函数教案

合集下载

函数的基本理解教案

函数的基本理解教案

函数的基本理解教案
教案标题:函数的基本理解教案
教学目标:
1. 理解函数的基本概念和特征
2. 能够识别和描述函数的图像
3. 能够解决与函数相关的简单问题
教学重点和难点:
重点:函数的定义、图像和应用
难点:函数的符号表示和图像的理解
教学准备:
1. 教师准备:熟悉函数的基本概念和特征,准备相关教学素材和案例
2. 学生准备:提前了解函数的基本概念,准备参与课堂讨论和练习
教学过程:
一、导入
教师通过引入一个实际生活中的例子,如投掷一个物体的高度与时间的关系,引出函数的概念,并激发学生的学习兴趣。

二、讲解
1. 函数的定义:教师讲解函数的定义,即对每一个自变量都有唯一的因变量对应的关系。

2. 函数的符号表示:介绍函数的符号表示方法,如y=f(x)或者y=2x+3等。

3. 函数的图像:通过具体的案例,讲解函数图像的绘制方法和特点。

三、练习
1. 个人练习:让学生通过简单的函数表格和图像,练习识别函数和描述函数的特征。

2. 小组讨论:组织学生分组讨论一个与函数相关的问题,并展示他们的讨论结果。

四、总结
教师对本节课的重点内容进行总结,并梳理函数的基本概念和特征,强化学生的学习效果。

五、作业布置
布置相关的练习作业,巩固学生对函数的基本理解和运用。

教学反思:
教师可以通过课后作业和课堂讨论,了解学生对函数概念的理解程度,及时调整教学内容和方法,帮助学生提高函数的基本理解能力。

八年级数学函数教案【精选6篇】

八年级数学函数教案【精选6篇】

八年级数学函数教案【精选6篇】八班级数学函数教案篇1一、教学内容:本节内容是人教版教材八班级上册,第十四章第2节乘法公式的其次课时——完全平方公式。

二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算学问的升华,它是在同学学习整式乘法后,对多项式乘法中消失的一种特别的算式的总结,体现了从一般到特别的思想方法。

完全平方公式是同学后续学好因式分解、分式运算的必备学问,它还是配方法的基本模式,为以后学习一元二次方程、函数等学问奠定了基础,所以说完全平方公式属于代数学的基础地位。

本节课内容是在同学把握了平方差公式的基础上,讨论完全平方公式的推导和应用,公式的发觉与验证为同学体验规律探究供应了一种较好的模式,培育同学逐步形成严密的规律推理力量。

完全平方公式的学习对简化某些代数式的运算,培育同学的求简意识很有关心。

使同学了解到完全平方公式是有力的数学工具。

重点:把握完全平方公式,会运用公式进行简洁的计算。

难点:理解公式中的字母含义,即对公式中字母a、b 的理解与正确应用。

三、教学目标(1)经受探究完全平方公式的推导过程,把握完全平方公式,并能正确运用公式进行简洁计算。

(2)进一步进展同学的符号感和推理力量,了解公式的几何背景,感受数与形之间的联系,学会独立思索。

(3)通过推导完全平方公式及分析结构特征,培育同学观看、分析、归纳的.力量,学会与他人合作沟通,体验解决问题的多样性。

(4)体验完全平方公式可以简化运算从而激发同学的学习爱好;在自主探究、合作沟通的学习过程中获得体验胜利的喜悦,增加学习数学的自信念。

四、学情分析与教法学法学情分析:课程标准提出数学教学活动必需建立在同学的认知进展水平和已有的学问阅历基础之上,本节课就是在前面的学习中,同学已经把握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳力量。

