14.3.2应用完全平方公式因式分解(公开课)

合集下载

公式法2—公开课课件定稿

公式法2—公开课课件定稿
两个数的平方和加上(或减去)这两个数的积的2倍, 等于这两个数的和(或差)的平方.
练一练
1.判断各式是不是完全平方式,若是,说出公
式中a和b,若不是,说明理由。
(1) 4a2+9 (×) (2)a2+2ab+b(×)
(3)m2-mn+n2(×)(4)x2-6x-9(√ )
(5)x2+4x+4y2(× )
目标二
学会并较熟练地运用完全平方公式分解因式
针对练习三(微课导学)
(1) 3xm2 6xmn 3xn2
(2)(x+2y) 3 + 2(x + 2y)2 + (x + 2y)
归纳解题步骤
因式分解的步骤: 一提 ①对任意多项式分解因式,都必须首先考
虑提取公因式。 二套 ② 对于二项式,考虑应用平方差公式分解。
对于三项式,考虑应用完全平方公式分解。 三查 ③检查:特别看看多项式因式是否分解彻
底。
四【综合训练】
1.已知4y2+my+9是完全平方公式,则m的值是 _____ 。
2.分解因式:(a2+4)2-16a2
通过本课时的学习,需要我们掌握:一 三 三
一个公式 三个特征
三个步骤
六【延伸拓展】
1.若 x2 y2 6x 8y 25 0 ,求(x y)2013的值。
14.3 因式分解
14.3.2因式分解——完全平方式
讲课人:魏士杰
学习目标:
1.会判断完全平方式。 2.能直接利用完全平方式因式分解,掌握 利用完全平方公式因式分解的步骤。 3. 能够综合全平方公式.
1.分解因式: (1) ab2-a2b; (2) ma2-mb2;

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

14.3.2《因式分解--公式法--完全平方公式》教案

14.3.2《因式分解--公式法--完全平方公式》教案

学科:数学授课教师:年级:八年级总第课时课题14.3.2《因式分解--公式法--完全平方公式》课时教学目标知识与技能用完全平方公式分解因式过程与方法1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.情感价值观通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图复习提问1、分解因式:(1)-a2+b2(2)2a-8a22、把下列各式分解因式.(1)a2+2ab+b2 (2)a2-2ab+b2思考解答复习引入完全平方公式1、把整式乘法的完全平方公式:(a+b)2=a2+2a b+b2(a-b)2=a2-2a b+b2反过来,得到:a2+2a b+b2=(a+b)2a2-2a b+b2=(a-b)2注:(1)形如a2±2a b+b2的式子叫做完全平方式,说出它们的特点。

(2)利用完全平方公式可以把形如完全平方式的多项式因式分解。

(3)上面两个公式用语言叙述为:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

尝试独立完成然后与同伴交流总结掌握完全平方公式分解因式特点例题练习1、分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y22、练习:P119页:练习:1、2:(1)--(4)3、分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+364、练习:P119页:练习:2:(5)(6)5下列多项式是不是完全平方式?为什么?(1)a2-2a+1 (2)a2-4a+4 (3)a2+2ab-b 2(4)a2+ab+b2(5)9a2-6a+1 (6)a2+a+1/4 思考动手板演归纳总结巩固知识因式分解的一般步骤1、把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1)44yx-;(2)33abba-;(3)22363ayaxyax++;(4)22)()(qxpx+-+;(5)4x2+20(x-x2)+25(1-x)22、分解因式的一般步骤:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到每个多项式因式不能再分解为止.3、练一练:把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;课堂小结1、完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

人教版八年级数学上册精品教学课件14.3.2第1课时运用平方差公式因式分解

人教版八年级数学上册精品教学课件14.3.2第1课时运用平方差公式因式分解
解:(1)原式=(x2)2-(y2)2
(2) a3 b ab.
分解因式后,一定要检查是 否还有能继续分解的因式, 若有,则需继续分解.
=(x2+y2)(x2-y2) =(x2+y2)(x+y)(x-y);
(2)原式=ab(a2-1) =ab(a+1)(a-1).
分解因式时,一般先用提公 因式法进行分解,然后再用 公式法.最后进行检查.
3.若a+b=3,a-b=7,则b2-a2的值为( A ) A.-21 B.21 D.10 C.-10
4.把下列各式分解因式:
(4a+3b)(4a-3b) (1) 16a2-9b2=_________________; (2) (a+b)2-(a-b)2=_________________; 4ab 9xy(y+2x)(y-2x) (3) 9xy3-36x3y=_________________; (4) -a4+16=_________________. (4+a2)(2+a)(2-a) 5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值 4 是_____________.
所以,(2n+1)2-25能被4整除.
课堂小结


a2-b2=(a+b)(a-b)
平方差 公式分 解因式
一提:公因式;
步 骤 二套:公式; 三查:多项式的因式分解有没有分 解到不能再分解为止.
=10×3.6
=36 (cm2) 答:剩余部分的面积为36 cm2.
8. (1)992-1能否被100整除吗? (2)n为整数,(2n+1)2-25能否被4整除? 解:(1)因为 992-1=(99+1)(99-1)=100×98,

