中考总复习数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲由常量数学到变量数学
数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.
函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.
函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.
在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.
【例题求解】
【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.
思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角讨论,设点P(0,x),运用几何知识建立x的方程.
注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:
(1)利用几何计算求;
(2)通过解析式求;
(3)解由解析式联立的方程组求.
【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,
继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的
函数关系,大致是下列图象中的( )
思路点拨向烧杯注水需要时间,并且水槽中水面上升高0
h.
注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.
【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:
x千米.
(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.
(2)应采用哪种运输方式,才使运输时的总支出费用最小?
思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选
择最佳运输方式.
【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y 轴上,点C的坐标为(23,8).
(1)画出符合题目条件的菱形与直角坐标系;
(2)写出A、B两点的坐标;
(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.
思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.
注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.
【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.
(1)当AP=3cm时,求的值;
(2)设AP=cm时,求y与x的函数关系式;
(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)
思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.
注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:
(1)当图形运动导致图形之间位置发生变化,需要分类讨论;
(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.
学力训练
1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB=90°,有直角三角形与Rt△ABO全等且以AB为公共边,请写出这些直角三角形未知顶点的坐标.2.在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C 的坐标为时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).