另外,14岁的中同学布满了奇怪心,有较强的求知欲、制造欲、表现欲,所以只有能调动同学的学习热忱,本节内容才较易把握。

《函数的概念》教学教案

《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。

2. 掌握函数的表示方法,包括列表法、图象法、解析式法。

3. 能够判断两个变量之间的关系是否为函数。

4. 理解函数的性质,如单调性、奇偶性等。

二、教学内容1. 函数的定义及概念。

2. 函数的表示方法:列表法、图象法、解析式法。

3. 判断两个变量之间的关系是否为函数。

4. 函数的性质:单调性、奇偶性。

三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。

2. 教学难点:函数的性质的理解与应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。

2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。

3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。

2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。

3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。

4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。

5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。

6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

7. 总结本节课的主要内容,布置课后作业,巩固所学知识。

六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。

2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。

3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。

七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。

2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。

3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。

八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。

数学函数备课教案模板范文

数学函数备课教案模板范文

一、课题:函数的概念与性质二、教学目标:1. 知识与技能:(1)理解函数的概念,掌握函数的定义域、值域、对应法则等基本性质;(2)能够识别常见的函数类型,如一次函数、二次函数、指数函数等;(3)掌握函数图象的绘制方法,能够根据函数性质分析图象特点。

2. 过程与方法:(1)通过实例引导学生逐步理解函数的概念,培养抽象思维能力;(2)通过小组合作、探究活动,提高学生运用函数解决实际问题的能力;(3)通过比较、分析、归纳等方法,培养学生的逻辑思维和总结能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养他们对数学的热爱;(2)培养学生的团队合作精神,提高他们的沟通与表达能力;(3)引导学生认识到数学在生活中的应用,树立正确的价值观。

三、教学重难点:1. 教学重点:函数的概念、函数图象的绘制方法;2. 教学难点:函数性质的运用、函数图象的识别与解析。

四、教学准备:1. 多媒体课件;2. 练习题;3. 函数图象绘制工具。

五、教学过程:1. 导入新课(1)通过实例引入函数的概念,如生活中的身高与体重、距离与时间等;(2)引导学生思考函数的三个要素:定义域、值域、对应法则。

2. 新授课程(1)讲解函数的定义、定义域、值域、对应法则等基本性质;(2)举例说明常见函数类型,如一次函数、二次函数、指数函数等;(3)展示函数图象的绘制方法,如描点法、函数解析式法等;(4)分析函数图象的特点,如单调性、奇偶性、周期性等。

3. 小组合作与探究(1)分组讨论,让学生根据所学知识绘制给定函数的图象;(2)小组代表分享绘制过程,分析图象特点;(3)教师总结,强调函数图象的识别与解析方法。

4. 练习与巩固(1)布置相关练习题,让学生巩固所学知识;(2)教师巡视指导,解答学生疑问。

5. 课堂小结(1)回顾本节课所学内容,总结函数的概念、性质、图象绘制方法等;(2)强调函数在实际生活中的应用,引导学生关注数学与生活的联系。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

函数概念教案

函数概念教案

函数概念教案一、教学目标1. 理解函数的概念;2. 掌握函数的定义与表示方法;3. 能够正确使用函数进行数学运算;4. 能够分析并解决与函数相关的实际问题。

二、教学内容1. 函数的定义与概念;2. 函数的表示方法与性质;3. 函数的运算与应用。

三、教学步骤步骤一:引入1. 开场导入:介绍函数的概念,以一个日常生活中的例子引入,如“每天早上起床后都要刷牙”,将这个过程比喻成函数的概念,即“起床刷牙”函数。

