Group velocity and Phase velocity

合集下载

光电技术专业英语词汇

光电技术专业英语词汇

《光电技术》专业英语词汇1.Absorption coefficient 吸收系数2.Acceptance angle 接收角3.fibers 光纤4.Acceptors in semiconductors 半导体接收器5.Acousto-optic modulator 声光调制6.Bragg diffraction 布拉格衍射7.Air disk 艾里斑8.angular radius 角半径9.Airy rings 艾里环10.anisotropy 各向异性11.optical 光学的12.refractive index 各向异性13.Antireflection coating 抗反膜14.Argon-ion laser 氩离子激光器15.Attenuation coefficient 衰减系数16.Avalanche 雪崩17.breakdown voltage 击穿电压18.multiplication factor 倍增因子19.noise 燥声20.Avalanche photodiode(APD) 雪崩二极管21.absorption region in APD APD 吸收区域22.characteristics-table 特性表格23.guard ring 保护环24.internal gain 内增益25.noise 噪声26.photogeneration 光子再生27.primary photocurrent 起始光电流28.principle 原理29.responsivity of InGaAs InGaAs 响应度30.separate absorption and multiplication(SAM) 分离吸收和倍增31.separate absorption grading and multiplication(SAGM) 分离吸收等级和倍增32.silicon 硅33.Average irradiance 平均照度34.Bandgap 带隙35.energy gap 能级带隙36.bandgap diagram 带隙图37.Bandwidth 带宽38.Beam 光束39.Beam splitter cube 立方分束器40.Biaxial crystal双s 轴晶体41.Birefringent 双折射42.Bit rate 位率43.Black body radiation law 黑体辐射法则44.Bloch wave in a crystal 晶体中布洛赫波45.Boundary conditions 边界条件46.Bragg angle 布拉格角度47.Bragg diffraction condition 布拉格衍射条件48.Bragg wavelength 布拉格波长49.Brewster angle 布鲁斯特角50.Brewster window 布鲁斯特窗51.Calcite 霰石52.Carrier confinement 载流子限制53.Centrosymmetric crystals 中心对称晶体54.Chirping 啁啾55.Cladding 覆层56.Coefficient of index grating 指数光栅系数57.Coherence连贯性pensation doping 掺杂补偿59.Conduction band 导带60.Conductivity 导电性61.Confining layers 限制层62.Conjugate image 共轭像63.Cut-off wavelength 截止波长64.Degenerate semiconductor 简并半导体65.Density of states 态密度66.Depletion layer 耗尽层67.Detectivity 探测率68.Dielectric mirrors 介电质镜像69.Diffraction 衍射70.Diffraction g rating 衍射光栅71.Diffraction grating equation 衍射光栅等式72.Diffusion current 扩散电流73.Diffusion flux 扩散流量74.Diffusion Length 扩散长度75.Diode equation 二极管公式76.Diode ideality factor 二极管理想因子77.Direct recombinatio直n接复合78.Dispersion散射79.Dispersive medium 散射介质80.Distributed Bragg reflector 分布布拉格反射器81.Donors in semiconductors 施主离子82.Doppler broadened linewidth 多普勒扩展线宽83.Doppler effect 多普勒效应84.Doppler shift 多普勒位移85.Doppler-heterostructure 多普勒同质结构86.Drift mobility 漂移迁移率87.Drift Velocity 漂移速度88.Effective d ensity o f s tates 有效态密度89.Effective mass 有效质量90.Efficiency 效率91.Einstein coefficients 爱因斯坦系数92.Electrical bandwidth of fibers 光纤电子带宽93.Electromagnetic wave 电磁波94.Electron affinity 电子亲和势95.Electron potential energy in a crystal 晶体电子阱能量96.Electro-optic effects 光电子效应97.Energy band 能量带宽98.Energy band diagram 能量带宽图99.Energy level 能级100.E pitaxial growth 外延生长101.E rbium doped fiber amplifier 掺饵光纤放大器102.Excess carrier distribution 过剩载流子扩散103.External photocurrent 外部光电流104.Extrinsic semiconductors 本征半导体105.Fabry-Perot laser amplifier 法布里-珀罗激光放大器106.Fabry-Perot optical resonator 法布里-珀罗光谐振器107.Faraday effect 法拉第效应108.Fermi-Dirac function 费米狄拉克结109.Fermi energy 费米能级110.Fill factor 填充因子111.Free spectral range 自由谱范围112.Fresnel’s equations 菲涅耳方程113.Fresnel’s optical indicatrix 菲涅耳椭圆球114.Full width at half maximum 半峰宽115.Full width at half power 半功率带宽116.Gaussian beam 高斯光束117.Gaussian dispersion 高斯散射118.Gaussian pulse 高斯脉冲119.Glass perform 玻璃预制棒120.Goos Haenchen phase shift Goos Haenchen 相位移121.Graded index rod lens 梯度折射率棒透镜122.Group delay 群延迟123.Group velocity 群参数124.Half-wave plate retarder 半波延迟器125.Helium-Neon laser 氦氖激光器126.Heterojunction 异质结127.Heterostructure 异质结构128.Hole 空穴129.Hologram 全息图130.Holography 全息照相131.Homojunction 同质结132.Huygens-Fresnel principle 惠更斯-菲涅耳原理133.Impact-ionization 碰撞电离134.Index matching 指数匹配135.Injection 注射136.Instantaneous irradiance 自发辐射137.Integrated optics 集成光路138.Intensity of light 光强139.Intersymbol interference 符号间干扰140.Intrinsic concentration 本征浓度141.Intrinsic semiconductors 本征半导体142.Irradiance 辐射SER 激光144.active medium 活动介质145.active region 活动区域146.amplifiers 放大器147.cleaved-coupled-cavity 解理耦合腔148.distributed Bragg reflection 分布布拉格反射149.distributed feedback 分布反馈150.efficiency of the He-Ne 氦氖效率151.multiple quantum well 多量子阱152.oscillation condition 振荡条件ser diode 激光二极管sing emission 激光发射155.LED 发光二极管156.Lineshape function 线形结157.Linewidth 线宽158.Lithium niobate 铌酸锂159.Load line 负载线160.Loss c oefficient 损耗系数161.Mazh-Zehnder modulator Mazh-Zehnder 型调制器162.Macrobending loss 宏弯损耗163.Magneto-optic effects 磁光效应164.Magneto-optic isolator 磁光隔离165.Magneto-optic modulator 磁光调制166.Majority carriers 多数载流子167.Matrix emitter 矩阵发射168.Maximum acceptance angle 最优接收角169.Maxwell’s wave equation 麦克斯维方程170.Microbending loss 微弯损耗171.Microlaser 微型激光172.Minority carriers 少数载流子173.Modulated directional coupler 调制定向偶合器174.Modulation of light 光调制175.Monochromatic wave 单色光176.Multiplication region 倍增区177.Negative absolute temperature 负温度系数 round-trip optical gain 环路净光增益179.Noise 噪声180.Noncentrosymmetric crystals 非中心对称晶体181.Nondegenerate semiconductors 非简并半异体182.Non-linear optic 非线性光学183.Non-thermal equilibrium 非热平衡184.Normalized frequency 归一化频率185.Normalized index difference 归一化指数差异186.Normalized propagation constant 归一化传播常数187.Normalized thickness 归一化厚度188.Numerical aperture 孔径189.Optic axis 光轴190.Optical activity 光活性191.Optical anisotropy 光各向异性192.Optical bandwidth 光带宽193.Optical cavity 光腔194.Optical divergence 光发散195.Optic fibers 光纤196.Optical fiber amplifier 