘米,2厘米,4厘米。
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗?、相似形三角形的判断:a两角对应相等b两边对应成比例且夹角相等c三边对应成比例3、相似形三角形的性质:1a对应角相等b对应边成比例c对应线段之比等于相似比d周长之比等于相似比e面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段例题1ABCD中,G是BC延长线上一点,AG交BD于点E,交DC 于点F,试找出图中所有的相似三角形C B G2如图在正方形网格上有6个斜三角形:a :ABC; b: BCD c: BDE d: BFG e: FGH f: EFK,试找出与三角形a相似的三角形ABC中,AB=8厘米,BC-16厘米,点P从点A开始沿AB 边向点B以2厘米每秒的速度移动,点Q从点B开始沿BC 向点C以4厘米每秒的速度移动,如果P、Q分别从B经几秒钟PBQ与ABC相似?C、某房地产公司要在一块矩形ABCD±地上规划建设一个矩形GHCK小区公园,为了使文物保2A N EH B护区AEF不被破坏,矩形公园的顶点G不能在文物保护区内。
数学九年级下册全套导学案(pdf版含答案)(1)
人教版数学九年级下册全套导学案26.1.1反比例函数§26.1 反比例函数1.认识反比例函数是描述具有反比例变化规律的数学模型.2.经历由实际问题抽象反比例函数的过程,掌握反比例函数的概念.3.能够根据已知条件求反比例函数的解析式.试一试反比例函数的概念1.回答下列问题(1)京沪线铁路全程为1463km ,某次列车的平均速度v(单位:km/ h )随此次列车的全程运行时间t (单位:h )的变化而变化.问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有函数关系,它的解析式为 .(2)某住宅小区要种植一块面积为1000m2 的矩形草坪,草坪的长y (单位:m )随宽x(单位:m )的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有,它的解析式为.(3)已知北京市的总面积为1.68 104 km2 ,人均占有面积S (单位:km2 / 人)随全市总人口n (单位:人)的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应. 因此变量间具有,它的解析式为.答案:1.(1)t,v,t,v,t,v,v1463;(2)x,y,x,y,x,y,函数关系,y t=1000;x1.68 ⨯104 k(3)n,S,n,S,n,S,函数关系,Sk = ;小结:(1) y = ,非零常数; n x(2)x ,y ,x ,不等于 0 的一切实数;(3)分母,无意义;(4)自变量,函数.根据已知条件求反比例函数解析式 1.已知 y 是 x 的反比例函数,并且当 x = 2 时, y = 6 .(1)写出 y 关于 x 的函数解析式;(2)当 x = 4 时,求 y 的值.解:(1)因为 y 是 x 的 ,所以设 .又因为 x = 2 时, y = 6 ,所以有,解得, 因此 y = .(2)把 x = 4 代入,得 y = . 2. 近视眼镜的度数 y (单位:度)与镜片焦距 x (单位:m )成反比例.已知 200 度近视眼镜的镜片焦距为0.5m ,则 y 与 x 之间的函数解析式是. 答案:1.(1)反比例函数,y= ,6 = x试一试k 12,k=12,2 x;(2)y12,3;2.xy 100.x 题组一1.用函数解析式表示下列问题中变量间的对应关系:(1)某厂现有 300 吨煤,这些煤能烧的天数y(单位:天)随平均每天烧的吨数x(吨/天)的变化而变化.那么y 与x 之间的函数关系式是.(2)一个物体重100N,物体对地面的压强p (单位:Pa)随物体与地面的接触面积S(单位:m2 )的变化而变化.那么p 与S 之间的函数关系式是.2.下列函数:① y做一做2x1;②y4=-;③yx⑤ xy =15;⑥y=2,其中y 是x 的反比例函数的是(填序号). x 23.在xy + 2 = 0 中,y 是x 的()A.一次函数B.反比例函数C. 正比例函数D.既不是正比例函数也不是反比例函数答案:1.(1)y300;(2)p x=300;2. ②④⑤;3. B. S题组二1.在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对气缸壁所产生的压强,如下表:体积 x (mL)100 80 60 40 20压强 y(kPa) 60 75 100 150 300则可以反映y 与x 之间的关系的式子是()3000 6000A. y =3000x做一做B. y 6000xC.y =D. y =x x2.已知y 与x2 成反比例,并且当x = 3 时,y = 4 .(1)写出y 关于x2 的函数解析式;(2)当x = 1.5 时,求y 的值;(3)当y = 4 时,求x 的值.答案:1.D;2.(1)因为y 与x2 成反比例,所以设y =k k. 又因为 x = 3 时, y = 4 ,所以x 2 有4 = ,解得k = 36 ,因此 y =3236;(2)将x=1.5代入y = x36得y 16;(3)将x2 y = 6代入 y = 36得 x = ± 6 .x 1. 若 y = (a +1)xa -2 是反比例函数,则 a 的取值为 .2. 已知函数 y = 能力拓展m + 3 x1-m2-3m是反比例函数,则m2 2m = .3.反比例函数y=k在x = 2 处自变量增加 1,函数值相应地减少了2 x 3小结:(1)反比例函数y = 中 k≠0,自变量 x 的指数为;k x (2) y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 成. 6 ,则 k= .4.若 y 与 x 成正比例, x 与 z 成反比例,且当 z = 2 时, y = -3,则 y 与 z 的函数解析式是 .答案:1. 1;2. 0;3. 4;4. y = -6 ;小结:(1)-1;(2)反比例. x 26.1.2 反比例函数的图像和性质1. 会根据解析式画反比例函数的图像,归纳反比例函数的图像特征和性质.2. 灵活运用反比例函数的图像和性质解决问题.3. 感悟反比例函数的解析式与图像之间的联系,体会数形结合及转化的思想方法. 反比例函数的图像和性质 1. 通过描点法画出下列反比例函数的图像.(1) y = (2) y = 12 x x解:列表表示几组 x 与 y 的对应值(填空):x … -12 -6 -4 -3 -2 -1 1 2 3 4 6 12 … y = 6xy = 12 x图26.1-12. 通过描点法画出下列反比例函数的图像.(1) y = - 6x试一试(2)y =-12 x答案:1. 略;小结(2)一、三,一、三,减小;(3)减小;2. 略;小结:(3)二、四,二、四,上升,增大;(4)二、四,增大.反比例函数的图像和性质的运用1.已知反比例函数的图像经过点A(2,6) .(1)这个函数的图像位于哪些象限?y 随x 的增大如何变化?(2)点B(3,4) ,C(-2试一试1, 4 2k k 14) , D (2,5) 是否在这个函数图像上? 5解:(1)因为点 A (2,6) 在 象限,所以这个函数的图像位于 象限,在每一个象限内, y 随 x 的增大而.(2)设这个反比例函数的解析式为 y = ,因为点 A (2,6) 在其图像上,所以点 A 的坐x标满足 y = ,即 ,解得 k=.所以这个反比例函数的解析式为,x因为点满足该解析式,点 不满足该解析式,所以点在这个函数图像上,点 不在这个函数图像上. 2. 下列反比例函数:① y = - 2x②y =③ 7 y =-103x x④ y3 100x(1)图像位于第一、三象限的是 ; (2)图像位于第二、四象限的是 .小结:1. 如果任意一点的坐标满足函数解析式,那么这个点就在其图像上,否则,就不在其图像上.2. 反比例函数图像的位置以及 y 如何随 x 的变化而变化的情况,只与有关.函数 图像位置 图像变化趋势y = kxk > 0 第一、三象限 在每个象限内, y 随 x 的增大而减小 k < 0第二、四象限在每个象限内, y 随 x 的增大而增大3. 如图 26.1-2,它是反比例函数 y =m - 5 图像的一支.根据图像,回答下列问题:x(1)图像的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图像的某一支上任取点 A (x 1,y 1) 和点 B (x 2,y 2 ) ,如果 x 1 > x 2 ,那么y 1和 y 2 有怎样的大小关系?图 26.1-2解:(1)反比例函数的图像只有两种可能:位于象限,或者位于象限.因为这个函数的图像的一支位于第 象限,所以另一支必位于第象限. 因为这个函数位于象限,所以 m-5,解得.(2)因为 m-5 ,所以在这个函数图像的任一支上,y 都随 x 的增大而,因此当 x 1 > x 2 时,.4. A (-1, y ) , B (1, y ) , C (3, y ) 是反比例函数 y = - 1图像上的三点,请你正确排出123xy 1,y 2,y 3 的大小顺序.k 12 答案:1.