4集合的基本运算

合集下载

集合的基本运算及其性质

集合的基本运算及其性质

04
集合的并集运算
定义及性质
并集的定义: 由两个集合中 所有元素组成 的集合
0 1
并集的性质: A∪B=B∪A, 即并集具有对 称性
0 2
并集的运算律: A∪(B∪C)=(A ∪B)∪C,即并 集具有结合性
0 3
空集与任意集 合的并集: A∪∅=A,即空 集与任意集合 的并集等于该 集合本身
0 4
集合加法的性质: 集合加法满足交换 律和结合律,即 A+B=B+A和 (A+B)+C=A+(B+ C)
02
集合的减法运算
定义及性质
定义:集合的减法运算是指从一个集合中减去另一个集合中的元素,得到 一个新的集合。 性质:集合的减法运算具有反交换性,即A - B = B - A。
性质:集合的减法运算具有反身性,即A - A = 空集。
并集与元素的关系
并集的定义:两个集合A和B的并集是由所有属于A或属于B的元素组成的集合,记作A∪B。
并集的性质:如果A和B是两个集合,那么A∪B的元素个数最多是A和B的元素个数之和。
并集与元素的关系:如果一个元素属于A∪B,那么它一定属于A或B。
并集运算的意义:并集运算在数学和计算机科学中有着广泛的应用,例如在集合的运算、 概率论、数据结构等领域。
集合减法与元素的关系
集合减法定义: 从一个集合中减 去另一个集合, 得到一个新集合
元素关系:属于 第一个集合但不 属于第二个集合 的元素组成新集 合
举例说明:例如 ,集合A为{1,2 ,3,4},集合B 为{3,4},则A B = {1,2}
性质:集合减法 不具有交换性-(BC)=(A-B)-C;
- 差集的运算满 足吸收律,即A(B-A)=A-B。

集合的关系及其基本运算

集合的关系及其基本运算

集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。

高中数学-集合的基本运算(并集与交集)

高中数学-集合的基本运算(并集与交集)
AC B
A∪B
思考
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于集合B 的所有元素组成的集合叫做A与B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
用Venn图表示如下:
AB
A∩B
性质
={x 1< x<2}
。 。。 。
-1 0 1 2 3
练习
1. 已知A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7}
且A∩B=C 求x,y的值及A∪B.
练习
2. 已知集合A={x -2≤x≤4}, B={x x>a}
①若A∩B≠φ,求实数a的取值范围; ②若A∩B≠A,求实数a的取值范围.
则A∩B= {等腰直角三角形}
例题
例2 设A={x x是A∩B= Φ
A∪B= {斜三角形}
例题 例3 设A={x -1< x < 2},B={x 1< x<3},
求A∪B , A∩B. 解: A∪B={x -1< x < 2}∪{x 1< x<3}
={x -1< x<3} A ∩ B={x -1< x < 2} ∩{x 1< x<3}
集合的 基本运算
并集与交集
思考
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B的 所有元素组成的集合叫做A与B的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
用Venn图表示如下:

4.集合的基本运算

4.集合的基本运算

4.集合的基本运算教学目标集合的基本运算.知识要点一、交集运算.1.定义:由属于A 且属于B 的所有元素组成的集合,称为A 与B 的交集,记作B A ,读作“A 交B ”.2.表达式:}|{B x A x x B A ∈∈=且 ;3.口诀:交集取相同.例1:已知}10,8,6,4,2{=A ,}12,8,6,3{=B ,则B A =____________________.例2:已知}40|{≤<=x x M ,}3|{<=x x N ,则N M =____________________.二、并集运算.1.定义:由属于A 或属于B 的所有元素组成的集合,称为A 与B 的并集,记作B A ,读作“A 并B ”.2.表达式:}|{B x A x x B A ∈∈=或 ;3.口诀:并集取所有.例3:已知}3,2,1{=A ,}5,3,1{=B ,则B A =____________________.例4:已知}21|{≤<=x x M ,}2|{>=x x N ,则N M =____________________.三、补集运算.1.全集:如果一个集合含有我们所研究的所有元素,那么称这个集合为全集,记作U.2.补集:由全集U 中不属于A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称A 的补集,记作A C U .3.表达式:}|{A x U x x A C U ∉∈=且.4.口诀:补集取对立.练5:设},91|{Z x x x U ∈≤≤=,}6,2,1{=A ,则A C U =____________________.例6:设全集为R ,}2|{>=x x A ,则A C R =____________________.四、集合运算的性质.1.A A A = ,∅=∅ A ,A B B A =;2.A A A = ,A A =∅ ,A B B A =;3.∅=U C U ,U C U =∅,A A C C U U =)(,∅=)(A C A U ,A A C A U =)( .4.A B A ⊆)( ,B B A ⊆)( ;5.)(B A A ⊆,)(B A B ⊆,)()(B A B A ⊆;6.B A A B A ⊆⇔= ,A B A B A ⊆⇔= ,B A B A B A =⇔= .作业:1.已知全集}7,6,5,4,3,2,1{=U ,}5,4,2{=A ,}7,5,3,1{=B ,求)(B C A U 和)()(B C A C U U .2.设全集为R ,}054|{2<--=x x x A ,}73|{≤≤-=x x B ,求B A C R )(.U A。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

第四章集合的基本概念和运算2

第四章集合的基本概念和运算2

4。
5。
6。
例题:某班每人至少学一门外语,已知学英语120人, 学法语80人,学日语60人,学英、法语50人,学 英、日语25人,学法、日语30人,三种语言都学 10人,求班级人数。 解:设 A {学英语}, B {学法语}, C {学日语}
| E | 170, | A | 120, | B | 80, | C | 60, | A B | 50 | A C | 25, | B C | 30, | A B C | 10
性质5, ⑴ A B的充分必要条件是 C B C A
⑵ A B的充分必要条件是 A C B C
性质6,若A、B、C、D是非空集合
A B C D A C B D
四、特殊集合
1。空集:不包含任何元素的集合,记作φ 。 空集是任何集合的子集。 φ 与{φ}是不同的。 2。全集:研究对象的全体组成的集合,用E表示。 任何集合都是全集的子集。 3。幂集:一个集合的所有子集组成的集合,记作P(A) 如A={a,b},P(A)={φ,{a},{b},{a,b}} 说明:⑴幂集中所有的元素都是集合。 ⑵φ与P(φ)是不同的,φ中没有元素,P(φ)中有一 个元素φ ,P(φ)={φ}。 ⑶若A中有n个元素,则P(A)中有2n个元素。
二、集合的表示方法
1.列举法 列出集合中的所有元素,用大括号括起来。 例如,A={a,b,c,d},N={0,1,2,3,…}。 2。描述法 在大括号中,先说明元素怎样表示,再描述元素 具有的共同属性,例如,N={x|x是非负整数}。 x, y R x 0 y 0 3。图示法——文氏图 用一个简单的平面区域(通常用圆)表示一个集合, 不同的集合用不同的平面区域表示。区域内的点表 示集合中的元素。