光纤放大器197.Optical field 光场198.Optical gain 光增益199.Optical indicatrix 光随圆球200.Optical isolater 光隔离器201.Optical Laser amplifiers 激光放大器202.Optical modulators 光调制器203.Optical pumping 光泵浦204.Opticalresonator 光谐振器205.Optical tunneling光学通道206.Optical isotropic 光学各向同性的207.Outside vapor deposition 管外气相淀积208.Penetration depth 渗透深度209.Phase change 相位改变210.Phase condition in lasers 激光相条件211.Phase matching 相位匹配212.Phase matching angle 相位匹配角213.Phase mismatch 相位失配214.Phase modulation 相位调制215.Phase modulator 相位调制器216.Phase of a wave 波相217.Phase velocity 相速218.Phonon 光子219.Photoconductive detector 光导探测器220.Photoconductive gain 光导增益221.Photoconductivity 光导性222.Photocurrent 光电流223.Photodetector 光探测器224.Photodiode 光电二极管225.Photoelastic effect 光弹效应226.Photogeneration 光子再生227.Photon amplification 光子放大228.Photon confinement 光子限制229.Photortansistor 光电三极管230.Photovoltaic devices 光伏器件231.Piezoelectric effect 压电效应232.Planck’s radiation distribution law 普朗克辐射法则233.Pockels cell modulator 普克尔斯调制器234.Pockel coefficients 普克尔斯系数235.Pockels phase modulator 普克尔斯相位调制器236.Polarization 极化237.Polarization transmission matrix 极化传输矩阵238.Population inversion 粒子数反转239.Poynting vector 能流密度向量240.Preform 预制棒241.Propagation constant 传播常数242.Pumping 泵浦243.Pyroelectric detectors 热释电探测器244.Quantum e fficiency 量子效应245.Quantum noise 量子噪声246.Quantum well 量子阱247.Quarter-wave plate retarder 四分之一波长延迟248.Radiant sensitivity 辐射敏感性249.Ramo’s theorem 拉莫定理250.Rate equations 速率方程251.Rayleigh criterion 瑞利条件252.Rayleigh scattering limit 瑞利散射极限253.Real image 实像254.Recombination 复合255.Recombination lifetime 复合寿命256.Reflectance 反射257.Reflection 反射258.Refracted light 折射光259.Refractive index 折射系数260.Resolving power 分辩力261.Response time 响应时间262.Return-to-zero data rate 归零码263.Rise time 上升时间264.Saturation drift velocity 饱和漂移速度265.Scattering 散射266.Second harmonic generation 二阶谐波267.Self-phase modulation 自相位调制268.Sellmeier dispersion equation 色列米尔波散方程式269.Shockley equation 肖克利公式270.Shot noise 肖特基噪声271.Signal to noise ratio 信噪比272.Single frequency lasers 单波长噪声273.Single quantum well 单量子阱274.Snell’s law 斯涅尔定律275.Solar cell 光电池276.Solid state photomultiplier 固态光复用器277.Spectral intensity 谱强度278.Spectral responsivity 光谱响应279.Spontaneous emission 自发辐射280.stimulated emission 受激辐射281.Terrestrial light 陆地光282.Theraml equilibrium 热平衡283.Thermal generation 热再生284.Thermal velocity 热速度285.Thershold concentration 光强阈值286.Threshold current 阈值电流287.Threshold wavelength 阈值波长288.Total acceptance angle 全接受角289.Totla internal reflection 全反射290.Transfer distance 转移距离291.Transit time 渡越时间292.Transmission coefficient 传输系数293.Tramsmittance 传输294.Transverse electric field 电横波场295.Tranverse magnetic field 磁横波场296.Traveling vave lase 行波激光器297.Uniaxial crystals 单轴晶体298.UnPolarized light 非极化光299.Wave 波300.W ave equation 波公式301.Wavefront 波前302.Waveguide 波导303.Wave n umber 波数304.Wave p acket 波包络305.Wavevector 波矢量306.Dark current 暗电流307.Saturation signal 饱和信号量308.Fringing field drift 边缘电场漂移plementary color 补色310.Image lag 残像311.Charge handling capability 操作电荷量312.Luminous quantity 测光量313.Pixel signal interpolating 插值处理314.Field integration 场读出方式315.Vertical CCD 垂直CCD316.Vertical overflow drain 垂直溢出漏极317.Conduction band 导带318.Charge coupled device 电荷耦合组件319.Electronic shutter 电子快门320.Dynamic range 动态范围321.Temporal resolution 动态分辨率322.Majority carrier 多数载流子323.Amorphous silicon photoconversion layer 非晶硅存储型324.Floating diffusion amplifier 浮置扩散放大器325.Floating gate amplifier 浮置栅极放大器326.Radiant quantity 辐射剂量327.Blooming 高光溢出328.High frame rate readout mode 高速读出模式329.Interlace scan 隔行扫描330.Fixed pattern noise 固定图形噪声331.Photodiode 光电二极管332.Iconoscope 光电摄像管333.Photolelctric effect 光电效应334.Spectral response 光谱响应335.Interline transfer CCD 行间转移型CCD336.Depletion layer 耗尽层plementary metal oxide semi-conductor 互补金属氧化物半导体338.Fundamental absorption edge 基本吸收带339.Valence band 价带340.Transistor 晶体管341.Visible light 可见光342.Spatial filter 空间滤波器343.Block access 块存取344.Pupil compensation 快门校正345.Diffusion current 扩散电流346.Discrete cosine transform 离散余弦变换347.Luminance signal 高度信号348.Quantum efficiency 量子效率349.Smear 漏光350.Edge enhancement 轮廓校正351.Nyquist frequency 奈奎斯特频率352.Energy band 能带353.Bias 偏压354.Drift current 漂移电流355.Clamp 钳位356.Global exposure 全面曝光357.Progressive scan 全像素读出方式358.Full frame CCD 全帧CCD359.Defect correction 缺陷补偿360.Thermal noise 热噪声361.Weak inversion 弱反转362.Shot noise 散粒噪声363.Chrominance difference signal 色差信号364.Colotremperature 色温365.Minority carrier 少数载流子366.Image stabilizer 手振校正367.Horizontal CCD 水平CCD368.Random noise 随机噪声369.Tunneling effect 隧道效应370.Image sensor 图像传感器371.Aliasing 伪信号372.Passive 无源373.Passive pixel sensor 无源像素传感器374.Line transfer 线转移375.Correlated double sampling 相关双采样376.Pinned photodiode 掩埋型光电二极管377.Overflow 溢出378.Effective pixel 有效像素379.Active pixel sensor 有源像素传感器380.Threshold voltage 阈值电压381.Source follower 源极跟随器382.Illuminance 照度383.Refraction index 折射率384.Frame integration 帧读出方式385.Frame interline t ransfer CCD 帧行间转移CCD 386.Frame transfer 帧转移387.Frame transfer CCD 帧转移CCD388.Non interlace 逐行扫描389.Conversion efficiency 转换效率390.Automatic gain control 自动增益控制391.Self-induced drift 自激漂移392.Minimum illumination 最低照度393.CMOS image sensor COMS 图像传感器394.MOS diode MOS 二极管395.MOS image sensor MOS 型图像传感器396.ISO sensitivity ISO 感光度。