(1)第一,第一、三,减小;(2) 6 =,12, y =,B 、C ,D ,B 、C ,D ;2.2x(1)②④;(2)①③;小结:2. k 的正负;3,(1)第一、三,第二、四,一,三,一、三, >0,m >5;(2)>0,减小, y 1 < y 2 ;4. y 2 < y 3 < y 1 ;小结:(2)原点.反比例函数的几何意义k1. 如图 26.1-3 所示,反比例函数 y =试一试(k ≠ 0) 的图像上任取一点P(x, y) ,过这一点分别x作x 轴、y 轴的垂线PM ,PN ,垂足分别为点M 、N ,所得的矩形PMON 的面积为多少?图 26.1-3k解:矩形PMON 的面积S = ,因为y =,所以xy =k ,所以S= ,即过x双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为.k2.如图 26.1-3 所示,反比例函数y =k (k ≠ 0) 的图像上任取一点 E (x , y ) ,过 E 作 xEF ⊥ y 轴于点 F ,连接OE ,所得三角形 EOF 的面积为多少? 解:三角形 EOF 的面积 S= ,因为 y = ,所以 xy = k ,所以 S=, x即过双曲线上任意一点作坐标轴的垂线,并将该点与原点相连,所得的三角形的面积为 .答案:1. PM ⋅ PN =y ⋅x =xyk k, , ,k ,k ;2. 1 EF ⋅ OF =1x ⋅ y = 1xy1 1.22 22 2题组一1. 下列图像中是反比例函数图像的是( )(A )(B )2. 填空学习迁移做一做k (C )(D ) 5(1)反比例函数 y =的图像在第象限.x(2)反比例函数 y = 的图像如图 26.1-4 所示,则k0;在图像的每一支上,y 随 xx的增大而.图 26.1-43. 对于反比例函数 y =3 ,下列说法正确的是( )xA.图像经过点(-1,3)a 2B. 图像位于第二、第四象限C. x > 0 时, y 随 x 的增大而增大D. x < 0 时, y 随 x 的增大而减小4.当a ≠ 0 时,函数 y = ax +1与函数 y = 在同一坐标系中的图象可能是()x答案:1.C ;2.(1)一、三;(2)>,减少;3.D ;4.C.题组二k1. 若点 P 1(-1,m ) P 2 (-2, n ) 在反比例函数 y = x(k > 0) 的图像上,则m n (填“>”“<”或“=”) 2. 已知点 A (x 1, y 1) , B (x 2 , y 2 ) , C (x 3, y 3 ) 是函数 y = - xx 1 < 0 < x 2 < x 3 ,则 y 1, y 2 , y 3 的大小关系是3 + 2m图 像 上 的 三 点 , 且3. 已知 A (-1, y 1) , B (2, y 2 ) 两点在双曲线 y = ( )做一做,且y1 >y2 ,则m 的取值范围是xA.m >0B.m 0C.m >-3 2D.m <-3 2答案:1.<;2. y2 <y3 <y1 ;3.D.题组三k1.如图26.1-5 所示,M 为反比例函数y =的图像上的一点,MA⊥y轴,垂足为A,△MAOx的面积为2,则k 的值为.2.如图26.1-6,点A 在函数y =做一做4 4 ( x > 0) 的图象上,且OA = 4 ,过点 A 作 AB ⊥ x 轴于x点 B ,则△ ABO 的周长为.图26.1-5 图26.1-6 3. 如图 26.1-7 所示,A 、B 两点在双曲线 y = ,分别经过 A 、B 两点向坐标轴作垂线段,x已知 S 阴影 = 1,则 S 1+ S 2 等于( ) A. 3B. 4C. 5D.6图 26.1-7图 26.1-84 4. 如图 26.1-8 所示,函数 y = -x 与函数 y = -x6 的图像相交于 A ,B 两点,过 A ,B 两点 分别作 y 轴的垂线,垂足分别为点 C ,D ,则四边形 ACBD 的面积为( ) A. 2 B. 4 C. 6 D. 8 答案:1.4;2. 2 + 4 ;3.D ;4.D. 1. 如图 26.1-9,P 是双曲线 y =4( x > 0) 的一个分支上的一点,以点P 为圆心,1 个点位x长度为半径作⊙P,当⊙P与直线y = 3相切时,点P 的坐标为. 图26.1-9 图26.1-102.如图26.1-10,在平面直角坐标系中,反比例函数y =k( x> 0) 的图像上有一点A(m,4),x过点 A 作AB⊥x轴于点 B,将点 B 向右平移 2 个单位长度得到点 C,过点 C 作y 轴的平行线4交反比例函数的图像于点D,CD =.3(1)点D 的横坐标为(用含m 的式子表示);(2)求反比例函数的解析式.3.如图 26.1-11,四边形ABCO 是平行四边形,OA = 2 ,AB = 6 ,点C 在x 轴的负半轴上,将□ABCO 绕点A 逆时针旋转得到□ADEF,AD 经过点O ,点F 恰好落在x 轴的正半轴k上,若点 D 在反比例函数y =( x< 0) 的图像上,则k 的值为.x图 26.1-11答案:1.(1,4)或(2,2);2.(1)m+2;(2) CD =4,∴点 D 的坐标为(m + 2, 34) . 3点 A (m ,4) ,点 D (m + 2, 4 ) 在函数 y = k 的图像上,∴4m = 4(m + 2) ,解得 m=1,3 x 3∴k = 4m = 4 .∴反比例函数的解析式为 y = 4;3. 4 x§26.2 实际问题与反比例函数1.运用反比例函数的概念、图像、性质解决实际问题.2.经历“实际问题——建立模型——拓展应用”的过程,进一步体会数学建模思想,培养学生的数学应用意识,激发学生学习兴趣.几何问题与反比例函数1.已知矩形面积为36cm 2,相邻的两条边长分别为 x cm 和 y cm ,则 y 与 x 之间的函数图像大致是( )A BC D2.市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室.(1)储存室的底面积 S (单位: m 2)与其深度d (单位: m )有怎样的函数关系?(2)公司决定把储存室的底面积 S 定为500m 2,施工队施工时应该向地下掘进多深? (3)当施工队按(2)中的计划掘进到地下15m 时,公司临时改变计划,把储存室的深度改为15m .相应地,储存室的底面积应改为多少?(结果保留小数点后两位) 解:(1)根据圆柱的体积公式,得,所以 S 关于d 的函数解析式为 ,其中是常量,是变量, S 是d 的函数.(2)由题意,把储存室的底面积 S 定为500m 2,也即 S = 500 ,将其代入 S 关于d 的函数解析式得,解得d =.因此,如果把储存室的底面积 S 定为500m 2,施工时应向地掘进深.(3)由题意,把储存室的深度改为15m ,也即d = 15 ,将其代入 S 关于d 的函数解析式得,解得 S ≈ .因此,如果把储存室的深度改为15m ,储存室的底面积应改为.4104104 答案:1.A ;2.(1) Sd = 10 , S =,容积, S 、d ,反比例;(2) 500 =,dd3知识建构试一试。
2019年北师大版九年级数学上册全册导学案(含答案)
第1课时菱形的性质1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力.自学指导:阅读课本P2~4,完成下列问题.1.有一组邻边相等的平行四边形叫做菱形.3.菱形具有平行四边形的一切性质.2.菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.它有两条对称轴,两条对称轴互相垂直.4.菱形的四条边都相等.5.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.知识探究1.请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?解:(1)菱形是轴对称图形,有两条对称轴,是菱形领条对角线所在的直线。
两条对称轴互相垂直。
(1)菱形的邻边相等,对边相等,四条边都相等.自学反馈如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)图中有哪些线段是相等的?哪些角是相等的?(2)有哪些特殊的三角形?活动1 小组讨论例1已知:如图,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O. 求证:(1)AB=BC=CD=AD ; (2)AC ⊥BD.证明:(1)∵四边形ABCD 是菱形,∴AB = CD ,AD= BC (菱形的对边相等). 又∵AB=AD , ∴AB=BC=CD=AD. (2)∵AB=AD,∴△ABD 是等腰三角形. 又∵四边形ABCD 是菱形,∴OB=OD (菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB=OD, ∴AO ⊥BD, 即AC ⊥BD.例2 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长.解:∵ 四边形ABCD 是菱形, ∴AB=AD(菱形的四条边都相等), AC ⊥BD (菱形的对角线互相垂直) , OB=OD=21BD=21×6=3(菱形的对角线互相平分).在等腰三角形ABD 中, ∵∠BAD=60°, ∴△ABD 是等边三角形. ∴AB=BD=6.在Rt △AOB 中,由勾股定理,得OA 2+OB 2=AB 2 .∴OA=.333362222=-=-OB AB∴AC=2OA=.36此题由菱形的性质可知AB=AD ,结合∠BAD=60°,即可得到△ABD 是等边三角形,从而可求AB 的长度.