数学集合的概念运算

数学集合的概念运算

课前案1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA B或B A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全相同A⊆B,B⊆AA=B 空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁U A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课中案一、目标导引[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立. ( ) (5)若A ∩B =A ∩C ,则B =C .( ) [教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.[易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误. 1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.2.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.3.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 二典型例题集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M={1,m+2,m2+4},且5∈M,则m的值为() A.1或-1 B.1或3 C.-1或3 D.1,-1或32.已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为________.集合的基本关系(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数( ) A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.1.(变条件)在本例(2)中,若A⊆B,如何求解?2.(变条件)若将本例(2)中的集合A改为A={x|x<-2或x>5},如何求解?1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.3.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}(2)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A ∩B)=________.角度二已知集合的运算结果求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1(2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0 }C.{1,3} D.{1,5}(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒]在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(-2,3] C.[1,2) D.(-∞,-2]∪[1,+∞)2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.核心素养系列 数学抽象——集合的新定义问题定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.课后案 [A 组]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2020·温州十五校联合体联考)已知集合A ={}x |e x ≤1,B ={}x |ln x ≤0,则A ∪B =( ) A .(-∞,1] B .(0,1] C .[1,e] D .(0,e]3.已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( ) A .{2,4,6} B .{1,3,5} C .{0,2,4,6} D .{x ∈Z |0≤x ≤6} 4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6} D .{x ∈R |-1≤x ≤5} 5.已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}6.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞) 7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( ) A .{1,2,3} B .{4,5,6} C .{6,7,8} D .{4,5,6,7,8}8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( ) A .147 B .140 C .130 D .11710.已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 12.已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∪B =________;A ∩(∁U B )=________.13.设集合A ={n |n =3k -1,k ∈Z },B ={x ||x -1|>3},则B =________,A ∩(∁R B )=________. 14.设全集为R ,集合M ={x ∈R |x 2-4x +3>0},集合N ={x ∈R |2x >4},则M ∩N =________;∁R (M ∩N )=________.15.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m =________,n =________. 16.设全集U ={x ∈N *|x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[B 组]1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A .A ∪B =R B .A ∪(∁U B )=R C .(∁U A )∪B =R D .A ∩(∁U B )=A .2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1} 3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅; ②若P ∩M ≠∅,则f (P )∩f (M )≠∅; ③若P ∪M =R ,则f (P )∪f (M )=R ; ④若P ∪M ≠R ,则f (P )∪f (M )≠R . 其中命题不正确的有________.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.课后案答题纸1 2 3 4 5 6 7 8 9 1011. 12. A ∪B =________;A ∩(∁U B )=________.13、 B =________,A ∩(∁R B )=_14. M ∩N =________;∁R (M ∩N )=________. 15. m =________,n =________.16. B =________. 17.B 组1 23. m =________,∁A B =________.4.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.。

集合知识点归纳总结

集合知识点归纳总结

集合知识点归纳总结一、集合的定义与性质1. 集合的基本定义:集合是由一些确定的元素组成的整体。

2. 集合的表示方法:列举法、描述法、集合运算法等。

3. 集合的关系:包含关系、相等关系、互斥关系等。

4. 集合的运算:并集、交集、差集、补集等运算。

二、集合的分类1. 空集与全集:空集是不包含任何元素的集合,全集是指定范围内的所有元素的集合。

2. 子集与真子集:如果一个集合中的所有元素都是另一个集合的元素,则称前者为后者的子集;若两个集合既有子集关系又不相等,则称前者为后者的真子集。

3. 有限集与无限集:元素个数有限的集合称为有限集,元素个数无限的集合称为无限集。

三、集合的运算1. 并集:将两个或多个集合中的所有元素都放在一起,得到的新集合即为并集。

2. 交集:两个集合中共有的元素组成的集合称为交集。

3. 差集:从一个集合中减去另一个集合的元素,得到的新集合称为差集。

4. 补集:相对于某个全集,与该集合不相交的元素组成的集合称为补集。

四、集合的表示与应用1. 集合的表示方法:列举法、描述法、集合运算法等。

2. 集合的应用场景:数学、计算机科学、概率论等领域中都有集合的应用。

3. 集合的问题求解:通过集合的运算和性质,解决实际问题中的集合相关的计算和逻辑推理。

五、集合的常用性质与定理1. 幂集:一个集合的所有子集构成的集合称为幂集。

2. 对称差:两个集合的对称差是指两个集合的并集减去交集。

3. 德摩根定律:集合运算中的德摩根定律包括并集的德摩根定律和交集的德摩根定律。

4. 集合的基数:集合的基数是指集合中元素的个数。

5. 区间表示法:用数轴上的区间来表示集合。

六、集合的应用举例1. 数学中的集合:数学中的各种概念和定理都可以用集合的语言来表达和证明。

2. 数据库中的集合:数据库中的查询、连接和操作都可以用集合的概念来描述和实现。

3. 概率论中的集合:概率论中的事件和样本空间都可以用集合的概念来表示和计算。

集合的基本运算

集合的基本运算

1.3集合的基本运算知识点一、交集与并集注:(1)并集中的“或”字与生活中的“或”字含义有所不同.(2)并集中的公共元素只能出现一次;交集中的公共元素必须是全部的公共元素;知识点二、全集与补集(1)全集一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.知识点三、德•摩根定律知识点四、集合中元素的个数我们用card 来表示有限集合A 中元素的个数,记作card (A).例如,A={a ,b ,c },则card(A)=3.一般地,对任意两个有限集合A ,B ,C ,有:(1)card (A ⋃B)=card (A)+card (B)-card (A ⋂B).(2)card (A ⋃B ⋃C)=card (A)+card (B)+card (C)-card (A ⋂B)-card (A ⋂C)-card (B ⋂C)+ card (A ⋂B ⋂C).例题讲解一、交集、并集、补集的基本运算1、已知集合{}3,2,1=A ,{}A x x y y B ∈-==,12|,则=⋃B A ( ) A.{}321,, B.{}3211,,,- C.{}5321,,, D.{}5321,,,-2、已知集合{}21|<<-=x x A ,{}1|>=x x B ,则=⋃B A ( )A.{}21|<<-x xB.{}21|<<x xC.{}1|->x xD.{}1|>x x3、已知集合{}6101,,,-=A ,{}R x x x B ∈>=,0|则=⋂B A .4、已知全集{}4,3,2,1=U ,集合{}2,1=A ,集合{}3,2=B ,则()B A C U ⋃=( ) A.{}431,, B.{}43, C.{}3 D.{}45、(1)已知全集U ,集合A={1,3,5,7},C U A={2,4,6},C U B={1,4,6},则集合B= .(2)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ⋂B={3},(C U B)⋂A={9},则A=( )A.{1,3}B.{3,7,9}C.{3 ,5,9}D.{3,9}6、设全集U={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则(C U A)⋃(C U B)= ( )A. {0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}二、利用集合的运算性质求参数的值或范围1、设集合A={x |x 2-2x =0},B={x |x 2-2a x +a 2-a =0}.(1)若A ⋂B=B ,求实数a 的取值范围;(2)若A ⋃B=B ,求实数a 的值.2、设集合{}1,0,1-=M ,{}2,a a N =,若N N M =⋂,则实数a 的值是( )A.-1B.0C.1D.1或-13、已知集合T 是由关于x 的方程x 2+p x +q=0(p 2-4q >0)的解组成的集合,A={1,3,5,7,9},B={1,4,7,10},且T ⋂A=⍉,T ⋂B=T ,试求实数p 和q 的值.4、已知集合A={x |2a ≤x ≤a +3},B={x |x <-1或x >5},若A ⋂B=⍉,求实数a 的取值范围.三、补集思想1、已知集合A={y l y >a 2+1或y <a },B={y |2≤y ≤4},若A ⋂B ≠⍉,则实数a 的取值范围为( )A.{a l a ≥2}B.{a l-3<a <3}C.{a l a >2或-3<a <3}D.{a l a ≥2或-3≤a ≤3}2、已知集合{}R x m mx x x A ∈=++-=,0624|2,{}R x x x B ∈<=,0|,若=⋂B A ⍉,求实数m 的取值范围.四、易错题型1、设M 和P 是两个非空集合,规定M-P={x l x ∈M ,且x ∉P },根据这一规定,计算M-(M-P)等于( ).A.MB.PC.M ⋃PD.M ⋂P2、设全集S={2,3,a 2+2a -3},A={|2a -1|,2},C S A={5},求实数a 的值.基础巩固1、已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( )A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}2、已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2}3、已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( )A .{0,1}B .{-1,0,1}C .{-2,0,1,2}D .{-1,0,1,2}4、已知集合{}35A x x =-≤≤,{}141B x a x a =+≤≤+ A B B =,B ≠∅,则实数a 的取值范围是( )A .1a ≤B .01a ≤≤C .0a ≤D .41a -≤≤5、设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,则A ∩B = .6、已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围为________.7、已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )=( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}8、已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ).A . {|02}x x x ≤≥或B . {|02}x x x <>或C . {|2}x x ≥D . {|2}x x > 9、设全集U =R ,M ={x |x <-2或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}10、已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =() A .{1,3} B .{3,7,9}C .{3,5,9}D .{3,9}11、已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,则p = ;q = .12、设全集{}22,4,1U a a =-+,{}22,2A a a =--,且{}7U C A =,求实数a 的值.能力提升13、(1)设A ={4,5,6,8},B ={3,5,7,8},求A ∪B .(2)设集合A ={x |-1<x <2},集合B ={x |1<x <3},求A ∪B .(3)设集合A ={1,2},求满足A ∪B ={1,2,3}的集合B .14、(1)已知集合{}4,5,6,8A =,{}3,5,7,8B =,{}1,3C =,求()A B C .(2)已知集合A ={x |-5≤x ≤5},B ={x |x ≤-2或x >3},则A ∩B =________.(3)设A ={等腰三角形},B ={直角三角形},求A B .15、已知A ={x |x 2-a x +a 2-19=0},B ={x |x 2-5x +8=2},C ={x |x 2+2x -8=0},若()A B ∅⊂,且A C =∅,求a 的值.16、已知集合{}0232=+-=x x x A ,{}20B x mx =+=,A B A =,求m 的取值范围.17、已知集合{}0232=+-=x x x A ,{}022=+-=mx x x B ,B B A = ,求m 的取值范围.18、已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若A ∩B =B ,求实数a 的取值范围.19、求下列集合的补集(1)设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求∁U A ,∁U B .(2)设全集U =R ,M ={x |x <-2或x >2},N ={x |1<x <3},求∁U M ,∁U N .20、已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3<x ≤3}. 求A B ,A B ,U C A 、U C B ,()U C A B ,()U C A B .21、试用集合,A B 的交集、并集、补集分别表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分所表示的集合.Ⅰ部分:______ ____Ⅱ部分:______ ____Ⅲ部分:____ ______Ⅳ部分:________ __或_________________.22、设全集U ={3,6,m 2-m -1},A ={|3-2m |,6},∁U A ={5},求实数m .23、设全集{}010,*U x x x N =<<∈,若{}3A B =,{}1,5,7U A C B =,()()U U C A C B ={}9,求A 、B .24、已知集合A={x|x2-4x+2m+6=0},B={x|x<0},若A B=∅,求实数m的取值范围.。