无损检测 超声导波检测 第1部分:总则-最新国标

无损检测 超声导波检测 第1部分:总则-最新国标

目次3 术语和定义 ......................................................................... 1 1范围. (1)2规范性引用文件.....................................................................14 方法概要 (4)超声导波检测原理 (4)超声导波检测技术分类 (5)优点及特点 (5)局限性 (5)应用 ........................................................................... 5 5 安全要求 ........................................................................... 6 6 检测人员要求 ....................................................................... 6 7 检测工艺规程 .. (6)通用检测工艺规程 (6)检测作业指导书或工艺卡 (7)8 超声导波检测技术的选择 ............................................................. 7 9 检测设备和器材 (8)检测仪器系统构成 (8)超声导波传感器 (8)激励单元 (9)信号处理单元 (9)信号采集与分析软件 (9)试样 (9)检测设备的维护和校准 (10)10 检测程序 (11)检测前的准备 (11)导波检测模态与频率的选择 (11)距离-幅度曲线的绘制 (13)传感器的安装 (14)检测 (14)对比检测 (15)11 检测结果的评价和处理 (16)检测结果的分级 (16)不可接受信号的确定与处理 (16)12 检测记录与报告 (16)检测记录 (16)检测报告 (17)无损检测超声导波检测第1部分:总则1 范围本文件规定了超声导波对不同固体材料的结构件进行检测的一般原则。

8.4 光的相速度与群速度

8.4 光的相速度与群速度

一. 相速度
迄今为止,对于各向同性介质在提到波速时,都指的是 波面(等位相面)传播的速度,即相速度p,在惠更斯 原理中如此,在波函数的表达式中也如此。
物理科学与信息工程学院 2
理想的单色平面波的波动方程可表示为:
E A cos(t kr)
上式=2,k=2/都是不随t和r改变的量。 因此,相位不变的条件为: 两边微分得: 即
ddt dkdr 0
因此,群速度可表示为:
dr d g dt dk
物理科学与信息工程学院 7
物理科学与信息工程学院 8
三. 群速与相速的关系
d p d d ( p k ) g p k dk dk dk

(1)
k
2
2

所以
dk

2
d
d dk 2
dr p dt k
dt kdr 0
t kr 常数
可见,相速度是严格单色光所特有的一种速度。严格 的单色光在空间延续和时间延续都是无穷无尽的余弦 或正弦波。但这种波是理想的极限情况。 物理科学与信息工程学院 3
在真空中所有波长的电磁以同一相速c传播,复色 光可视为若干单色波列的叠加,所以复色光在真 空中传播的相速度就等于单色光在真空中传播的 相速度。
§8.4 光的相速度与群速度
Phase Velocity and Group Velocity
根据光的微粒说,光在两种媒质界面上折射时, sini1/sini2=υ2/υ1,而根据光波动说sini1/sini2=1/2. 傅科做实验测定空气和水中光速之比近于4:3,此数 值与空气到水的折射率相符,从而判定光的波动说 的正确性。 虽然在傅科实验完成之前,光的波动说已为大量事实 (如干涉、衍射、偏振等)所证明,但傅科的实验仍被 认为是对惠斯原理最直接和最有力的支持。 物理科学与信息工程学院 1

相速度和群速度 (Phase velocity and group velocity )

相速度和群速度 (Phase velocity and group velocity )

2. 复色波的速度 该式表明:这个二色波是如图所示的、频率为 、 振幅随时间和空间在 0 到 2E0 之间缓慢变化的光波。 这种复色波可以叫做波群或振幅调制波。 x
振动的合成.exe
2. 复色波的速度
对于上述复色波,其传播速度包含两种含义: 等相位面的传播速度,称为相速度; 等振幅面的传播速度,称为群速度。 形象一点说,你拿电钻在一个很坚固的墙上钻洞, 你会觉得电钻的钻头的螺纹在旋转时似乎以高速前 进,但这只是你的错觉,因为你看到的是螺纹的 “相速度”,虽然很快,但是你的电钻却很慢很慢 地向墙内推进,也就是说电钻的总的向前推进的速 度就是“群速度”。
n
折射率随着波长 增加(或光频率的 减少)而减小的色 散叫正常色散。
由 k=2 / ,有dk=-(2 / 2)d ,可将上式变为
d g = d (77)
d(k ) d g +k dk dk
k=2 / dk=-(2 / 2)d
(76)
2)复色波的群速度
由=c/n,有d =- (c/n2)dn,上式还可表示为
dz m g = = dt km k
EE (z, t )cos (t kz)
E (z,t )=2E0 cos (mt km z)
(73)
m t km z =常数
dz m k m 0 dt dz m dt km
1 1 m = (1 2 )= 2 2 1 1 km = (k1 k2 )= k 2 2 dz m
2. 复色波的速度
2,则 若 E01 E02 E0 且 1 2 1、
EE (z, t )cos (t kz) (73)
式中
E (z ,t )=2E0 cos (m t km z) 1 1 m = (1 2 )= 2 2 1 1 km = (k1 k2 )= k 2 2 1 = (1 2 ) 2 1 k = (k1 k2 ) 2