在根据菱形的对角线互相垂直,可以得到直角三角形,通过勾股定理可求AO,继而求出AC.活动2 跟踪训练1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCABCDO2.如图,在菱形ABCD 中,AC =6, BD =8,则菱形的边长为( )A.5B.10C.6D.83.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A.B.C.23cmD.223cm4.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( ) A .(21),B .(12),C .(211)+,D .(121)+,5.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则对角线AC 等于 .6.如图,在菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .7.如图,点E是菱形ABCD的对角线BD上任意一点连结AE、CE,请找出图中一对全等三角形为______________.8.如图所示,在菱形ABCD中,∠ABC= 60°,DE∥AC交BC的延长线于点E.求证:DE=12 BE.课堂小结1.菱形的定义.2.菱形的性质.3.菱形与平行四边形的关系.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈解:(1)相等的线段:AB=CD=AD=BC,OA=OC,OB=OD.相等的角:∠DAB=∠BCD,∠ABC=∠CDA,∠AOB=∠DOC=∠AOD=∠BOC=90°,∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8.(2)等腰三角形:△ABC △DBC △ACD △ABD直角三角形:Rt△AOB Rt△BOC Rt△COD Rt△DOA【合作探究】活动2 跟踪训练1.B2.A3.D4.C5.56.37.ABD CDB△≌△(或ADE CDE△≌△或ABE CBE△≌△)8.∵ABCD是菱形,∴AD//BC,AB=BC=CD=DA.又∵∠ABC= 60°,∴BC=AC=AD.∵DE∥AC,∴ACED为平行四边形.∴CE=AD=BC,DE=AC. ∴DE=CE=BC,∴DE=12 BE.第2课时菱形的判定理解菱形的判别条件及其证明,并能利用这两个定理解决一些简单的问题自学指导:阅读课本P5~7,完成下列问题.知识探究1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四边相等的四边形是菱形.自学反馈1.判断下列说法是否正确:(1)对角线互相垂直的四边形是菱形;( )(2)对角线互相垂直平分的四边形是菱形;( )(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;( )(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.( )2.□ABCD的对角线AC与BD相交于点O,(1)若AB=AD,则□ABCD是形;(2)若AC⊥BD,则□ABCD是形;(3)若∠BAO=∠DAO,则□ABCD是形.活动1 小组讨论例1. 已知:如图,在□ABCD中,对角线AC与BD交于点O,AC⊥BD.求证: □ABCD是菱形.[ 证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形定义).例2已知:如图,四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形定义).活动2 跟踪训练1.如图,在ABCD中,添加下列条件不能判定是菱形的是( )A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD2.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC,且BD=CDC.AD为中线 D.EF⊥ADAB D CFE3.将一张矩形纸片对折,如图所示,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A.三角形B.不规则的四边形C.菱形D.一般平行四边形②①4.如图,在ABCD中,AE、CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF 为菱形的是()A.AE=AF B.EF⊥ACC.∠B=600 D.AC是∠EAF平分线5.如图所示,在ABCD中,AC BD⊥,E为AB中点,若OE=3,则ABCD的周长是 .6.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.7.如图,□ABCD的两条对角线AC、BD相交于点O,A B=5,AC=8,DB=6.求证:四边形ABCD是菱形.课堂小结菱形常用的判定方法:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈1.(1)×(2)√(3)×(4)×2.(1)菱(2)菱(3)菱【合作探究】活动2 跟踪训练1.D2. C3. C4. C5. 246.证明:(1)∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∵四边形ABCD是平行四边形,∴∠A=∠C.∵在△AED和△CFD中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,DFDECACFDAED,∴△AED≌△CFD(AAS).(2)∵△AED≌△CFD,∴AD=CD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.证明:∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=3.又AB=5,则32+42=52,即OA2+OB2=AB2.∴∠AOB=90°,即AC⊥BD,∴四边形ABCD是菱形.第3课时菱形的性质与判定的综合1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.3.在学习过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力.阅读教材P8-9,能灵活运用菱形的性质及判定.自学反馈1.如图所示:在菱形ABCD中,AB=6,(1)三条边AD、DC、BC的长度分别是多少?(2)对角线AC与BD有什么位置关系?(3)若∠ADC=120°,求AC的长.(4)菱形ABCD的面积.活动1 小组讨论例1 如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长为10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,即∠AED=90°,DE=12BD×10=5(cm)∴在Rt△ADE中,由勾股定理可得:∴AC=2AE=2×12=24(cm).(2)S菱形ABCD = S△ABD+ S△CBD=2×S△ABD=2××BD×AE= BD×AE=10×12=120(cm2).菱形的面积除了以上求法,还可以用对角线相乘除以2.活动2 跟踪训练1.如图,菱形ABCD的周长为40cm,它的一条对角线BD长10cm,则∠ABC= °,AC= cm.2.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是cm2.3. 如图,四边形ABC D中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.课堂小结通过本节课的学习你有哪些收获,你还存在什么疑问?教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈解:(1)6.(2)垂直平分.(3)36.(4)318.【合作探究】活动2 跟踪训练51.120°32.163.解:由AB=AC=AD,可知△ABC、△ADC是等腰三角形.∵AE是∠BAC的角平分线,AF是CD边上的中线,则∠AEC=∠AFC=90°.∵PC⊥CD,QC⊥BC,∴∠QCE=∠PCD=90°.∴AE∥QC,PC∥AF,∴四边形APCQ是平行四边形.在Rt△PEC和Rt△QFC中,∠PEC=∠QFC=90°,∠PCE=90°-∠PCQ=∠QCF,由BC=CD,可知EC=CF,∴Rt△PEC≌Rt△QFC,∴PC=CQ.∴平行四边形APCQ是菱形.第1课时矩形的性质1.掌握矩形的的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.自学指导:阅读课本P11~14,完成下列问题.1.有一个角是直角的平行四边形叫做矩形.2.生活中你见到过的矩形有五星红旗、毛巾.3.矩形是特殊的平行四边形,具有平行四边形的一切性质.4.矩形的四个角都是直角.5.矩形的对角线相等.6.直角三角形斜边上的中线等于斜边的一半.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?[解:由矩形性质2得:AC=BD,再由平行四边形性质得:AO=OC,BO=OD,所以AO=BO=CO=DO=12AC=BD.因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.请同学们拿出准备好的矩形纸片,折一折,观察并思考。