《集合的基本运算》

《集合的基本运算》

《集合的基本运算》说课稿一、说教材1、教材的地位和作用集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础,数形结合的思想方法对学生今后的学习中有着铺垫的作用。

此部分主要介绍集合的两类基本运算——并集和交集,是对集合基本知识的深入研究.在此,通过适当的问题情境,使学生感受、认识并掌握集合的两种基本运算.集合作为现代数学的基本语言,它可以简洁、准确地表达数学内容,因而只有掌握和理解了集合的基本知识,学会用集合语言表示有关数学对象,才能进一步刻画函数概念.可见,此部分的学习是以后研究函数的必然要求.2、教学目标及确立依据根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:(1)知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集的表示法以及求解两个集合并集与交集的方法。

(2)过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。

(3)情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。

教学目标确立的依据:(1)由高中数学大纲所确定的。

即进一步培养学生的思维能力、解决实际问题的能力,进一步培养学生的良好的个性品质和辨证唯物主义观点。

(2)由学生的基础和生理、心理特征确定的。

高中阶段的教学,应以提高学生数学素养、培养学生思维能力及创新意识为重。

3、教学重点与难点根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点。

重点:并集与交集的概念的理解,以及并集与交集的求解。

三年级数学集合的计算公式

三年级数学集合的计算公式

三年级数学集合的计算公式
我们要探讨三年级数学中的集合计算。

首先,我们需要理解什么是集合,以及如何进行集合的基本运算。

假设我们有A和B两个集合。

1. 集合的并集:表示A和B中所有的元素,不考虑重复。

2. 集合的交集:表示同时属于A和B的元素。

3. 集合的差集:表示属于A但不属于B的元素。

用数学符号表示:
1) 并集:A ∪ B
2) 交集:A ∩ B
3) 差集:A - B
现在,我们将使用这些符号来计算一些示例。

示例1:
集合A = {1, 2, 3}
集合B = {2, 3, 4}
集合A和B的并集是:{1, 2, 3, 4}
集合A和B的交集是:{2, 3}
集合A和B的差集是:{1}
示例2:
集合C = {3, 4, 5}
集合D = {5, 6, 7}
集合C和D的并集是:{3, 4, 5, 6, 7} 集合C和D的交集是:{5}
集合C和D的差集是:{3, 4}。

集合运算的基本法则

集合运算的基本法则

集合运算的基本法则
集合的并、交、补运算满足下列定理给出的一些基本运算法则.
设A,B,C为任意三个集合,Ω与Ø分别表示全集和空集,则下面的运算法则成立:1、交换律(Commutative Laws):A ∪B = B∪A,A ∩B = B ∩A
2、结合律(Associative Laws):(A ∪B) ∪C = A ∪(B∪C) = A ∪B∪C ,
(A ∩B) ∩C = A ∩(B ∩C) = A ∩B ∩C
3、分配律(Distributive Laws):(A ∩B) ∪C = (A∪C) ∩(B∪C) ,
(A∪B) ∩C = (A ∩C) ∪(B ∩C)
4、德摩根律(De Morgan’s Law):
5、等幂律(Impotent laws): A∪A = A,A∩A = A;
6、吸收律(Absorption laws):(A∩B)∪A = A,(A∪B)∩A = A
7、同一律(Domination laws):A∪Ø = A,A∩Ω= A ,A∪Ω=Ω,A∩Ø = Ø;
8、互补律(Complement Laws):
9、重叠律,
对偶原理:九条定律中的每一条都包含两个或四个公式,只要将其中一个公式中的∪换成∩,同时把∩换成∪,把∅换成Ω,同时把Ω换成∅,这样就得到了另一个公式,这种有趣的规则称为对偶原理.
例题一:证明等式。

离散数学第三章集合的基本概念和运算

离散数学第三章集合的基本概念和运算
第3章 集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理

集合的基本运算(全集、补集)

集合的基本运算(全集、补集)

重要性及应用领域
集合的基本运算是数学逻辑和集合论 中的基础,对于理解更高级的数学概 念和解决实际问题至关重要。
在计算机科学、统计学、概率论等领 域中,全集和补集的概念被广泛应用 ,它们是理解和处理数据的基础。
02 全集的概念
定义
全集是指包含所有研究对象(元素)的集合,通常用大写字 母U表示。
在数学中,全集被视为一个默认的参照框架,用于定义和比 较其他集合。
在逻辑推理中,全集与补集的 概念可以帮助我们更好地理解 和分析命题的真假关系。
在计算机科学中,全集与补集 的概念可以用于数据分析和处 理,例如在数据库查询和数据 挖掘中。
THANKS FOR WATCHING
感谢您的观看
通过全集和补集,可以研究集合的并、交、差等运算,以及集合的基数、
势等属性。
02
实数理论
在实数理论中,全集通常表示所有的实数,而补集则用于描述某个特定
子集以外的实数。例如,考虑全体实数集合,非正实数集合的补集就是
正实数集合。
03
拓扑学
在拓扑学中,全集通常表示某个拓扑空间中的所有点,而补集则用于描
述该空间中某个子集以外的点。通过研究全集和补集的性质,可以深入
查询、更新等操作。
06 总结
全集与补集的基本概念回顾
全集
一个集合中所有元素的集合,通 常用大写字母U表示。
补集
一个集合中不属于某一子集的所 有元素的集合,通常用大写字母A 和B表示。
对全集与补集的理解和掌握的重要性
理解全集与补集的概念是学习集合论的基础,有助于更好地理解集合之间的关系和 性质。
补集运算的优先级
在进行集合运算时,应优先处理 补集运算。
先求出各个集合的补集,再进行 其他集合运算,如交集、并集等。