2. 引导学生思考一件事情或过程是否符合函数的定义,让学生尝试举其他例子。

步骤二:函数的定义与表示方法1. 讲解函数的定义:函数是一种将一个集合的元素映射到另一个集合的元素的特殊关系。

2. 引入函数的符号表示方法:f(x) = y,其中f(x)表示函数名称,x称为自变量,y称为因变量。

3. 举例解释函数的含义:比如f(x) = 2x,表示自变量x经过函数f(x)的运算后得到的结果是2倍的x。

步骤三:函数的性质与特点1. 介绍函数的定义域与值域概念:函数的定义域是自变量可能取值的集合,值域是函数的所有可能结果的集合。

2. 讲解函数的奇偶性:如果函数满足f(x) = f(-x),则称该函数为偶函数;如果函数满足f(x) = -f(-x),则称该函数为奇函数。

3. 给出一些例子并让学生判断函数的奇偶性。

步骤四:函数的运算与应用1. 讲解函数的四则运算规则:加法、减法、乘法、除法。

强调在进行运算时要根据函数的定义域与值域进行合理的运算。

2. 给出具体的函数表达式并进行运算练习,比如f(x) = 2x + 3,g(x) = x^2,让学生计算f(g(x))等。

3. 引导学生思考函数在实际生活中的应用,比如利用函数进行数据分析、计算预期收益等。

步骤五:练习与拓展1. 给学生一些函数的运算和应用题目进行练习,并讲解答案与解题思路。

2. 引导学生思考更多与函数相关的问题,如反函数、复合函数、函数的图像、函数的极限等。

函数概念教案

函数概念教案

函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。

函数的性质教案8篇

函数的性质教案8篇

函数的性质教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!函数的性质教案8篇教案是教师与学生之间沟通的桥梁,教案是教学的路线图,帮助我们不偏离轨道,以下是本店铺精心为您推荐的函数的性质教案8篇,供大家参考。

高一数学函数教案

高一数学函数教案

高一数学函数教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!高一数学函数教案高一数学函数教案(精选3篇)高一数学函数教案篇1第四课时(2.1.2.(2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。

高一数学函数教案5篇

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇函数教学教案设计篇一教学目标:(一)教学学问点:1.对数函数的概念;2.对数函数的图象和性质。

(二)本领训练要求:1.理解对数函数的概念;2.把握对数函数的图象和性质。

(三)德育渗透目标:1.用联系的观点分析问题;2.认得事物之间的相互转化。

教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发觉、探究教学辅佑襄助:多媒体教学过程:一、引入对数函数的概念由同学的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否料想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要讨论的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(∞,+∞)2.对数函数的图象和性质:由于对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.讨论指数函数时,我们分别讨论了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并察看它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即那时候,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们紧要介绍了指数函数的反函数——对数函数.而且讨论了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3函数教学教案设计篇二一、教学内容分析本节内容是高一数学必修4(苏教版)第三章《三角恒等改换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

函数数学教案

函数数学教案

函数数学教案函数数学教案1教学目标:知识与技能1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

教学难点:1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

教学过程设计:一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?函数数学教案2教学目标1.知识与技能理解一次函数与一元一次不等式的关系,发展学生的认知体系.2.过程与方法经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.3.情感、态度与价值观培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.重、难点与关键1.重点:一次函数与一元一次不等式的关系.2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围.教具准备采用“问题解决”的教学方法.教学过程一、回顾交流,知识迁移问题提出:请思考下面两个问题:(1)解不等式5x+6>3x+10;(2)当自变量x为何值时,函数y=2x-4的值大于0?学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,•解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,•因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,•这条直线上的点在x轴的上方,即这时y=2x-4>0.问题探索教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.教学形式师生互动交流,生生互动.二、范例点击,领悟新知例2用画函数图象的方法解不等式5x+4<2x+10.教师活动激发思考.学生活动小组合作讨论,运用两种思维方法解决例2问题.解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.评析两种解法都把解不等式转化为比较直线上点的位置的高低.三、随堂练习,巩固深化课本P216练习.四、课堂,发展潜能用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.五、布置作业,专题突破课本P129习题14.3第3,4,7,8,10题.函数数学教案3重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一次函数的图象教案6篇

一次函数的图象教案6篇

一次函数的图象教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!一次函数的图象教案6篇下面是本店铺收集的一次函数的图象教案6篇一次函数图像教学内容分析,供大家参阅。