数学导学案九年级答案
数学导学案九年级答案【篇一:九年级数学金榜学案答案】>一.选择题(本题共10小题,每小题3分,共30分)1.下列函数中,属于二次函数的是 ( )a.b.c.y= d.2.抛物线y=(x+3)2-2的对称轴是( )a.直线x=3b.直线x=-3c.直线x=-2d.直线x=23.抛物线y=x2-2x-1的顶点坐标是( )a .(1,-1) b.(-1,2) c.(-1,-2) d.(1,-2)4. 二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x 的取值范围为()a.-1<x<3 b.x<-1 c. x>3 d.x<-1或x>35.如果二次函数y=ax2+bx+c(其中a、b、c为常数,a≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x的方程ax2+bx+c=0的一个正根可能是( ) 6.一个圆锥形的冰淇淋纸筒,其底面直径为,母线长为,围成这样的冰淇淋纸筒所需纸片的面积是()a. b. c. d.7.如图,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )8.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()a.10cm b.20cmc.30cmd.40cm9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象可能为10.如图,点c、d是以线段ab为公共弦的两条圆弧的中点,ab=4,点e、f分别是线段cd,ab上的动点,设af=x, ae2-fe2=y,则能表示y与x的函数关系的图象是()二.填空题(每空3分,共30分)11.函数﹣2,当x 时,函数值y随x的增大而减小.12.若抛物线与轴没有交点,则的取值范围是 .13.抛物线 y= 的开口向 .14.把抛物线y=-2(x+2)2-1先沿y轴向右平移3个单位,再沿x 轴向上平移2个单位,得到的抛物线解析式为 .15. 函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,写出a所有可能的值________________.16. 如果⊙a和⊙b相切,它们的半径分别为8cm和2cm,那么圆心距ab为 cm.18.如图,在以o为圆心的两个同心圆中,大圆的弦ab与小圆相切于点c,若弦ab的长为8cm.则圆环的面积为________cm2.19.如图是某风景区的一个圆拱形门,路面ab宽为2m,净高cd 为5m,则圆拱形门所在圆的半径为m.20.如图,长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)三.解答题(本题共8小题,共70分)21. (本小题10分)分别求出对应的二次函数的解析式:(1)已知抛物线的顶点为(-2,1),且过点(-4,3 );(2)抛物线与x轴的两个交点坐标为(-3,0)和(2,0),且它经过点(1,4).22. (本小题8分)已知二次函数y=x2+bx+2的图像经过点(-1,6)(1)求这个二次函数的关系式;(2)求二次函数图像与x轴的交点的坐标;(3)画出图像的草图,观察图像,直接写出当y>0时,x的取值范围.23.(本小题10分)已知:抛物线y =x2+ax+a﹣2.(1)求证:不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.(2)设这个二次函数的图象与轴相交于a(x1,0),b(x2,0),且x1 、x2的平方和为3,求a的值.24.(本小题9分)如图,p是⊙o的直径ab延长线上的一点, pc 切⊙o于点c,弦cd⊥ab,垂足为点e,若,.求:(1)⊙o的半径;(2)cd的长;(3)图中阴影部分的面积.25.(本小题9分)近日某小区计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子oa, o恰好在水面中心,oa为1.25m,安置在柱子顶端a处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过oa的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到oa距离lm处达到距水面最大高度2.25m.(1)请求出其中一条抛物线的解析式;(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?26.(本小题12分)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点a沿着正方体表面爬到点c1处;(2)如图2,圆锥的母线长为4cm,底面半径r= cm,一只蚂蚁欲从圆锥的底面上的点a出发,沿圆锥侧面爬行一周回到点a;(3)如图3,是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的a处,它想吃到盒内表面对侧中点b处的食物,已知盒高10cm,底面圆周长为32cm,a距下底面3cm..27.(本小题12分)如图,在平面直角坐标系xoy中,正方形oabc的边长为2cm,点a、c别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点a、b,最低点为m,且s△amb=(1)求此抛物线的解析式,并说明这条抛物线是由抛物线y=ax2 怎样平移得到的;( 2)如果点p由点a开始沿着射线ab以2cm/s的速度移动,同时点q由点b开始沿bc边以1cm/s的速度向点c移动,当其中一点到达终点时运动结束;①在运动过程中,p、q两点间的距离是否存在最小值,如果存在,请求出它的最小值;②当pq取得最小值时,在抛物线上是否存在点r,使得以p、b、q、r为顶点的四边形是梯形? 如果存在,求出r点的坐标,如果不存在,请说明理由.九年级数学参考答案一.选择题(本题共10小题,每小题3分,共30分)1.a2.b3.d4.a5.b .6. d7.d8.a9. c 10.c二.填空题(每空3分,共30分)11.>-1 12.a<-113.下 14.y=-2(x-1)2+1 15.0、1、9(少写一个扣1分)三.解答题(本题共8小题,共70分)21. (本小题10分)(1)设y=a(x+2)2+1 1分a=0.54分∴y=0.5(x+2)2+15分(2)设y=a(x+3)(x-2)1分a=-14分∴y=-(x+3)(x-2)5分22. (本小题8分)(1)b=-32分(2)(1,0)(2,0)4分(3)草图略6分(要求仅画出大致形状即可)∴x>2或x<-18分23.(本小题10分)(1)△=a2-4(a-2)2分=(a-2)2+44分∴不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.??5分(2)x1 +x2=-a1分x1 .x2=a-22分x1 2+x22=(x1 +x2)2-2 x1 .x23分=a2-2a+4=3∴a=15分24.(本小题9分)(1)切线得oc⊥pc1分设半径为r(r+1)2=r2+32分r=13分(2)ce= 2分cd= 3分(3)图中阴影部分的面积 - 3分25.(本小题9分)(1) y= -(x-1)2+2.254分(2)(x-1)2=2.25x1=2.5 或 x2= -0.5 (舍)8分答:半径至少为2.5米时9分26.(本小题12分)(1)展开图略 5 4分(2)展开图略 4 8分(3)展开图略 20 12分27.(1)y= (x-1)2- 2分向右1个单位长度,向下个单位长度3分(2)①pq2=(2-2t)2+t2=5(t- )2+ 5分存在,当t= 时,最小值 ??????? ?6分②10当ab∥qr时y=- 时(x-1)2- =- 8分x1= 或 x2=当x1= 时,说明p、b、q、r为顶点的四边形是梯形9分当x2= 时,pbrq为平行四边形,舍.10分20当br∥pq时与x2= 的情况相同,故此时不存在梯形.11分【篇二:人教版九年级数学上册全册导学案】s=txt>总结自己存在的问题,分析原因,制定弥补方案。
最新北师大版九年级上册数学导学案(全册共)
最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
学年九年级上下册数学导学案北师大版(供参考)