离散数学---集合的基本运算

离散数学---集合的基本运算

E
A
B
广义的并集
集合的并(union):集合A和B的并AB定义 为:AB = {x | xA或者xB},集合的并可 推广到多个集合,设A1, A2, …, An都是集合, 它们的并定义为:
A1A2∪…An = {x | 存在某个i,使得xAi}
广义的交集
集合的交(intersection):集合A和B的并AB定义 为:AB = {x | xA而且xB},集合的交也可推广 到多个集合,设A1, A2, …, An都是集合,它们的交 定义为:
集合的化简
化简((ABC)(AB))-((A(B-C))A) 证明:原集合=(AB)-A(吸收律)
=(AB)A =(AA)(BA)(分配律)
=(BA) =BA
(互补律) (同一律)
集合包含的性质
• AE •如果ABC,则AC •ABAA∪B •AB A∪B=B AB=A ~B ~A
利用集合等式证明
求证:A-(B∪C)=(A-B)∩(A-C)
(A-B)∩(A-C)=A∩~B∩A∩~C =A∩~B∩~C =A∩~(B∪C) =A-(B∪C)
证明吸收律A(AB)=A
证明:A(AB) =(A)(AB) =A(B) =A =A
已知AB=AC,AB=AC,求证B=C
6、零一律 A∩=,A∪E=E
(A∩B)=A∪B
7、补余律 A∩A=,A∪A=E
10、双重否定律(A)=A
8、吸收律 A∪(A∩B)=A
注:A-B=A∩B
A∩(A∪B)=A
集合相等的证明的方法
一、利用集合的定义证明; 二、利用集合等式证明;(常用) 三、利用谓词公式证明; 四、用集合成员表。(略)
即AB={xxA且x BxB且x A}