相速度和群速度

相速度和群速度
0.975 0.997 0.998 0.999 1.000 1.0011.002 1.003
/0
2)复色波的群速度
应当指出:(1)复色波是由许多单色光波组成的,
只有复色波的频谱宽度Δ 很窄,各个频率集中在
某一“中心”频率附近时,才能构成(73)式所示
的波,上述关于复色波速度的讨论才有意义。如果
g

dz dt
= m
km
=

k
E E(z, t)co(s t kz)
(73)
E(z,t)=2E0 co( s mt kmz)
mt km z=常数
m
km
dz dt

0
dz m
dt km
m
=
1 2
(1

2
)=
1 2km=1 2(k1
k2
)=
1 2
k
就有相速度大于真空中光速度 的情况,这并不违
背相对论的结论。
c
(71)
k rr
2. 复色波的速度
如前所述,实际上的光波都不是严格的单色光波,而 是复色波,它的光电场是所包含各个单色光波电场的 叠加,即
N
E E0l cos(lt kl z)
(72)
l =1
二色波的光电场为
(r)
(70)

ds = d t r0
该 (r) 就是等相位面的传播速度,简称为相速度。
r0 r0 cos
由于等相位面的梯度平
行于 r0,因此 =0。则
r0 /
1. 单色光波的速度 对于波矢量为 k 的平面单色光波,其空间相位项为
2. 复色波的速度

狭义相对论

狭义相对论

第七节 狭义相对论1. A positive kaon (K +) has a rest mass of 494 MeV/c 2, whereas a proton has a rest mass of 938 MeV/c2. If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly (A) 0.25c (B) 0.40c (C) 0.55c (D) 0.70c (E) 0.85c解:相对论质量变化公式2201c v m m -=,c c c m m v 85.0938********≈⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=。

选(E )。

Questions 2-3In an inertial frame S, a particle has a momentum (P x , P y , P z ) = (5, 3, 2) MeV/c and a totalenergy = 10 MeV .2. The speed u of the particle as measured in a frame S is most nearly (A) c 83 (B) c 52 (C) c 21 (D) c 53 (E)c 54 解:由相对论公式224202c p c m E +=,静质量为22220MeV/c 8/)2925(100 =++-=-=c cp c E m ,而其运动质量为2220MeV/c 101=-=cv m m ,由此解得c v 53=。

选(D)。

3. Which of the following combinations of momentm p’ and energy E’ could represent the motion of the particle described above as observed in another inertial frame S’ moving with an unspecified velocity v relative to s? (A) ()MeV/c 8,0,0='p , MeV 128='E(B) ()MeV/c 2,0,8='p , MeV 10='E(C) ()MeV/c 6,4,31='p ,MeV 949='E(D) ()MeV/c 200,30,50-='p , MeV 100='E(E) ()MeV/c 0,10,100='p ,MeV 000,10='E解:间隔420222 c m c p E =-为守恒量,与所选参考系无关,可通过这一条验证只有选项(A )2222MeV 64'' =-c p E 。

是相速度还是群速度

是相速度还是群速度
参 考 文 献
[1 ] 李复 ,王秉彦 . 场源对称性与场的对称性 . 工科物理 , 1997 ,7 (3) : 1 [2 ] 张志铭 . 物理中张 量 . 北 京 : 北 京 师 范 大 学 出 版 社 , 1985. 2023 [3 ] Arf ken G. 矢量 、 张量和矩阵 . 曹富田译 . 北京 : 计量出
dω ν= c , = v = c , 可知 v p = v c , 即光波恒有 λ dk
) 的值多大 , 相速度 因此无论波长 λ( 或频率 ν c 是一个常数 , 各种不同波长的波叠加结果 ,
吴颐译 . 北京 : 高等教育出版社 ,1987. 5562.
[5 ] 倪光炯 , 李洪芳 . 近代物理 . 上海 : 上海科学技术出版

( 12) 式和 ( 5 ) 式联立即得德布罗 现把 ( 13) 式 、
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
16
物理与工程 Vol. 12 No . 6 2002
t k v
π 2
当包含更多的频率成分时 , 则合成起来 的 “波包” 的轮廓在空间移动的速率就会跟每 个个别波动的特征速率即相速度不一样了 , 这个速率称为 “群速度” , 一般用 v g 来表示 , 可以证明 [ 5 ] :
vg =
dω dk
ν值 , 是 应当注意 , 由 ( 10 ) 式所给出的 h 与实验室参照系中测得电子总能量 E = mc2 相等的 , 即 ν h m 0 c2 0 ν= h = = mc2 1 - v 2 / c2 1 - v 2 / c2 而由 ( 8) 式所描述的波的波长 λ, 则应用相速 度 v p 对频率ν的比值来描述 : λ=

超声波在液体中相速与群速的测量(1)

超声波在液体中相速与群速的测量(1)

图 4 相速测量波形 图
2) 群速的测量 信号改用脉冲输出, 由傅氏分析可知, 脉冲是 由基频与多次谐频的信号组合而成, 是多种频率 的组合信号, 示波器上的显示见图 5. 由图 5 可以 清楚地观察到波包以及脉冲信号的延迟时间 $t. 移动接收头, 改变 $l, 用示波器测量出延迟的时 间 $t, 根据式( 5) 作出 $l- $t 特性曲线, 其斜率即 群速.
图 7 $t- $l 特性曲线
5 结束语
本文通过实验讨论了相速与群速间的关系: CG = Cp - KddCKp . 波速的大小与周围环境的温度 有一定的关系, 但本文中的实验均在室温中进行 的, 故没有讨论波速与温度的关系.
参考文献:
[ 1] 赵凯 华, 钟 锡 华. 光 学 [ M ] . 北 京: 北 京 大学 出 版 社, 1984.
的群速. 所以等幅值的方程为
AXt- Akx = 常数 ,
( 4)
将式( 4) 两侧微分, 得 AXdt - Akdx = 0, 则群速 CG