第一章特殊平行四边形E F D C B A F ED C BA 第一章 特殊平行四边形课题1.1菱形的性质与判定(第二课时)教师二备一、问题引入1、 叫做菱形.2、菱形的四条边 ,对角线 .3、除了菱形的定义可以判断一个平行四边形是菱形外,还有什么条件可以判断? 二、基础训练1、要使□ABCD 为菱形,下列添加条件中正确的是( )A.AB ⊥BCB.AC ⊥BDC.AC=BDD.∠ABC=∠CDA 2、如图所示,在□ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,若添加一个条件,仍无法判断四边形AECF 为菱形的是( )A.AE=AFB.EF ⊥ACC.∠B=60°D.AC 是∠EAF 的平分线三、例题展示 例1:如图所示,ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例2:如图所示,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E,DF ∥AB 交AC 于F,试判断四边形AEDF 的形状,并证明你的结论.第一章特殊平行四边形HEF GCBAD 例2:如图,已知:两条等宽的长纸条倾斜地重叠着,求证:重叠部分为菱形.四、课堂检测1、下列条件中,能判定一个四边形为菱形的条件是( )A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形2、菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm3、 菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( ) A. 43B. 83C. 103D. 1234、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,求菱形ABCD 的高DH.5、如图,已知在四边形ABCD 中,AD=BC,点E,F,G ,H 分别是AB,CD,AC,BD 的中点,求证:四边形EGFH 是菱形.教学反思C DA B 第4题第一章特殊平行四边形Q P D C B A例2:如图所示,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求证:∠PBA=∠PCQ=30°;(2)求证:PA=PQ 四.课堂检测 1 1、矩形ABCD 的边AD=3cm ,对角线AC 、BD 的夹角∠AOB=120°,则AC= . 2 2、 Rt △ABC 的两直角边长分别为3和4,则斜边上的中线是 ,斜边上的高是 . 3 3、矩形的面积为12cm 2,一条边长为3cm ,则矩形的对角线长为_______ 4 4、已知点E 是矩形ABCD 的边BC 的中点,那么S △AED =(_)ABCD S 矩形A.21B.41C.51D.615 5、矩形ABCD 沿AC 折叠,使点B 落在点E 处, 求证:EF=DF. 66、已知:在矩形ABCD 中,E 为DC 边上一点,BF ⊥AE 于点F ,且BF =BC .求证:AE =AB.7、如图,在矩形ABCD 中,对角线AC 和BD 相交于点O,过顶点C 作BD 的平行线与AB 的延长线相交于点E,求证:△ACE 是等腰三角形教学反思 第5题 第6题F B D C A E 第7题O ED CBA第一章特殊平行四边形第一章 特殊平行四边形课题 1.2矩形的性质与判定(第三课时)教师二备一、问题引入1、矩形的性质定理:除了具有与平行四边形一样的性质之外,矩形所具有的特殊性质是:①矩形的____________________都是直角; ②矩形的对角线___________.2、矩形的判定定理:①有一个角是直角的________________是矩形(定义); ②有_____________________ 是直角的四边形...是矩形; ③对角线_________ ___的平行四边形是矩形. 二、基础训练1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有(填写序号).3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.三、例题展示例1:在矩形ABCD 中,对角线AC 与BD 相交于点O,AE ⊥BD 于点E,ED=3BE,求AE 的长.第2题 21DCBAO ED CBA四、课堂检测1、如上图1,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE ⊥BD 于E,则PE+PF 的值为( )A .125B .135C .52 D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形ABDE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由: (1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?教学反思E D C B A 第2题图 BA CED F 第3题图第1题图第一章特殊平行四边形第一章特殊平行四边形第一章 特殊平行四边形单元检测一、选择题1、如图,四边形ABCD 的对角线互相平分,要使它变为矩形, 需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD2、在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( ) A.20 B.18 C.16 D.153、(2014•广西玉林市)下列命题是假命题的是( )A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形 4、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 5、下列条件 中,不能判定四边形ABCD 为矩形的是( ) A .AB ∥CD ,AB=CD,AC=BD B.∠A=∠B=∠D=90° C.AB=BC,AD=CD,∠C=90° D.AB=CD,AD=BC,∠A=906、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点, 菱形ABCD 的周长为28,则OH 的长等于( ) A3.5 B. 4 C. 7 D. 147、正方形具有而矩形不一定具有的性质是( ) A .四个角都是直角 B .对角线互相平分 C .对角相等 D .对角线互相垂直8、(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后,点D 的对应点D′的坐标是( ) A .(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题 9、(2014•江苏苏州)已知正方形ABCD 的对角线AC=,则正方形ABCD 的周长为 . 10、(2014•山东淄博)已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 .11、已知矩形ABCD 的两条对角线相交于点O,∠AOB=60°,AB=4㎝,则矩形的对角线长为 .12、( 2014•福建泉州)如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,则CD 的长为 cm .第1题图ODC BA第6题图第8题图 第12题图第4题图13、(2014•四川宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是 cm .14、(2014年四川资阳)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点, 则△BEQ 周长的最小值为 . 三.解答题15、( 2014•福建泉州)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .16、(2014•四川巴中)如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.第14题图第15题图第16题第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程5、(2014德州)方程01222=+++k k kx x 的两个实数根足42221=+x x ,则的值为第二章 一元二次方程课题 2.6 应用一元二次方程(一)教师二备一、问题引入:1、列方程解应用题的一般步骤: (1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系; (2)“设”,即设 ,设未知数的方法有直接设未知数和间接设未知数两种; (3)“列”,即根据题中的 关系列方程;(4)“解”,即求出所列方程的 ; (5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题. 重点:找出相等关系的关键是审题,审题是列方程(组)的基础,找出 是列方程(组)解应用题的关键. 二、基础检测:1、(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()28121=+x x B . ()28121=-x xC .()281=+x xD .()281=-x x2、(2014丽水)如图,某小区规划在一个长m 30、宽m 20的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为278cm ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程第2题图三、例题展示:例:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头.小岛F位于BC中点.一艘军舰从A 出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)分析:(1)图形中线段长表示的量:已知AB= = 海里,DE表示的路程,表示军舰的路程.