集合的基本运算例题讲解

集合的基本运算例题讲解

1集合的基本运算例题讲解题型一 并集运算一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作B A ,读作“A 并B ”.即{}B x A x x B A ∈∈=或, .求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.例1. 已知集合{}31≤≤∈=x N x A ,{}5,4,3,2=B ,则=B A 【 】 (A ){}2 (B ){}3,2(C ){}5,4,3,2 (D ){}5,4,3,2,1 分析:将一个用描述法表示的集合转化为用列举法表示时,一定要弄清代表元素的含义或特征.求两个集合的并集运算时,可以按照并集的定义进行,也可以用Venn 图求解或借助于数轴求解.解:∵{}{}3,2,131=≤≤∈=x N x A∴=B A {}{}{}5,4,3,2,15,4,3,23,2,1= . 选择【 D 】.例2. 已知集合{}1≥=x x A ,{}0322<--=x x x B ,则=B A ____________. 分析:先解一元二次不等式0322<--x x ,求出集合B ,然后把集合A 、B 在数轴上画出来,它们对应图形所覆盖的全部范围即为B A . 解:∵{}{}310322<<-=<--=x x x x x B ∴=B A {}{}{}1311->=<<-≥x x x x x x .例3. 已知集合{}m A ,3,1=,{}m B ,1=,若A B A = ,则m 等于【 】 (A )0或3 (B )0或3 (C )1或3 (D )1或3分析:{}m B ,1=,由集合元素的互异性,得1≠m ,排除C 、D 选项. 因为A B A = ,根据并集的性质,所以A B ⊆,这样就将两个集合的并集运算转化为了这两个集合之间的关系,从而可以确定参数的值或取值范围. 解:∵A B A = ,∴3=m 或m m =当m m =时,解之得:0=m (1=m 不符合题意,舍去) 综上,3=m 或0=m .例 4. 已知集合{}012≤-=x x P ,{}a M =,若P M P = ,则实数a 的取值范围是__________.分析:∵P M P = ,∴P M ⊆. 解:{}{}11012≤≤-=≤-=x x x x P ∵P M P = ,∴P M ⊆,∴P a ∈ ∴实数a 的取值范围是{}11≤≤-a a .例5. 已知集合{}x A ,3,2,1=,{}2,3x B =,且{}x B A ,3,2,1= ,求x 的值. 分析:由题意可知:A B A = ,所以A B ⊆,从而A x ∈2,且32≠x . 解:分为三种情况:①当12=x 时,解之得:1-=x (1=x 不符合题意,舍去); ②当22=x 时,解之得:2±=x ; ③当x x =2时,解之得:0=x . 综上所述,x 的值为0或2±或1-.注意:在求参数的值时,参数的值要满足集合元素的互异性.例6. 已知集合{}32>-=x x A ,{}a x x x B ->-=332,求B A . 分析:对于含参集合参与的集合运算,要注意分类讨论.解:{}{}532>=>-=x x x x A ,{}{}3332-<=->-=a x x a x x x B . 当3-a ≤5,即a ≤8时,{}53>-<=x a x x B A 或 ; 当53>-a 时,即8>a 时,=B A R .a例7.(易错题)已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,求由m 的取值构成的集合.分析:因为A B A = ,所以A B ⊆.由于集合B 是一个含参集合,所以要对集合B 分∅=B 和∅≠B 两种情况进行讨论. 解:∵A B A = ,∴A B ⊆. 当0=m 时,∅=B ,满足A B ⊆;当0≠m 时,{}11-=⎭⎬⎫⎩⎨⎧==m x x B 或{}1=B :①若{}1-=B ,则11-=m,解之得:1-=m ; ②若{}1=B ,则11=m,解之得:1=m . 综上所述,m 的取值构成的集合为{}1,0,1-.例8. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若M N M = ,则实数t 的取值范围是__________.分析:先将并集运算的结果M N M = 转化为两个集合M , N 之间的关系M N ⊆,从而列出关于参数t 的不等式(组)求解.注意含参集合的分类讨论. 解:∵M N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2. 综上所述,实数t 的取值范围是{}2≤t t .警示:在解决本题时,任意忽略∅=N 的情况,另外要注意端点值能否取到.例9. 已知集合{}2,1-=A ,{}01>+=mx x B ,若B B A = ,求实数m 的取值范围. 分析:注意本题与例7的区别. 解:∵B B A = ,∴B A ⊆. 分为三种情况:①当0=m 时,01>恒成立,∴{}=>+=01mx x B R ,满足B A ⊆;②当0>m 时,{}⎭⎬⎫⎩⎨⎧->=>+=m x x mx x B 101,有11-<-m ,解之得:1<m∴10<<m ;③当0<m 时,{}⎭⎬⎫⎩⎨⎧-<=>+=m x x mx x B 101,有21>-m ,解之得:21->m∴021<<-m . 综上所述,实数m 的取值范围是⎭⎬⎫⎩⎨⎧<<-121m m .题型二 交集运算一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与集合B 的交集,记作B A ,读作“A 交B ”.{}B x A x x B A ∈∈=且, .求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(或可借助于Venn 图)(2)求两个无限集的交集 借助于数轴进行计算.两个集合的解集等于这两个集合在数轴上对应的图形所覆盖的公共范围.例10. 设集合{}01>+∈=x Z x A ,集合{}02≤-=x x B ,则=B A 【 】 (A ){}21<<-x x (B ){}21≤<-x x (C ){}2,1- (D ){}2,1,0分析:在进行集合的运算之前,要先弄清楚各个集合的本质.本题中集合A 的代表元素x 为整数,所以集合A 为1->x 范围内的整数集.解:∵{}{}101->∈=>+∈=x Z x x Z x A ,{}{}202≤=≤-=x x x x B ∴=B A {}{}2,1,021=≤<-∈x Z x . 选择【 D 】.例11. 设集合{}21<≤-=x x A ,{}a x x B <=,若∅≠B A ,则实数a 的取值范围是__________.分析:∅≠B A 说明集合A 、B 有公共元素,在数轴上集合A 、B 所对应的图形覆盖的区域有公共部分. 解:{}1->a a .1例12. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若N N M = ,求实数t 的取值范围.分析:若N N M = ,则由交集的性质知M N ⊆,在得到这两个集合之间的关系后借助于数轴就可以列出不等式(组)进行求解了. 解:∵N N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,满足M N ⊆,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2.综上所述,实数t 的取值范围是{}2≤t t .★例13.(易错题)设集合{}R x x y y A ∈+==,12,{}R x x y y B ∈+==,1,则B A 等于【 】(A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅错解:解方程组⎩⎨⎧+=+=112x y x y 得:⎩⎨⎧==10y x 或⎩⎨⎧==21y x ,故选【 C 】.错因分析:这里好多学生认为是求抛物线12+=x y 和直线1+=x y 的交点坐标所构成的集合,根源在于没有搞清楚集合A , B 的本质,没有弄清楚集合的代表元素的特征.分析:本题中的两个集合都是由函数值构成的,它们的代表元素是函数值y .B A 表示函数12+=x y 和函数1+=x y 的函数值的交集. 解:∵{}{}1,12≥=∈+==y y R x x y y A ,{}=∈+==R x x y y B ,1R . ∴{} 1≥=y y B A R {}1≥=y y . 选择【 A 】.变式: 设集合(){}1,2+==x y y x A ,(){}1,+==x y y x B ,则B A 等于【 】 (A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅例14. 已知集合(){}1,22=+=y x y x A ,集合(){}x y y x B ==,,则B A 中元素的个数为【 】(A )3 (B )2 (C )1 (D )0解:解方程组⎩⎨⎧==+xy y x 122得:⎪⎪⎩⎪⎪⎨⎧==2222y x 或⎪⎪⎩⎪⎪⎨⎧-=-=2222y x ∴B A ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=22,22,22,22,共有2个元素.选择【 B 】. 方法二:由后面的学习可以知道,方程122=+y x 是单位圆的方程(以原点为圆心,以1为半径的圆).集合A 是由圆122=+y x 上的所有点构成的,集合B 是由直线x y =上的所有点构成的,所以B A 就是由单位圆与直线的交点构成的,如图所示,交点有两个,故B A 中元素的个数为2.例15.(2018沈阳重点高中)设集合{}52≤≤-=x x A ,{}121-≤≤+=m x m x B . (1)若{}52≤≤-∈=x Z x A ,求A 的非空真子集的个数; (2)若B B A = ,求实数m 的取值范围. 分析:(1)子集、真子集个数的确定 若集合A 含有n 个元素,则集合A : (1)含有n 2个子集; (2)含有12-n 个非空子集; (3)含有12-n 个真子集; (4)含有22-n 个非空真子集.(2)若B B A = ,则A B ⊆,注意分类讨论. 解:(1){}{}5,4,3,2,1,0,1,2-52-=≤≤-∈=x Z x A∵集合A 中含有8个元素∴集合A 的非空真子集的个数为2542-28=; (2)∵B B A = ,∴A B ⊆. 分为两种情况:①当∅=B 时,满足A B ⊆,有121->+m m ,解之得:2<m ; ②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解之得:2≤m ≤3. 综上所述,实数m 的取值范围是{}3≤m m .例16. 设{}042=+=x x x A ,(){}011222=-+++=a x a x x B ,其中∈x R ,如果B B A = ,求实数a 的取值范围. 解:{}{}4,0042-==+=x x x A ∵B B A = ,∴A B ⊆ 分为两种情况:①当∅=B 时,满足B B A =∴()[]()0141222<--+=∆a a ,解之得:1-<a ;②当∅≠B 时,{}0=B 或{}4-=B 或{}4,0-=B .若{}0=B 或{}4-=B ,则有()[]()0141222=--+=∆a a ,解之得:1-=a经检验,此时{}0=B ;若{}4,0-=B ,则由根与系数的关系定理可得:()⎩⎨⎧=--=+-014122a a ,解之得:1=a . 综上所述,实数a 的取值范围是{}11-≤=a a a 或.例17. 设集合{}3+≤≤=a x a x A ,{}51>-<=x x x B 或,若∅=B A ,求实数a 的取值范围.分析:对于任意实数a ,都有3+<a a ,所以本题中集合A 不会是空集. 解:∵3+<a a ,∴∅≠A . ∵∅=B A∴⎩⎨⎧≤+-≥531a a ,解之得:1-≤a ≤2. ∴实数a 的取值范围是{}21≤≤-a a .★★例18.(综合性强)已知集合()(){}011222>++++-=a a y a a y y A ,集合⎭⎬⎫⎩⎨⎧≤≤+-==30,25212x x x y y B ,若∅=B A :(1)求实数a 的取值范围;(2)当ax x ≥+12恒成立时,求a 的最小值.分析:(1)求集合A 时要解含参一元二次不等式,可借助于因式分解:()()()()()()()()()[]11111122222222+--=-+--=++-+-=++++-a y a y a y a a y y a a ay a y y a a y a a y对于集合B ,代表元素是y ,所以集合B 是函数值的集合,通过配方得:()2121252122+-=+-=x x x y ∵0≤x ≤3,∴2≤y ≤4,∴{}42≤≤=y y B ;(2)这是与二次函数有关的恒成立问题,使用数形结合方法.