CG =
dx dt
=
AX Ak
,
( 5)
/ 第 6 届全国高等学校物理实验教学研讨会0 论文 收稿日期: 2010- 06- 02
作者简介: 潘 帅( 1985- ) , 男, 安徽南陵人, 浙江大学理学部物理系 2002 本科生. 指导教师: 陈洪山( 1952- ) , 男, 江苏大丰人, 浙江大学物理系高级工程师, 从事物理实验教 学工作.
[ 2] 孙燕 华, 张 家 琨. 光 学 [ M ] . 杭 州: 杭 州 大学 出 版 社, 1991. ( 下转第 45 页)
第4期
张正康, 等: 基于超声波干涉的峰谷法计算声速值及实验误差探讨

单模波导条件和有效折射率的关系

单模波导条件和有效折射率的关系

单模波导条件和有效折射率的关系1.单模波导条件是指波导的纵向尺寸远小于光波波长。

The single-mode waveguide condition refers to the fact that the longitudinal dimension of the waveguide is much smaller than the wavelength of light.2.当波导的尺寸小于光波波长时,只有基本模式才能存在于波导中。

When the size of the waveguide is smaller than the wavelength of light, only the fundamental mode can exist in the waveguide.3.有效折射率描述了波导中光的传播速度与自由空间中光传播速度之比。

The effective refractive index describes the ratio of the propagation velocity of light in a waveguide to that in free space.4.有效折射率取决于波导的几何结构和材料折射率。

The effective refractive index depends on the geometric structure of the waveguide and the refractive index of the material.5.波导的有效折射率通常比周围介质的折射率大。

The effective refractive index of a waveguide is usually larger than the refractive index of the surrounding medium.6.模拟计算可以用来确定波导的有效折射率。

第三章 群速度色散.

第三章 群速度色散.

ave 1 2 / 2 and 1 2 / 2
E0 exp i (kave x kx avet t )
Etot ( x, t ) E0 exp i(kave x kx avet t ) exp i (kx t ) E0 exp i(kave x avet ) exp{ i ( kx t )} 2 E0 exp i(kave x avet ) cos(kx t )
Etot ( x, t ) E0 exp(i1t ) E0 exp(i2t ) 2 2 So: Etot ( x, t ) E0 exp i (avet t ) E0 exp i (avet t ) E0 exp(iavet )[exp(it ) exp(it )] 2 E0 exp(iavet ) cos(t ) Taking the real part yields the product of a rapidly varying cosine (ave ) and a slowly varying cosine ( ).
1 Az, T 2
Where
i ~ i 2 3 A0, exp 2 3 iT d 6 2


~ A0, A0, T expiT d

22
GVD 对Gaussian脉冲的影响
Consider the propagation of an initial Gaussian pulse,
LD T00
T / T0 ,
A z, P0 e z / 2U z,
NLS方程变换成如下归一化形式: U sgn 2 2U ez 2 i U U 2 z 2LD LNL

光电子学与光子学讲义-作业答案(第1、2章)13版

光电子学与光子学讲义-作业答案(第1、2章)13版

第一章1.10 Refractive index(a) Consider light of free-space wavelength 1300 nm traveling in pure silica medium. Calculate the phase velocity and group velocity of light in this medium. Is the group velocity ever greater than the phase velocity?(b) What is the Brewster angle(the polarization angle qp) and the critical angle(qc) for total internal reflection when the light wave traveling in this silica medium is incident on a silica/air interface. What happens at the polarization angle?(c) What is the reflection coefficient and reflectance at normal incidence when the light beam traveling in the silica medium is incident on a silica/air interface?(d) What is the reflection coefficient and reflectance at normal incidence when a light beam traveling in air is incident on an air/silica interface? How do these compare with part (c) and what is your conclusion?1.18 Reflection at glass-glass and air-glass interfaceA ray of light that is traveling in a glass medium of refractive index n1=1.460 becomes incident on a less dense glass medium of refractive index n2=1.430. Suppose that the free space wavelength of the light ray is 850 nm.(a) What should the minimum incidence angle for TIR be?(b) What is the phase change in the reflected wave when the angle of incidence qi =85°and when qi =90°?(c) What is the penetration depth of the evanescent wave into medium 2 when qi =85°and when qi =90°?(d) What is the reflection coefficient and reflection at normal incidence (qi =0 °)when the light beam traveling in the glass medium (n=1.460) is incident on a glass-air interface? (e) What is the reflection coefficient and reflectance at normal incidence when a light beam traveling in air is incident on an air/-glass interface (n=1.460)? How do these compare with part (d) and what is your conclusion?1.20 TIR and polarization at water-air interface(1) Given that the refractive index of water is about 1.33, what is the polarization angle for light traveling in air and reflected from the surface of the water?(2) consider a diver in sea pointing a flashlight towards the surface of the water. What is the critical angle for the light beam to be reflected from the water surface?1.22 phase changes on TIRConsider a lightwave of wavelength 870nm traveling in a semiconductor medium (GaAs) of refractive index 3.6. It is incident on a different semiconductor medium (AlGaAs) of refractive index 3.4, and the angle of incidence is 80o. Will this result in total internal reflection? Calculate the phase change in the parallel and perpendicular components of the reflected electric field?1.25 Goos-Haenchen phase shiftAray of light that is traveling in a glass medium(1) of refractive index n1=1.460 becomesincident on a less dense glass medium(2) of refractive index n2=1.430. Suppose that the free space wavelength of the light ray is 850nm.the angle of incidence θi =85°. Estimate the lateral Goos-Haenchen shift in the reflected wave for the perpendicular field component. Recalculate the Goos-Haenchen shift in the second medium has n2=1 (air). What is your conclusion?Assume that the virtual reflection occurs from a virtual plane in medium B at a distance d that is roughly the same as the penetration depth.Note that d actually depends on the polarization ,the direction of the field,but we will ignore this dependence.第二章 作业习题:θ2.7 Dielectric slab waveguide Consider a dielectric slab waveguide that has a thin GaAs layer of thickness 0.25μm between two AlGaAs layers. The refractive index of GaAs is3.6 and that of the AlGaAs layers is 3.40. What is the cut-off wavelength beyond which only a single mode can propagate in the waveguide, assuming that the refractive index does not vary greatly with the wavelength? If a radiation of wavelength 860 nm (corresponding to bandgap radiation) is propagating in the GaAs layer, what is the penetration of the evanescent wave into the AlGaAs layer? What is the mode field width (MFW) of this radiation? Point out the effect of change of radiation wavelength (λ) on the MFW.2.9 Dielectric slab waveguide Consider a planar dielectric waveguide with a core thickness 10μm , n 1=1.4446, n 2=1.4440. Calculate the V -number, the mode angle θm for m=0 (use a graphical solution, if necessary), penetration depth, and mode field distance (MFW=2α+2δ), for light wavelengths of 1.0μm and 5μm . What is your conclusion? Compare your MFW calculation with ()0221/a V V ω=+.The model angle θ0is given as θ0=88.85ᵒ for λ=1μm and θ0=88.72ᵒ for λ=1.5μm for the fundamental mode m=0.2.10 A multimode fibe r Consider a multimode fiber with a core diameter of 60μm , core refractive index of 1.47, and a cladding refractive index of 1.45 both at 870 nm. Consider operating this fiber at λ=870n m .(a) Calculate the numerical aperture.(b) Find out the normalized core-cladding index difference.(c) Calculate the V-number for the fiber and estimate the number of guided modes.(d) Calculate the wavelength beyond which the fiber becomes single-mode.(e) Calculate the modal dispersion τ∆and hence the bit rate ⨯distance product .2.12 Single mode fiber Consider a fiber with a 2SiO -13.5%2GeO core of diameter of 6m μ and refractive index of 1.47 and a cladding refractive index of 1.46 both refractive indices at 1300 nm where the fiber is to be operated using a laser source with a half maximum width (FWHM) of 2 nm..(a) Calculate the V -number for the fiver.(b)what is the maximum allowed diameter of the core that maintains oprations in single-mode?(c) Calculate the wavelength below which the fiber becomes multimode.(d) Calculate the numerical aperture.(e) Calculate the maximum acceptance angle.(f)Obtain the material dispersion and wavelength dispersion and hence estimate the bit rate⨯) of the fiber.⨯distance product (B L。