(2)找出题目中的等量关系即:速度等量:V军舰= 时间等量:t军舰=t补给船根据分析正确设出未知数,写出解题过程.四、课堂检测:1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=152、一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x(厘米),应满足方程______ ___ _.3、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?4、(2014新疆,)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?教学反思第二章一元二次方程课题 2.6 应用一元二次方程(二)教师二备一、问题引入:常见应用题类型1、增长率问题:增长率问题分正增长率问题与负增长率问题.台元 元 降价前 降价后根据分析正确设出未知数,在练习本上写出解题过程.四、课堂检测:1、(2014•湖南衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2、2、(2013山东泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问:第二周每个旅游纪念品的销售价格为多少元?教学反思第二章 一元二次方程单元检测题(总分100分)一、选择题:(每小题4分,共32分)1、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .2=mC .2-=mD .2±≠m2、已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于( )A.-1B.0C.1D.2 3、方程x x 22=的解为( )A.2=xB.21-=x ,02=xC. 21=x ,02=xD. 0=x 4、解方程)15(3)15(2-=-x x 的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5、用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t 化为1681)47(2=-t D.02432=--y y 化为910)32(2=-y6、如果关于x 的一元二次方程02=++q px x 的两根分别为31=x ,12=x ,那么这个一元二次方程是( )A.0432=++x xB.0342=-+x xC.0342=+-x xD. 0432=-+x x7、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6- B. 1 C. 2 D. 6-或18、某型号的手机连续两次降价,每个售价由原来的1225元降到了625元,设平均每次降价的百分率为x ,列出方程正确的是( ) A .()122516252=+x B. ()625112252=+xC. ()122516252=-x D.()625112252=-x二、填空题:(每小题4分,共20分)9、一元二次方程x x 71322=-的二次项系数为: ,一次项系数为: ____ ,常数项为: ___.10、请写出一个一元二次方程使它有一个根为-3, . 11、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .12、关于x 的一元二次方程0322=-+k x x 有实数根,则k 的取值范围是 . 13、实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则, 方程()031=*+x 的解为 . 三、解答题:14、解下列方程:(每小题6分,共12分)(1) 01862=--x x (2) 752652x x x15、已知关于的方程(的两根之和为,两根之差为1,其中是△的三边长(1)求方程的根;(2)试判断△的形状.(每小题12分)16、团委准备举办学生绘画展览,在长30cm、宽为20cm的矩形画面的四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度.(每小题12分)17、果批发商场经销一种高档水果,如果每千克盈利15元,每天可售出500kg,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少30kg,现该商场要保证每天盈利8250元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(每小题12分)第三章概率的进一步认识课题 3.1用树状图或表格求概率(一)教师二备一、问题引入:A.61B.31C.21D.652、一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( ).A.501B.252C.51D.1033、三个人站成一排,通过试验可得,甲站在中间的概率为().A.61B.31C.21D.414、甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是()A.1B.21C.31D.415、某校决定从两名男生和两名女生中选出两名同学作为2014年元旦联欢晚会的主持人,则恰好选出一男一女的概率是.6、如图是某地的灌溉系统,一个漂浮物A流到B处的概率为.7、小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”,你觉得他的说法有道理吗?说明你的理由.8、有两组卡片,第一组两张卡片上都写着A、B,第二组三张卡片上都写着A、B、C.试用树状图和列表法求出从每组卡片中各抽取一张,两张都是B的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(二)教师二备一、问题引入:有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是.3、一个盒子内装有大小、形状相同的三个球,其中红球、绿球、白球各1个,小明摸出一个球再放回,再摸出一个球,则两次都摸到白球的概率是()A.21B.41C.61D.914、学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.32B.65C.61D.215、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.83B.21C.85D.436、从分别标有﹣1,1,2的三张卡片中一次抽取2张,卡片上的两个数的乘积为负数的概率是.7、如图,有A、B、C、D 四张卡片,其正面分别写有“寸、又、日”四个偏旁部首,有的能独立成字,有的能组合成字.现四张卡片背面朝上.(1)任意翻过一张卡片,能独立成字的概率为;(2)先任意翻过一张卡片作为左部偏旁,再任意翻过一张与其组合,请用列表或画树状图的方法求翻过的两张卡片恰好能组合成字的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(三)教师二备一、问题引入:1、同时抛掷硬币三次,一共有 种可能出现的结果?求三枚硬币全部正面朝上的概率 .2、用树状图和列表的方法求概率应注意各种结果出现的可能性 . 二、基础训练:1、(1)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,再放回,又取一粒,两粒都是白色的概率为_________.(2)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,不放回,又取一粒,两粒都是白色的概率为_________.2、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.323、有长度分别为2cm 、5cm 、7cm 、10cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A.14 B.12 C.23 D.34三、例题展示:例1、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英胜,否则小丽胜,用树状图或表格说明这个游戏对双方公平吗?例2:小明准备今年五一到上海参观世博会,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.(1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪同前往上海;有两次或两次以上反面向上,则由妈妈陪同前往上海.分别求由爸爸陪同小明前往上海和由妈妈陪同小明前往上海的概率. 四、课堂检测:1、一个家庭有3个小孩.这个家庭有3个男孩的概率是 ;2、如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),红 黄蓝蓝红 红 黄则转盘停止后指针指向的数字之和为偶数的概率是.3、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.4、有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为().A.15B.14C.13D.125、随机掷一枚均匀的硬币三次,三次正面都朝上的概率是.6、利用下面的转盘做“配紫色”的游戏,用树状图求出“配紫色”的概率.7、在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为.