解:(1)()(){}()()[]{}010112222>+--=>++++-=a y a y y a a y a a y y A∵04321122>+⎪⎭⎫ ⎝⎛-=-+a a a (这里作差比较12+a 与a 的大小)∴a a >+12∴{}12+><=a y a y y A 或.{}4230,25212≤≤=⎭⎬⎫⎩⎨⎧≤≤+-==y y x x x y y B∵∅=B A∴⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴实数a 的取值范围是{}233≤≤-≤a a a 或; (2)∵ax x ≥+12恒成立,即12+-ax x ≥0恒成立. ∴()42--=∆a ≤0,解之得:2-≤a ≤2.∴a 的最小值为2-.(雅慧,通过这道题你勇敢地挑战一下自己)题型三 补集运算全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.例19. 已知全集{}60<<=x x U ,集合{}a x x A <<=1,若C U A U ≠,则实数a 的取值范围是__________.分析: C U A U ≠说明∅≠A ,且U A ⊆. 解:∵C U A U ≠,∴∅≠A ,且U A ⊆. ∴实数a 的取值范围是{}61≤<a a .例20. 已知全集{}5,4,3,2,1=U ,集合{}042=++=px x x A ,求C U A . 分析:集合A 是由方程042=++px x 的解构成的,而方程042=++px x 可能无解、有两个不相等的实数根或有两个相等的实数根,需要分类讨论. 解:由题意可知:U A ⊆.分为两种情况:①当∅=A 时,方程无实数根,∴0162<-=∆p ,解之得:44<<-p ∴C U A =C U ∅{}5,4,3,2,1==U ;②当∅≠A 时,则有162-=∆p ≥0,解之得:p ≤4-或p ≥4. 设方程042=++px x 的两个实数根分别为21,x x 由根与系数的关系定理可得:421=x x :若4,121==x x ,则5-=p ,符合题意,此时{}4,1=A ,C U A {}5,3,2=; 若221==x x ,则4-=p ,符合题意,此时{}2=A ,C U A {}5,4,3,1=. 综上所述,当44<<-p 时,C U A ={}5,4,3,2,1;当5-=p 时,C U A {}5,3,2=;当4-=p 时,C U A {}5,4,3,1=.例21. 已知{}31≤<-=x x A ,{}m x m x B 31+<≤=. (1)当1=m 时,求B A ;(2)若⊆B C R A ,求实数m 的取值范围.分析:(1)求两个连续型实数集合的并集时,借助于数轴进行求解能将抽象的问题直观化,但要特别注意端点的实心和空心以及端点值的取舍;(2)求连续型实数集合的补集也是借助于数轴进行.解:(1)当1=m 时,{}{}4131<≤=+<≤=x x m x m x B ∴{}{}{}414131<<-=<≤≤<-=x x x x x x B A ; (2)∵{}31≤<-=x x A ,∴C R A {}31>-≤=x x x 或 ∵⊆B C R A ,∴分为两种情况:①当∅=B 时,有m ≥m 31+,解之得:m ≤21-; ②当∅≠B 时,则有:⎩⎨⎧-≤++<13131m m m 或⎩⎨⎧>+<331m mm解之得:无解或3>m .综上,实数m 的取值范围是⎭⎬⎫⎩⎨⎧>-≤321m m m 或.★例22. 设全集(){}R y R x y x I ∈∈=,,,()⎭⎬⎫⎩⎨⎧=--=123,x y y x A ,(){}1,+==x y y x B ,求C I A B .解:()(){}2,1,123,≠+==⎭⎬⎫⎩⎨⎧=--=x x y y x x y y x A ∴集合A 是由直线1+=x y 上除点()3,2外的所有点构成的集合 ∴C I A =(){}3,2 ∵(){}1,+==x y y x B∴集合B 是由直线1+=x y 上所有的点构成的集合 ∴C I A =B (){}3,2. 附:函数123=--x y ,即1+=x y ()2≠x 的图象如图所示.例23. 设全集{}32,3,22-+=a a U ,{}2,12-=a A ,C U A {}5=,求实数a 的值. 分析:∵C U A U ⊆,∴U ∈5,∴5322=-+a a .还要注意U A ⊆. 解:∵{}32,3,22-+=a a U ,C U A {}5= ∴5322=-+a a整理得:0822=-+a a ,解之得:4,221-==a a .U4321B A 852917643B AU当2=a 时,{}3,2=A ,满足题意; 当4-=a 时,{}9,2=A ,不满足题意. 综上,实数a 的值为2.例24. 设全集{}*,10N x x x U ∈<=,U B U A ⊆⊆,,( C U B ){}9,1=A ,{}3=B A , ( C U A ) ( C U B ){}7,6,4=,求集合A , B . 分析:本题条件较多,考查集合的综合运算.重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ; (2)②表示 A (C U B ); (3)③表示 B (C U A ); (4)④表示(C U A ) (C U B ).德·摩根定律(1)C U ()=B A (C U A ) (C U B ); (2)C U ()=B A (C U A ) (C U B ).解法一:{}{}9,8,7,6,5,4,3,2,1*,10=∈<=N x x x U ∵( C U A ) ( C U B ){}7,6,4=,∴C U ()=B A {}7,6,4∴{}9,8,5,3,2,1=B A ∵( C U B ){}9,1=A ∴=B {}8,5,3,2∵{}3=B A ,∴{}9,3,1=A . 解法二:由题意作出Venn 图如图所示:由图可知:{}9,3,1=A ,{}8,5,3,2=B .例25. 已知全集=U R ,集合{}0,,32≠∈-==x R x x y y A 且,集合⎭⎬⎫⎩⎨⎧-+-==x x y x B 522,集合{}a x a x C <<-=5.(1)求集合 A ( C U B );(2)若()B A C ⊆,求实数a 的取值范围.分析:先来确定集合A , B 的本质:集合A 是函数()032≠-=x x y 的函数值构成的集合,即函数()032≠-=x x y 的值域;集合B 是使函数xx y -+-=522有意义的自变量的值构成的集合.解:{}{}{}330,,32<=<=≠∈-==x x y y x R x x y y A 且.{}52522<≤=⎭⎬⎫⎩⎨⎧-+-==x x x x y x B .∴C U B {}52≥<=x x x 或 ∴ A ( C U B ){}53≥<=x x x 或; (2)由(1)可知:{}32<≤=x x B A ∵()B A C ⊆,∴分为两种情况:①当∅=C 时,满足()B A C ⊆,有a -5≥a ,解之得:a ≤25; ②当∅≠C 时,则有:⎪⎩⎪⎨⎧≤≥-<-3255a a aa ,解之得:a <25 ≤3.综上所述,实数a 的取值范围是{}3≤a a .例26. 若{}0232=+-=x x x A ,{}012=-+-=a ax x x B ,{}022=+-=mx x x C ,且C C A A B A == ,,求a 的值和m 的取值范围.分析:设置本题的目的是帮助雅慧复习由集合间的基本关系确定参数的值或取值范围.本题要先将三个集合之间的运算及其结果转化为集合之间的关系:因为C C A A B A == ,,∴A C A B ⊆⊆,.本来由A B ⊆需要对集合B 分两种情况进行讨论,但考虑到集合B 中的方程结构比较复杂,所以先判断一下方程012=-+-a ax x 的根的情况: ∵()()()22224414-=+-=---=∆a a a a a ≥0∴方程012=-+-a ax x 总有两个实数根.也因此,在处理关系A B ⊆时,一定有∅≠B ,不再对集合B 进行分类讨论. 解:{}{}2,10232==+-=x x x A{}()()[]{}011012=---==-+-=a x x x a ax x x B ∴集合B 中必含有元素1,∴∅≠B . ∵A B A = ,∴A B ⊆.①当11=-a ,即2=a 时,{}1=B ,符合题意;②当21=-a ,即3=a 时,{}2,1=B ,符合题意. 综上,a 的值为2或3.∵C C A = ,∴A C ⊆,分为两种情况:①当∅=C 时,满足A C ⊆,有()082<--=∆m ,解之得:2222<<-m ;②当∅≠C 时,则{}1=C 或{}2=C 或{}2,1=C :若{}1=C 或{}2=C ,则()082=--=∆m ,解之得:22±=m .经检验,当22±=m 时,{}2=C 或{}2-=C ,不符合题意,舍去;若{}2,1=C ,则由根与系数的关系定理可得:⎭⎬⎫⎩⎨⎧⨯=+=21221m ,解之得:3=m ,符合题意.综上所述,m 的取值范围是2222<<-m 或3=m .题型四 补集思想的应用(正难则反)对于某些问题,如果从正面求解比较困难,则可考虑先求解问题的反面,采用“正难则反”的解题策略.具体地说,就是将研究对象的全体实为全集,求出使问题反面成立的集合A ,则A 的补集即为所求.补集思想的原理或依据是:C U (C U A )A =.例27. 已知集合{}R x m mx x x A ∈=++-=,06242,{}0<=x x B ,若∅≠B A ,求实数m 的取值范围.分析:集合A 是方程06242=++-m mx x 的实数根构成的集合,∅≠B A 意味着方程有负根,则方程的根有以下三种情况:①两负根;②一负根,一零根;③一负根,一正根.分别求解相当麻烦.如果考虑∅≠B A 的反面∅=B A ,先求方程无实数根或两根均非负时m 的取值范围,然后再用补集思想求解∅≠B A 时m 的取值范围解:若∅=B A ,则分为两种情况:①当∅=A 时,()()062442<+--=∆m m ,解之得:231<<-m ; ②当∅≠A 时,方程06242=++-m mx x 的两个实数根均为非负数,则有:()()⎪⎩⎪⎨⎧≥+≥≥+--=∆06204062442m m m m ,解之得:m ≥23. 综上所述,当1->m 时,∅=B A .∴当∅≠B A 时,实数m 的取值范围是{}1-≤m m .结论:一元二次方程()002≠=++a c bx ax 有两个非负实数根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=⋅≥-=+≥∆0002121ac x x a b x x .例28. 已知集合{}a y a y y A <+>=或12,{}42≤≤=y y B ,若∅≠B A ,求实数a 的取值范围.解:当∅=B A 时,则有:⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴当∅=B A 时,实数a 的取值范围是{}233≤≤-≤a a a 或. ∴当∅≠B A 时,实数a 的取值范围是{}332<<->a a a 或.例29. 若集合{}0232=++=x ax x A 中至多有1个元素,则实数a 的取值范围是__________.分析:题目要求“至多有1个元素”,若采取分类讨论的方法,求解比较麻烦,可考虑用补集思想解决问题.本题中集合A 至多有1个元素的反面是集合A 有两个元素,即方程0232=++x ax 有两个不相等的实数根.解:当集合A 中有两个元素时,方程0232=++x ax 有两个不相等的实数根,则有:⎩⎨⎧>-=∆≠0890a a ,解之得:89<a 且0≠a ∴集合A 中有两个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧≠<089a a a 且.∴集合A 中至多有1个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧=≥089a a a 或.总结:求集合运算中参数的思路(1)将集合中的运算关系转化为两个集合之间的关系;(2)将集合之间的关系转化为方程(组)或不等式(组)是否有解、或解集为怎样的范围; (3)解方程(组)或不等式(组)来确定参数的值或取值范围. 题型五 集合中元素的个数若集合A 为有限集,则用card(A )表示集合A 中元素的个数. 如果集合A 中含有m 个元素,那么有card(A )m =. (1)一般地,对于任意两个有限集合A , B ,有 card ()=B A card(A )+card(B )-card ()B A . (2)一般地,对于任意三个有限集合A , B , C ,有card ()=C B A card(A )+card(B )-card ()B A -card ()C A -card ()C B + card ()C B A .。