弹性动力学

弹性动力学
[3] Eringen, A.C., Suhubi, E.S.,《弹性动力学;第一卷;有限运动,石油工业出版社,1983年。
[4] Eringen, A.C.,Suhubi, E.S.,《弹性动力学;第二卷;线性理论,石油工业出版社,1984年。
八、教学日历(授课内容详细至二级标题,实验课、讨论课写出题目或主题)
六、教材或讲义
杨桂通,《弹性动力学》,中国铁道出版社,1988年
七、参考书目
[1]J.D. Achenbach.《Wave propagation in elastic solids》, North-Holland, Publishing Company, 1973.
[2]徐植信,洪锦如译,阿肯巴赫.《弹性固体中波的传播》,同济大学出版社,1992年
浙江大学研究生课程教学大纲
一、基本情况
课程编号
2411001
开课(院)系
航空航天学院
开课学期

中文课程名称
弹性动力学
授课语言
汉语
英文课程名称
Elastodynamics
任课教师1
王惠明
职称
教授
工作证号
0003353
E-mail:
wanghuiming@
联系电话
任课教师2
职称
工作证号
四、预备知识或先修课程要求
材料力学、弹性力学、微积分;数学物理方程
五、教学目的与要求(不少于200字)
本课程以固体力学专业博士生为主要授课对象。对弹性体的振动和波动感兴趣的其他专业博士生也可选修本课程。通过本课程的学习,学生能认识和领会振动在弹性介质中传播的波动现象;掌握体波(纵波和横波)、表面波、频散曲线、相速度、波群、群速度、谐波等基本概念;掌握波动方程的建立、边界条件的提法以及波动问题的求解方法;掌握平面简谐波在交界面处的反射与透射问题的求解方法;了解弹性波在无损检测、地层勘探等领域的重要应用。

physics-3光学和波动

physics-3光学和波动

1. In a hologram a photographic plate contains a wave pattern that produces a three-dimensional picture when illuminated with monochromatic coherent light from a laser. When only half of the photographic plate is illuminated, which of the following is true of the resulting picture?(A) Only half of the picture is seen.(B) The picture is still seen, but is less distinct thanbefore.(C) The picture is still seen, but is smaller thanbefore.(D) The color of the picture is changed. (E) The picture is inverted.解:全息成像的一大特点是由全息片的任一部分均可成像,因为全息片上纪录的内容为干涉条纹,而条纹以所载信息的频率在全息片上重复排布。

但因为用全息片的局部成像会丢失高频信息,所以图像将会变模糊。

选(B )。

2. Waves on a string propagate with a speed v and are represented by giving the displacement y as a function of x and t. Which of the following is NOT a possible wave or pulse? (c, b, and k are constants.) (A)2)( vt x b ac y −−=(B))(sin 2)(vt x k acy vt x b +=−−(C) )(cos vt x k a y −=(D)22)( vt b bx e aey −−=(E))(cosh / vt x b a y −=解:由偏微分方程理论,函数f ( x ± vt)满足波动方程22222f f v t x 抖=抖。

半导体光学重要知识

半导体光学重要知识

Absorption 吸收:(P47)An incident photon hits an atom in its ground state and the electron gains enough energy to reach the excited state.g ex E E -=ω一个入射的光子撞击基态的原子,使得电子获得足够的能量跃迁到激发态。

Evanescent wave 倏逝波:(P28)A wave exists in medium which propagates parallel to the surface. Its field -amplitudes decay exponentially in the direction normal to the interface over a distance of a few wavelengths.倏逝波存在于介质中,它的传播方向与表面平行。