函数的图像教案初中

函数的图像教案初中

教案:函数的图像教学目标:1. 理解函数的概念,掌握函数的表示方法。

2. 学会绘制简单的函数图像,并能分析图像的性质。

3. 能够运用函数图像解决实际问题。

教学重点:1. 函数的概念和表示方法。

2. 函数图像的绘制和分析。

教学难点:1. 函数图像的绘制和分析。

教学准备:1. 教学课件或黑板。

2. 函数图像的示例。

教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生思考生活中的函数例子,如温度随时间的变化等。

2. 介绍函数的表示方法,如函数表格、解析式等。

二、新课(20分钟)1. 讲解函数图像的概念,引导学生理解函数图像是对函数值与自变量之间关系的直观表示。

2. 演示如何绘制一些简单的函数图像,如线性函数、二次函数等。

3. 引导学生通过观察函数图像,分析函数的性质,如单调性、奇偶性等。

三、练习(15分钟)1. 让学生独立完成一些函数图像的绘制,并分析其性质。

2. 引导学生运用函数图像解决实际问题,如找出函数的零点、最大值等。

四、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数图像的概念和性质。

2. 强调函数图像在实际问题中的应用价值。

教学延伸:1. 引导学生进一步学习复杂函数的图像,如三角函数、指数函数等。

2. 让学生尝试运用计算机软件绘制函数图像,提高作图能力。

教学反思:本节课通过讲解和练习,让学生掌握了函数的概念和表示方法,学会了绘制和分析函数图像。

在教学过程中,要注意引导学生观察和思考函数图像的性质,培养学生的空间想象能力。

同时,结合实际问题,让学生体验函数图像在解决问题中的作用,提高学生的数学应用能力。

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 了解函数的定义和基本概念。

2. 掌握函数的域和值域的概念。

3. 理解函数的单调性、连续性和可导性的概念。

4. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。

2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。

3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。

教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。

2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。

3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。

教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。

2. 多媒体课件和教学软件,提供直观的图形和动画展示。

3. 在线学习平台和论坛,提供额外的学习资源和交流平台。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。

函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。

函数的概念说课教案8篇

函数的概念说课教案8篇

函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。

函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.
(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.
(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.
(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.
2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.
(1)对函数记号有正确的理解,准确把握其含义,了解(为常数)
与的区别与联系;
(2)在求函数定义域中注意运算的合理性与简洁性.
3.通过函数定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.
教学建议
1.教材分析
(1)知识结构
(2)重点难点分析
本小节的重点是在映射的基础上理解函数的概念.,主要包括对函数的定义,表示法,三要素的作用的理解与认识.教学难点是函数的定义和函数符号的认识与使用.
①由于学生在初中已学习了函数的变量观点下的定义,并具体研究了几类最简单的函数,对函数并不陌生,所以在高中重新定义函数时,重要的是让学生认识到它的优越性,它从根本上揭示了函数的本质,由定义域,值域,对应法则三要素构成的整体,让学生能主动将函数与函数解析式区分开来.对这一点的认识对于后面函数的性质的研究都有很大的帮助.
②在本节中首次引入了抽象的函数符号,学生往往只接受具体的函数解析式,而不
能接受,所以应让学生从符号的含义认识开始,在符号中,在法则下对
应,不是与的乘积,符号本身就是三要素的体现.由于所代表的对应法则不一定能用解析式表示,故函数表示的方法除了解析法以外,还有列表法和图象法.此
外本身还指明了谁是谁的函数,有利于我们分清函数解析式中的常量与变
量.如,它应表示以为自变量的二次函数,而如果写成,则我们就不能准确了解谁是变量,谁是常量,当为变量时,它就不代表二次函数.
2.教法建议
(1)高中对函数内容的学习是初中函数内容的深化和延伸.深化首先体现在函数的定义更具一般性.故教学中可以让学生举出自己熟悉的函数例子,并用变量观点加以解释,教师再给出
如:是不是函数的问题,用变量定义解释显得很勉强,而如果从集合与映射的观点来解释就十分自然,所以有重新认识函数的必要.
(2)对函数是三要素构成的整体的认识,一方面可以通过对符号的了解与使用来强化,另一方面也可通过判断两个函数是否相同来配合.在这类题目中,可以进一步体现出三要素整体的作用.
(3)关于对分段函数的认识,首先它的出现是一种需要,可以给出一些实际的例子来说明这一点,对自变量不同取值,用不同的解析式表示同一个函数关系,所以是一个函数而不是几个
函数,其次还可以举一些数学的例子如这样的函数,若利用绝对值的定义它就可以写
成,这就是一个分段函数,从这个题中也可以看出分段函数是一个函数.
教学设计方案
2.2 函数
教学目标:
1.理解函数的概念,了解函数三要素.
2.通过对函数抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.
3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.
教学重点难点:重点是在映射的基础上理解函数的概念;
难点是对函数抽象符号的认识与使用.
教学用具:投影仪
教学方法:自学研究与启发讨论式.
教学过程:
一、复习与引入
今天我们研究的内容是函数的概念.函数并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对函数的认识,如函数是什么?学过什么函数?
(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)
学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.
提问1.是函数吗?
(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为
是函数,理由是可以可做.)
教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.
二、新课
现在请同学们打开书翻到第50 页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)
提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.
学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.
(板书)2.2函数
一、函数的概念
1.定义:如果A,B都是非空的数集,那么A到B的映射就叫做A到B的函
数,记作.其中原象集合A称为定义域,象集C称为值域.问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)
引导学生发现,函数是特殊的映射,特殊在集合A,B必是非空的数集.
2.本质:函数是非空数集到非空数集的映射.(板书)
然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.
此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.
教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?
从映射角度看可以是其中定义域
是,值域是.
从刚才的分析可以看出,映射观点下的函数定义更具一般性,更能揭示函数的本质.这也是我们后面要对函数进行理论研究的一种需要.所以我们着重从映射角度再来认识函数.
3.函数的三要素及其作用(板书)
函数是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它.
例1 以下关系式表示函数吗?为什么?
(1); (2).
解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.
(2) 由有意义得,解得.定义域为,值域为.
由以上两题可以看出三要素的作用
(1)判断一个函数关系是否存在.(板书)
例2 下列各函数中,哪一个函数与是同一个函数.
(1); (2) (3); (4)