初中数学知识归纳数集与集合的基本运算

初中数学知识归纳数集与集合的基本运算

初中数学知识归纳数集与集合的基本运算初中数学知识归纳:数集与集合的基本运算在初中数学学习中,数集与集合的概念是我们需要掌握的基础知识之一。

本文将对数集的定义、集合的基本运算以及其在数学中的应用进行归纳与总结。

1. 数集的定义与表示数集是由一些对象组成的整体,这些对象称为集合的元素。

数集一般用大写字母表示,元素则用小写字母表示。

数集可以有有限多个元素,也可以有无限多个元素。

2. 集合的表示方法集合的表示方法有两种常见的形式:枚举法和描述法。

- 枚举法:列举集合中的元素,并用花括号{}括起来表示。

例如,集合A={1, 2, 3, 4}表示集合A中有元素1、2、3和4。

- 描述法:用描述集合元素的特征或性质的方式来表示。

例如,用描述法表示所有小于10的正偶数的集合为{ x | x 是正偶数,且 x < 10}。

3. 集合间的基本运算在数学中,我们常常会对不同的数集进行比较、组合和分析。

因此,集合间的基本运算是十分重要的。

- 并集:表示将两个或两个以上的集合中的元素合并在一起,构成一个新的集合。

并集用符号"∪"表示。

例如,设A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。

- 交集:表示同时属于两个或两个以上的集合的元素,构成的新集合。

交集用符号"∩"表示。

例如,设A={1, 2, 3},B={3, 4, 5},则A∩B={3}。

- 差集:表示从一个集合中减去另一个集合中的元素所形成的新集合。

差集用符号"-"表示。

例如,设A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。

- 互斥事件:如果两个集合的交集为空集,则称这两个集合为互斥事件。

互斥事件常用于概率论的研究中,用符号"Ø"表示。

例如,设A={1, 2, 3},B={4, 5, 6},则A∩B=Ø。

集合的基本运算(4)

集合的基本运算(4)

集合的基本运算(4)一选择题1.若集合 A= {x| — 2<x<1} , B= {x|0<x<2},则集合 APB 等于( )A. {x| — 1<x<1} B . {x| — 2<x<1} C . {x| — 2<x<2} D . {x|0<x<1}2.已知全集 U= {123,4,5,6,7,8} , W {1,3,5,7} , N= {5,6,7},则?u(MU N)=( )A. {5,7} B . {2,4} C . {2,4,8} D . {1,3,5,6,7}3.设U=Z A={1,3,5,7,9} , B={1,2,3,4,5},则图中阴影部分表示的集合是( )A. {1,3,5} B . {1,2,3,4,5} C . {7,9} D . {2,4}4.已知全集 U= R,集合M= {x|x 2— 4< 0},贝U ?U M等于( )A. {x| — 2<x<2}B. {x| — 2<xw2} C . {x|x< — 2 或 x>2} D . {x|x <— 2 或 x>2}5.已知全集 U= {1,2,3,4,5,6},集合 M= {2,3,5} , N= {4,5},则?U(M U N)等于( )B. {2,4,6} C . {1,5} D. {1,6}A. {1,3,5}6.如果全集 U= R, A= {x|2<x w 4}, B= {3,4},则 AP( ?U B)等于(A. {x |2<x<3 或 3<x<4}B. {x |2<x<4} C . {x |2<x<3 或 3<xw 4} D . {x |2<x w 4}7.已知全集 U= R,集合 A= {x|3 w x<7}, B= {x|x 2— 7x + 10<0},则?R(A P B)等于( )A. {x |x<3 或 5< x}B. {x |x <3 或 5w x} C . {x |x w 3 或 5w x} D . {x |x w 3 或 5< x}8.已知全集U「0,1,2,4,6,8,10 ?,A =「2,4,6?,B—1,则(C u A) 一B =( )A 〈0,1,8,10?B (1,2,4,6?C 〈0,8,10?D G9.设A={x|x a} , B={x|0 :::x :::3},若,则实数a的取值范围是( )A 3B 2C -3D 110.已知集合 M={ (x, y)|x+y=2 }, N={(x, y)|x — y=4},那么集合 MQ N 为( )A. x=3, y= — 1B. (3 , — 1)C. {3, — 1}D. {(3 , — 1) }二填空题1.设集合 A={x | -1 v xv 2},集合 B={ x | 1 vxw 3 },则 AU B 等于__________2.A={ x | -1 v xw 4}, B={ x | 2v xw 5},贝U B等于____________3.已知全集 U= R,集合 A= {x| — 2w xw 3}, B= {x|x< — 1 或 x>4},那么集合 AP( ?uB)等于___________24.设全集 U={1, 2, x - 2} , A={1 , x},则 C U A 等于__________5.已知全集 U={1, 2, 3, 4, 5},集合 A= {x | x2 - 3x + 2 = 0} , B= {x | x= 2a , a A},则集合 C U (A B)中元素的个数为_________6.若集合 A={x | xw 2} , B={x | x> a},满足<1 B={2},则实数 a= ________________________7.已知集合 A= {x | -2wxw 3}, B= {x | xv -1 或 x>4},则集合 A^B 等于__________________________8.已知集合 A = {(0,1) , (1,1), (— 1, 2)}, B = {(x, y)|x+ y—1 = 0, x, y € Z},贝U AP B = ________9.设全集 U = AU B = {x€ N*|0<x<10},若 AP (?u B)= {m|m= 2n+ 1 , n= 0,1,2,3,4},则集合 B = ______________10.已知集合 A= {x|xw 1}, B = {x|x> a},且A U B = R,则实数a的取值范围是 __________三解答题1.(1)设集合 A ={x|—2 :;x:::3}, B ={x|1 :::x :::2}.求 AP B AU B;(2)设集合 A= {x| — 5w xw 3}, B={x|x< — 2 或 x>4},求 AP B, (?R A) U( ?R B)3.集合 A= {x|x w— 2 或 x> 3}, B= {x|a<x<b},若 An B= ?, AU B= R,求实数a, b4.已知 U= R, A= {x|x 2 + px + 12= 0} , B= {x|x 2— 5x+ q = 0},若(?iA) n B= {2} , (?uB) n A= 4,求 AUB5.在开秋季运动会时,某班共有28名同学参加比赛,其中有 15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加田赛和径赛的有3人,同时参加径赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田赛和球类比赛的有多少人?只参加径赛的同学有多少人?6.设 y=x2+ax+b,A={x | y=x}={a} , M={ (a, b) },求 M7.已知集合A ={x | a _ x _ a 3}, ^{x | x :: -1或x 5},若A -B=A,求a的取值范围8.设平面内直线A上点的集合为L1,直线12上点的集合为L2,试分别说明下面三种情况时直线l1与直线12的位置关系?(1)L i n L2 ={点P};( 2)L i n L2 = •- ;( 3)L1 n L2 = L1 = L2。