它的场振幅在垂直于界面的方向上沿几个波长的距离呈指数衰减。

Extinction and Absorption of Light 光的消光和吸收:(P35)The attenuation of light is called “extinction”. It comprises two groups of phenomena.)()()(scattering absorption extinction ωαωαωα+=Absorption is the transformation of the energy of the light field into other forms of energy like heat, chemical energy or electromagnetic radiation. The other contribution to extinction is attenuation by (coherent) scattering of light.光的衰减称为“消光”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Group velocityFrequency dispersion in groups of gravity waves on the surface of deep water. The red dot moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red dot overtakes two green dots, when moving from the left to the right of the figure.New waves seem to emerge at the back of a wave group, grow in amplitude until they are at the center of the group, and vanish at the wave group front.For surface gravity waves, the water particle velocities are much smaller than thephase velocity, in most cases.This shows a wave with the group velocity andphase velocity going in different directions. Aswe can see, the group velocity is positive and thephase velocity is negative.The group velocity of a wave is the velocity with which the overallshape of the wave's amplitudes — known as the modulation orenvelope of the wave — propagates through space.For example, imagine what happens if a stone is thrown into themiddle of a very still pond. When the stone hits the surface of thewater, a circular pattern of waves appears. It soon turns into a circularring of waves with a quiescent center. The ever expanding ring ofwaves is the wave group , within which one can discern individualwavelets of differing wavelengths traveling at different speeds. Thelonger waves travel faster than the group as a whole, but they die out asthey approach the leading edge. The shorter waves travel slower andthey die out as they emerge from the trailing boundary of the group.Definition and interpretationDefinitionThe group velocity v gis defined by the equationwhere:ω is the wave's angular frequency (usually expressed in radians per second);k is the angular wavenumber (usually expressed in radians per meter).The function ω(k ), which gives ω as a function of k , is known as the dispersion relation. If ω is directly proportional to k , then the group velocity is exactly equal to the phase velocity. Otherwise, the envelope of the wave will become distorted as it propagates. This "group velocity dispersion" is an important effect in the propagation of signals through optical fibers and in the design of high-power, short-pulse lasers.Note : The above definition of group velocity is only useful for wavepackets, which is a pulse that is localized in both real space and frequency space. Because waves at different frequencies propagate at differing phase velocities in dispersive media, for a large frequency range (a narrow envelope in space) the observed pulse would change shape while traveling, making group velocity an unclear or useless quantity.Physical interpretationThe group velocity is often thought of as the velocity at which energy or information is conveyed along a wave. In most cases this is accurate, and the group velocity can be thought of as the signal velocity of the waveform. However, if the wave is travelling through an absorptive medium, this does not always hold. Since the 1980s, various experiments have verified that it is possible for the group velocity of laser light pulses sent through specially prepared materials to significantly exceed the speed of light in vacuum. However, superluminal communication is not possible in this case, since the signal velocity remains less than the speed of light. It is also possible to reduce the group velocity to zero, stopping the pulse, or have negative group velocity, making the pulse appear to propagate backwards. However, in all these cases, photons continue to propagate at the expected speed of light in the medium.[1][2][3][4]Anomalous dispersion happens in areas of rapid spectral variation with respect to the refractive index. Therefore, negative values of the group velocity will occur in these areas. Anomalous dispersion plays a fundamental role in achieving backward propagating and superluminal light. Anomalous dispersion can also be used to produce group and phase velocities that are in different directions.[2] Materials that exhibit large anomalous dispersion allow the group velocity of the light to exceed c and/or become negative.[4]HistoryThe idea of a group velocity distinct from a wave's phase velocity was first proposed by W.R. Hamilton in 1839, and the first full treatment was by Rayleigh in his "Theory of Sound" in 1877.[5]Other expressionsFor light, the refractive index n, vacuum wavelength λ, and wavelength in the medium λ, are related byThe group velocity, therefore, satisfies:Matter-wave group velocityAlbert Einstein first explained the wave–particle duality of light in 1905. Louis de Broglie hypothesized that any particle should also exhibit such a duality. The velocity of a particle, he concluded then (but may be questioned today, see above), should always equal the group velocity of the corresponding wave. De Broglie deduced that if the duality equations already known for light were the same for any particle, then his hypothesis would hold. This means thatwhereE is the total energy of the particle,p is its momentum,is the reduced Planck constant.For a free non-relativistic particle it follows thatwhereis the mass of the particle andits velocity.Also in special relativity we find thatwhereis the rest mass of the particle,c is the speed of light in a vacuum,is the Lorentz factor.and v is the velocity of the particle regardless of wave behavior.Group velocity (equal to an electron's speed) should not be confused with phase velocity (equal to the product of the electron's frequency multiplied by its wavelength).Both in relativistic and non-relativistic quantum physics, we can identify the group velocity of a particle's wave function with the particle velocity. Quantum mechanics has very accurately demonstrated this hypothesis, and the relation has been shown explicitly for particles as large as molecules.ReferencesNotes[1]George M. Gehring, Aaron Schweinsberg, Christopher Barsi, Natalie Kostinski, Robert W. Boyd, “Observation of a Backward PulsePropagation Through a Medium with a Negative Group Velocity”, Science. 312, 895-897 (2006).[2]Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, Stefan Linden, “Simultaneous Negative Phase and Group Velocityof Light in a Metamaterial”, Science. 312, 892-894 (2006).[3] A. Schweinsberg, N. N. Lepeshkin, M.S. Bigelow, R.W. Boyd, S. Jarabo, “Observation of superluminal and slow light propagation inerbium-doped optical fiber”, Europhysics Letters. 73, 218-224 (2005).[4]Matthew S Bigelow, Nick N Lepeshkin, Heedeuk Shin, Robert W Boyd, “Propagation of a smooth and discontinuous pulses through materialswith very large or very small group velocities”, Journal of Physics: Condensed Matter. 18, 3117-3126 (2006)[5]Brillouin, Léon. Wave Propagation and Group Velocity. Academic Press Inc., New York (1960)Further reading•Tipler, Paul A. (2003), Modern Physics (4th ed ed.), New York: W. H. Freeman and Company, ISBN 0-7167-4345-0. 