教学反思第三章概率的进一步认识课题 3.2用频率估计概率教师二备一、问题引入:能有()A.16个B.15个C.13个D.12个2、随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是.3、从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.4、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为31%,则水塘大约有鲢鱼尾.5、一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5%C.14D.186、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A.40只B.25只C.15只D.3只7、一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是_________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.教学反思课题第三章概率的进一步认识单元测试教师二备10、在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发教学反思现摸到白球的频率约为40%,估计袋中白球有_________个.11、一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是.12、抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是_________.13、小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.14、纸箱里有两双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为.三、解答题15、如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为2,那么应添加多少张“太阳”卡片?请说明理由.316、小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.(1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率;(2)请修改两人获胜的规则,使两人获胜的可能性一样大.第四章图形的相似课题 4.1成比例线段(第1课时)教师二备一、问题引入:(1)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB:CD=m:n,或写成nmCDAB=其中, ________ 叫做这个线段比的前项;________ 叫做这个线段比的后项.如果把nm表示成比值k,那么kCDAB=,或AB=k·CD.两条线段的比实际上就是两个数的比.(2)如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,CD,EH,EF的长度分别是多少?分别计算.你发现了什么?上图中________________ 是成比例线段,_______________ 也是成比例线段.四条线段a,b,c,d中,如果_______________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.如果a:b=b:c,则b2=ac,线段b叫做线段a、c的比例中项;归纳比例的基本性质___________________________________________.二、基础训练:1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是___ ___.2、线段AB=10cm,CD=15cm,则AB:CD=;a=2m,b=10cm,则a:b=.3、已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=____ .4、如果2x=5y,那么yx= .EFEHADABEFADEHAB,,,5、下面四条线段中,不能成比例的是( )A . a =3, b =6, c =2, d =4B . a =4, b =8, c =5, d =10C . a =2, b =22,c= 32 , d=3D . a=2, b=52 , c= 15 ,d=32三、例题展示: 例题1: 如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AB AD AD AE = ,那么a 的值应当是多少?四、课堂检测:1、若四条线段中a =2,b =6,c =6,且满足dcb a =,那么d =_ ____. 2、线段x 、y 满足5x =3y ,那么x :y = . 3、等腰Rt ΔABC 的直角边与斜边之比是 . 4、若917=+y y x ,则y x =__ ___.5、如图,已知d c b a ==3,则b b a += , dd c += . 6、若41=b a ,则b b a 23+的值为 .7、若532zy x ==,x +y +z =5,那么x = ,y = ,z = . 8、如果754z y x ==,那么zz y x ++= .教学反思a cbd。
人教版九年级数学上册全册导学案
戴氏教育都匀校区
主讲:冯前进老师
a b (c 为斜边,b 为直角边) ,所以 0<cosA<1。因为 sinA= ,cosA= ,所 c c
a b a2 b2 a2 b2 c2 2 1。 以 sin 2 A+cos 2 A= ( ) 2 ( ) 2 2 2 c c c c c2 c
§24.6.2 图形的变换与坐标 【一显身手】 1、(1)A(2,2) ,B(0,4) ,C(4,1) , (2)A(3,1) ,B(1,3) ,C(5,0) , (3)A(1,0) ,B(-1,2) ,C(3,-1) 2、y=-x+1;y=-x-1;y=x-1;y=x-1 A 1 (-2,3),B 1 (-7,4),C 1 (-8,5);A 2 (8,3),B 2 (13,4),C 2 (14,5) 对称轴:x=3 图形的相似单元自我检测 一、D B C D C C B A A C A 二、19:13;14、30M;15、2400;16、28;17、4 ㎝;18、42、
4 5 ; 3 3
2.令一个三角形三边分别是 4、5、x;另一三角形 y、4、5 然后,令他们 相似。根据对应边成比例,求得 x=25/4;y=16/5,检验能构成三角形,故符 合条件。 §24.3.3 相似三角形的性质 【一显身手】 1、BC=20、 =18、 =30;2、54;3、8,10;4、D;
主讲:冯前进老师
钟。 D、合作交流 同桌之间讨论 “在一个直角三角形中, 30 所对的直角边等于斜边的一半” , 的不同证明方法。 E、展示反馈 同桌之间互相提问 30 ,45 ,60 的三角函数值,达到不出错误为止;由 一名同学展示“在一个直角三角形中,30 所对的直角边等于斜边的一半” 的证明过程。 F、精讲点拨 (1)对于特殊角的三角函数值,可结合下图中的数据和各函数的定义来加 以计算,从而记住结果:
2014秋新人教版九年级数学一元二次方程导学案
目录编制说明................................................................................................................................................. - 2 -21.1 一元二次方程⑴ .......................................................................................................................... - 3 -21.1 一元二次方程⑵ .......................................................................................................................... - 5 -21.2.1 直接开平方法解一元二次方程 .............................................................................................. - 7 -21.2.2 配方法解一元二次方程........................................................................................................... - 9 -21.2.3 用公式法解一元二次方程 .......................................................................................................