解:先认清,它是(定义域)到(值域)的映射,其中

再看(1)定义域为且,是不同的; (2)定义域为,是不同的;
(4),法则是不同的;
而(3)定义域是,值域是,法则是乘2减1,与完全相同.
求解后要求学生明确判断两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.
(2)判断两个函数是否相同.(板书)
下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数
的表示法,其实表示法有很多,不过首先应从函数记号说起.
4.对函数符号的理解(板书)
首先让学生知道与的含义是一样的,它们都表示是的函数,
其中是自变量,是函数值,连接的纽带是法则,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明.
例3已知函数试求(板书)
分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.
含义1:当自变量取3时,对应的函数值即;
含义2:定义域中原象3的象,根据求象的方法
知.而应表示原象的象,即.
计算之后,要求学生了解与的区别,是常量,而是变
量,只是中一个特殊值.
最后指出在刚才的题目中是用一个具体的解析式表示的,而以后研究的函
数不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.
三、小结
1. 函数的定义
2. 对函数三要素的认识
3. 对函数符号的认识
四、作业:略
五、板书设计
探究活动
函数在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与函数有关的问题如在我们身边就有不少分段函数的实例,下面就是一个生活中的分段函数.
夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱.
同学们,你知道顾客是怎样店主坑人了呢?其实这样的数学问题在我们身边有很多,只要你注意观察,积累,并学以至用,就能成为一个聪明人,因为数学可以使人聪明起来.
答案:
若西瓜重9斤以下则最多应付4.5元,若西瓜重9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.
1.函数的定义,函数的三要素(函数相同的条件).
集合A


−→
−f
对应关系
集合B
当对应关系符合下面的条件之一时,则称f:A→B为从集合A到集合B的一个函数
(1)1


−→
−f
对应关系
1(集合A和B一一对应)
(2)2或者更多


−→
−f
对应关系
1(集合A多个对B一个)
误区:1


−→
−f
对应关系
2或者更多×
构成函数的三要素:
定义域、对应关系和值域
函数相同:当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相关文档
最新文档