223 p.•Biot, M. A. (1957), "General theorems on the equivalence of group velocity and energy transport", Physical Review105 (4): 1129–1137, doi:10.1103/PhysRev.105.1129•Whitham, G. B. (1961), "Group velocity and energy propagation for three-dimensional waves", Communications on Pure and Applied Mathematics14 (3): 675–691, doi:10.1002/cpa.3160140337•Lighthill, M. J. (1965), "Group velocity", IMA Journal of Applied Mathematics1 (1): 1–28, doi:10.1093/imamat/1.1.1•Bretherton, F. P.; Garrett, C. J. R. (1968), "Wavetrains in inhomogeneous moving media", Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 302 (1471): 529–554,doi:10.1098/rspa.1968.0034•Hayes, W. D. (1973), "Group velocity and nonlinear dispersive wave propagation", Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 332 (1589): 199–221,doi:10.1098/rspa.1973.0021•Whitham, G. B. (1974), Linear and nonlinear waves, Wiley, ISBN 0471940909External links•Greg Egan has an excellent Java applet on his web site (.au/APPLETS/ 20/20.html) that illustrates the apparent difference in group velocity from phase velocity.•Group and Phase Velocity (/tools/group_and_phase_velocity/) - Java applet with configurable group velocity and frequency.•Maarten Ambaum has a webpage with movie (/~sws97mha/Downstream/) demonstrating the importance of group velocity to downstream development of weather systems.Article Sources and Contributors5Article Sources and ContributorsGroup velocity Source: /w/index.php?oldid=419518173 Contributors: 1pezguy, 203.37.81.xxx, Aboctok, Airflow rus, Ale2006, Anaxial, Anythingyouwant, Arcturus, Avalcarce, AxelBoldt, Brandon, Brews ohare, CYD, Catslash, Charles Matthews, Cholewa, Conversion script, Crowsnest, DavidGrayson, Dicklyon, Dougher, DrBob, Dreish, Dstrozzi, Długosz, Edgerck, Evand, F G Sedgwick, Fantasi, Fresheneesz, GBMorris, Giftlite, Gnomepower, Graham87, Hao2lian, Icairns, Jalexbnbl, Jbrundell, Johner, JustinWick, Karl Palmen, KasugaHuang,L3370x, Ligulem, LorenzoB, LungZeno, Mange01, MatthewMastracci, Mgiganteus1, Mh26, Michael Hardy, Nandesuka, Noegenesis, Oblivious, Ojigiri, Oli Filth, Sbyrnes321, Scot.parker,SebastianHelm, Soccerdude 13, Ssd, Sumit Dutta, Sverdrup, Tantalate, Tarquin, Teply, The Flying Spaghetti Monster, Trelvis, VeryVerily, Voltagedrop, 百家姓之四, 56 anonymous editsImage Sources, Licenses and ContributorsImage:Wave group.gif Source: /w/index.php?title=File:Wave_group.gif License: GNU Free Documentation License Contributors: User:KraaiennestImage:StandingWavePhysics.gif Source: /w/index.php?title=File:StandingWavePhysics.gif License: Creative Commons Zero Contributors: L3370x LicenseCreative Commons Attribution-Share Alike 3.0 Unported/licenses/by-sa/3.0/Phase velocityFrequency dispersion in groups of gravity waves on the surface of deep water. The red dot moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice thegroup velocity. The red dot overtakes two greendots, when moving from the left to the right ofthe figure.New waves seem to emerge at the backof a wave group, grow in amplitude until they areat the center of the group, and vanish at the wavegroup front.For surface gravity waves, the waterparticle velocities are much smaller than thephase velocity, in most cases.This shows a wave with the Group velocity andPhase velocity going in different directions. Wecan observe how the group velocity is positive,while the phase velocity is negative.The phase velocity of a wave is the rate at which the phase of the wavepropagates in space. This is the speed at which the phase of any onefrequency component of the wave travels. For such a component, anygiven phase of the wave (for example, the crest) will appear to travel atthe phase velocity. The phase velocity is given in terms of thewavelength λ (lambda) and period Tas Or, equivalently, in terms of the wave's angular frequency ω and wavenumber kbyIn a dispersive medium, the phase velocity varies with frequency and is not necessarily the same as the group velocity of the wave, which is the rate at which changes in amplitude (known as the envelope of the wave)propagate.The phase velocity of electromagnetic radiation may, under certain circumstances, (for example anomalous dispersion) exceed the speed of light in a vacuum, but this does not indicate any superluminal information or energy transfer. It was theoretically described by physicists such as Arnold Sommerfeld and Léon Brillouin. See dispersion for a full discussion of wave velocities.Matter wave phaseIn quantum mechanics, particles also behave as waves with complex phases. By the de Broglie hypothesis, we see thatUsing relativistic relations for energy and momentum, we havewhere E is the total energy of the particle (i.e. rest energy plus kinetic energy in kinematic sense), p the momentum, the Lorentz factor, c the speed of light, and β the speed as a fraction of c. The variable v can either be taken to be the speed of the particle or the group velocity of the corresponding matter wave. Since the particle speed for any particle that has mass (according to special relativity), the phase velocity of matter waves always exceeds c, i.e.and as we can see, it approaches c when the particle speed is in the relativistic range. The superluminal phase velocity does not violate special relativity, as it carries no information. See the article on signal velocity for details.References•Tipler, Paul A. and Ralph A. Llewellyn (2003). Modern Physics. 4th ed. New York; W. H. Freeman and Company. ISBN 0-7167-4345-0. 222-3 pp.•Léon Brillouin "Wave Propagation And Group Velocity" Academic Press Inc., New York and London (1960) ISBN 0-12-134968-3.•Main, Iain G. (1988).Vibrations and Waves in Physics. 2nd ed. New York; Cambridge University Press. ISBN 0-521-27846-5. 214-6 pp.External links•Subluminal [1], a Java applet•Simulation [2], a Java applet by Paul Falstad•Group and Phase Velocity [3] - Java applet showing the difference between group and phase velocity.References[1].au/APPLETS/20/20.html[2]/dispersion/[3]/tools/group_and_phase_velocity/Article Sources and Contributors3Article Sources and ContributorsPhase velocity Source: /w/index.php?oldid=420295047 Contributors: 207.139.221.xxx, Abdull, Aborghgr, Antikon, BD2412, Berto, BorgHunter, CYD, Conversionscript, Crowsnest, Dcamp314, Dirac66, DrBob, Długosz, Ehinson56, Endogenous -i, Fantasi, Frokor, Gareth Owen, Giftlite, Jalanpalmer, Jonas Olson, Karl Palmen, KasugaHuang, L-H, L3370x, LaurelESH, Light current, Ligulem, LorenzoB, Lum08, Mange01, Mejor Los Indios, Mfwitten, Michael Hardy, Neparis, OKwikifan, Oblivious, RMFan1, Supermood00d, Sverdrup, Tantalate, Teply, The Anome, Thrapper, Tim Starling, Trelvis, Trovatore, USPatent, Voltagedrop, Whkoh, 百家姓之四, 45 anonymous editsImage Sources, Licenses and ContributorsImage:Wave group.gif Source: /w/index.php?title=File:Wave_group.gif License: GNU Free Documentation License Contributors: User:KraaiennestImage:StandingWavePhysics.gif Source: /w/index.php?title=File:StandingWavePhysics.gif License: Creative Commons Zero Contributors: L3370xLicenseCreative Commons Attribution-Share Alike 3.0 Unported/licenses/by-sa/3.0/。

相关文档
最新文档