- 11 -21.2.4 用因式分解法解一元二次方程 ............................................................................................ - 13 -21.2 用适当的方法解一元二次方程................................................................................................. - 15 -21.2.5一元二次方程根的判别式...................................................................................................... - 19 -21.2.6 一元二次方程根与系数的关系............................................................................................. - 21 -21.3 实际问题与一元二次方程⑴..................................................................................................... - 23 -21.3 实际问题与一元二次方程⑵..................................................................................................... - 25 -21 一元二次方程(复习课)............................................................................................................. - 27 -单元测试............................................................................................................................................... - 29 -新人教版数学2014年秋期九年级《一元二次方程》导学案编制说明1、本导学案的编写时间:2014年4月至5月。
九年级数学下册导学案全册
顶点坐标是;对称轴是直线。
2.抛物线 和 的形状,位置。(填“相同”或“不同”)
3.抛物线 是由 如何平移得到的?答:
。
三、合作交流
平移前后的两条抛物线 值变化吗?为什么?
答:。
四、知识梳理
结合上图和课本第9页例3归纳:
(一)抛物线 的特点:
1.当 时,开口向;当 时,开口;
6.若二次函数 的图象过点(1,-2),则 的值是___________.
7.如图,抛物线① ② ③ ④ 开口从小到大排列是___________________________________;(只填序号)其中关于 轴对称的两条抛物线是和。
8.点A( ,b)是抛物线 上的一点,则b=;过点A作x轴的平行线交抛物线另一点B的坐标是。
5.抛物线 向左平移3个单位后,得到的抛物线的表达式为______________.
6.将抛物线 向右平移1个单位后,得到的抛物线解析式为__________.
7.抛物线 与y轴的交点坐标是_______,与x轴的交点坐标为________.
8.写出一个顶点是(5,0),形状、开口方向与抛物线 都相同的二次函数解析式_______________.
4.二次函数 .当x=2时,y=3,则这个二次函数解析式为.
5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围___;
④与的交点叫做抛物线的顶点。抛物线 的顶点坐标是;
它是抛物线的最点(填“高”或“低”),即当x=0时,y有最值等于0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学导学案
学生姓名:主备人:审核:
温馨寄语:相信自己是最棒的!
【课题】25 章节测复习3 【课时】第13.14课时
◆真题实战
三、解答题
1. (2011山东威海,21,9分)甲、乙二人玩一个游戏,每人抛一个质地均匀的小立方体(每个面分别标
有数字1、2、3、4、5、6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个游戏公平吗?试说明理由.
2. (2011四川南充市,16,6分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,
3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌.
(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。
这是个公平的游戏吗?请说明理由.
3. (2011宁波市,20,6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,
黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表或树形图法求两次都摸到红球的概率.
4. (2011浙江温州,21,10分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜
色外其余都相同.
(1) 求摸出1个球是白球的概率;
(2) 摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要
求画树状图或列表);
(3) 现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为5
7
,求n的值.
5. (2011湖南常德,20,6分)在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外
其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5 .
(1)求口袋中红球的个数.
(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求甲摸得到两个球且得2分的概率.
6.(2011江西,18,6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,
⑴请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
⑵若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
7. (2011江苏苏州,24,6分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另
外6个方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飞行的小鸟,将随意落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任选2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
8. (2011湖北武汉市,20,7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如
果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;
(2)求至少有一辆汽车向左转的概率.
9. (2011广东肇庆,18,6分)如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种.指
针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:
(1)指针指向红色;
(2)指针指向黄色或绿色.
10. (2011重庆市潼南,22,10分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加
销售量,特此设计了一个游戏,其规则是:•分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
11.(2011北京四中模拟8 )如图,一条毛毛虫要从A 处去吃树叶,毛毛虫在交叉路口B 、C 、D 、E 处选
择任何树杈都是可能的,求下列概率:
(1)吃到树叶1的概率;
(2)吃到树叶的概率;
12. (2011江苏宿迁,24,10分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、
3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.
(1)写出点M 坐标的所有可能的结果;
(2)求点M 在直线y =x 上的概率;
(3)求点M 的横坐标与纵坐标之和是偶数的概率.
转盘
1转盘
2。