集合的基本概念、关系及运算

集合的基本概念、关系及运算

2020/9/23
.
37
(2)当B A时,又可分为: (a) B≠时,即B ={0},或B ={-4}, Δ = 4(a+1)2 -4(a2 -1) = 0,解得a = -1 B ={0}满足条件; (b)B = 时,Δ = 4(a+1)2 -4(a2 -1) < 0,解得a < -1 综合(1)、(2)知,所求实数a的值a -1,或a =1.
AC
(3)对于两个集合A,B,如果A B 且 B A ,那么
A=B (4)空集是任何集合的子集,是任何非空集合的真 子集,即 Φ A
2020/9/23
.
24
例 写出集合{ a , b }的所有子集,并指出哪些是它的
真子集.
解:集合{ a , b }的所有子集为 ,{a},{b},{a,b}.
2020/9/23
.
19
知识要 点
3.集合相等与真子集的概念
如 果 集 合 A是 集 合 B的 子 集 (AB), 且 集 合 B是 集 合 A的 子 集 ( BA) , 此 时 , 集 合 A与 集 合 B中 的 元 素 是 一 样 的 , 因 此 , 集 合 A与 集 合 B相 等 . 记 作 A= B
2020/9/23
.
16
2.在数学中,经常用平面上的封闭曲线的 内部代表集合,这种图称为Venn图.
A B用Venn图表示如下:(有两种情况)
A
B
A(B)
思考1
包含关系{a} A与属于关系 a A有什么区别吗?
2020/9/23
.
17
注意
与 的区别:前者表示集合与集合之间的关系;
后者表示元素与集合之间的关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交口县第一中学校高一数学学科学案
编号:004 主编:刘耀琴 审核:尹瑞明 班级: 姓名:
课题:集合的基本运算
【目标导航】
1. 理解两个集合并集与交集的含义,会求简单集合的交集与并集,弄清“或”“且”的含义。

2. 理解子集的补集的含义,会求给定子集的补集,了解全集的含义,集合A 的补集与全集U 的关系。

3. 使用Venn 图表达集合的关系及运算,体现直观图对理解抽象概念的作用。

学习重点:交集、并集、补集的概念,利用Venn 图与数轴进行交并补的运算
学习难点:弄清交集、并集、补集的概念,符号之间的区别与联系
【问题导学】(带着问题,研读教材,落实问题)
阅读课本P8-10,回答下列问题
知识点一:并集
问题一:类比实数的加法运算,集合之间可以相加吗?分析P8思考中的两个例子,说出
集合C 与集合A 、B 之间的关系,并由此得出并集的定义,(注意:如何理解x
∈A 或x ∈B 这一条件),用符号语言、Venn 图如何表示并集。

试试:设集合A={4,5,6,8},B={5,6,7,9}求A ∪B ,并思考求并集要注意什么?
问题二:由例5入手,能否借用数轴求并集?
问题三:如图所示,先求A ∪B,并由此归纳出并集的有关性质? (1) (2)
A B B B BB A
知识点二:交集
问题一:由实例入手,分析P9的例子(1),思考集合A ,B 与集合C 之间有什么关系?
归纳出交集的定义,并用符号语言、Venn 图表示。

问题二:已知A={x|x>1},B={x|x<2},是否可以用数轴法表示A ∩B?
问题三:交集的性质:
①===A A A B A B B A 则;若交换律: 若B=φ,则=φ A ②B A 与A 、B 之间的关系是什么?
③若B A ⊆则B A =? 反之成立吗?
知识点三:补集
问题一:什么是全集,补集?你能用Venn 图表示出来吗?你能举出有关补集的例子吗?
问题二:补集性质:
①A =⊆⊆U C U A C U U U ;; =φU C =)(A C C U U
②=)(A C A U =)(A C A U
③若A C B C B A U U 与则⊆之间什么关系?
试试:已知集合A={x|310},x 2|{x B 7},x <<=<≤求

???====)(,)(,)(,)(B C A B A C B A C B A C R R R R
知识点四:交集、并集、补集的关系(探索摩根定律)
已知集合U 为全集,A,B 分别为U 的子集,其关系如下所示: 试求:(1)区域①②③④分别表示为什么? (2)结合图回答:
)之间有什么关系?(和B A C B C A C U U U )之间有什么关系?
(和B A C B C A C U U U U ① ② ③ A
B ④
交口县第一中学校高一数学训练学案
编号:004主编:刘耀琴 审核:尹瑞明 班级: 姓名:
【典型例题】
(1)设A={1,2,3,4},B={2,3,5,6},则A ∩B ,A ∪B
(2)设集合A={x|-2<x<2},B={x|1<x<3},则A ∩B ,A ∪B
(3)集合P={x ∈Z|0≤x<3},M={x ∈R|x 2≤9},则P ∩M=
(4)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则
(A ∪B )∩=)(C C U
(5)已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A ∩)(B C N =
(6)设集合A={x|2≤x<4} ,B={x|3x-7≥8-2x},求A ∩B ,A ∪B
(7)设集合A={-1,1,3},B={4a 2a 2
++,},A ∩B={3},求实数a 的值?
(8)已知全集U={x|x ≤4},集合A={x|-2<x<3},B={x|-3<x ≤3},A C U =? A ∩B=? )(B A C U =? (A C U )∩B=?
【实践题组】
(1)已知M={x|y=1x + },N={ y|y=x 2+1,x ∈R },则M ∩N=? M ∪N=?
(2)已知A={0,1},若A ∪B={0,1,2},写出符合条件的集合B.
(3)若集合A={1,3,x},B={1,x 2},若A ∪B={1,3,x},则满足条件的实数x 的集
合。

(4)设U={2,3,a 2+2a-3},A={b ,2},A C U ={5},求实数a 和b 的值。

【拓展题组】
1、已知集合A={1,2,3,4,5},B={(x,y)|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数( )
A 、3
B 、10
C 、8
D 、6
2、已知集合A={x 2-6x+8<0},B={x|(x-a)﹒(x-3a)<0}.
求:(1)若B A ⊆求a 的取值范围;
(2)若A ∩B=∅,求a 的取值范围
(3)若A ∩B={x|3<x<4},求a 的取值范围。

相关文档
最新文档