14.3.2因式分解完全平方公式课件八年级数学人教版上册

14.3.2因式分解完全平方公式课件八年级数学人教版上册

a
b
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
利用公式把某些具有特殊 形式(如平方差式,完全平 方式等)的多项式分解因式, 这种分解因式的方法叫做 公式法因式分解.
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
判断下列各式是完全平方式吗?
a2 4a 22 (a 2)2
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
例4 计算:
(1) 1002–2×100×99+99²;
解:(1)原式=(100–99)² =1.
(2) 342+34×32+162.
(2)原式=(34+16)2 =2500.
利用完全平方 公式分解因式, 可以简化计算.
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
2a(x y)2
先纳总结 巩固提升 小结回顾
例2 因式分解
(2) 16a4 8a2b2 b4 解:原式 (4a2 )2 2 4a2 b2 (b2 )2
(4a2 b2 )2 [(2a b)(2a b)]2 (2a b)2 (2a b)2
因式分解 步骤方法
先提公因式→一提 再用公式→二用 继续分解→三查
例2 因式分解
(5) ( p 1)( p 4) p 解:原式 p2 4 p p 4 p
p2 4p 4 ( p 2)2
无提无公式, 展开合并 再观察。
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
例3 已知: a2+b2+2a–4b+5=0,求 2a2+4b–3的值.
解:∵a2+b2+2a–4b+5=0
∴ 2a2+4b–3

14.3.2公式法_因式分解(完全平方公式)

14.3.2公式法_因式分解(完全平方公式)

a 2ab b a 2ab b
2 2
2
2
完全平方式的特点: 1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 2 2 2A 2 AB B 2 2 3甲 2 甲乙 乙 2 2 4 2
a 2ab b a b
2 2
2
a 2ab b a b
2 2
2
这两个多项式有什么特征?
2 2 2 2 a +2ab+b 与a -2ab+b
这两个多项式是两个数的平方和加上(或 减去)这两个数的积的2倍,这恰是两个 数和或差的平方。
我们把 2 2 和 2 2 a +2ab+b a -2ab+b 这样的式子叫做完全平方式。
1. 因式分解:9x2-y2-4y-4=_____. 2 2 【解析】9x -y -4y-4
= 9x2-(y2+4y+4) = 答案: 2. 分解因式:2a2–4a+2 2 【解析】 2a – 4a+2 = 2(a 2 – 2a +1) = 2(a – 1) 2
需要我们掌握: 1:如何用符号表示完全平方公式?
(1) (2) 1 6 a 4 + 2 4 a 2 b 2 + 9 b 4 2 2 解:(1)x - 12xy+36y 2 2 = x -2· x· 6y+ ( 6y ) = ( x - 6y ) 2 ( 2 ) 16a 4 +24a 2 b 2 +9b 4
2. 因式分解.
2 2 x - 12xy+36y

因式分解(完全平方公开课)

因式分解(完全平方公开课)

现实生活中的二次方程
因式分解可以帮助我们解决许多实际生活中的问题, 例如求解物体的运动轨迹识,并通过解答讲解来帮助您更好地理解因 式分解的具体步骤和方法。
总结和扩展阅读建议
本课程回顾了因式分解的定义和基本思想,介绍了一元二次方程的解法和完全平方公式。通过实际问题的应用 举例和练习题的讲解,您现在应该已经掌握了因式分解的基本技巧。 如果您对这个主题感兴趣,我们建议您阅读更多关于代数和多项式的扩展材料,以加深对因式分解的理解。
公式法
利用一元二次方程的求根公式,直接求 解方程的解。
完全平方公式
完全平方公式是求平方项的一种简便方法。当我们需要将一个二次多项式展 开时,可以使用完全平方公式来快速求解。 完全平方公式的一般形式为(a+b)^2=a^2+2ab+b^2,其中a和b是任意实数。
如何判断一个二次多项式是否能够被 因式分解
因式分解定理
根据因式分解定理,一个二次多项式可以被因式分解为两个一次多项式的乘积。
观察多项式的系数
通过观察多项式的系数中是否存在公因子或通过试除法来判断一个二次多项式是否可以被因 式分解。
因式分解实际问题的应用举例
古代数学问题
通过因式分解将古代数学问题转化为二次方程,并 通过求解方程来解决实际问题。
在进行因式分解时,我们首先要观察多项式中是否存在公因式,然后使用分 解公式或其他相关方法将多项式分解为可简化的形式。
一元二次方程的解法
1
配方法
2
通过配方法将一元二次方程转化为一个
平方差或差平方的形式,从而简化求解
的过程。
3
求平方根法
通过求解一元二次方程的平方根来得到 方程的解,结合因式分解的方法可以更 快地求解复杂的二次方程。

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿一. 教材分析《人教版八年级数学上册》第14章是关于因式分解的内容。

在本章节中,学生将学习并掌握完全平方公式,并运用完全平方公式进行因式分解。

14.3.2.2节《运用完全平方公式因式分解》是本章的重要内容,通过本节的学习,学生能够理解完全平方公式的含义,掌握运用完全平方公式进行因式分解的方法,提高解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和解决问题的能力。

但对于完全平方公式的理解和运用,还需要通过本节课的学习来进一步巩固。

同时,学生对于新知识的学习兴趣和积极性需要教师的激发和引导。

三. 说教学目标1.知识与技能目标:学生能够理解完全平方公式的含义,掌握运用完全平方公式进行因式分解的方法。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 说教学重难点1.教学重点:学生能够理解并掌握完全平方公式的运用。

2.教学难点:如何引导学生理解和运用完全平方公式进行因式分解。

五.说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导相结合的教学方法。

2.教学手段:利用多媒体课件、黑板等教学工具,帮助学生直观地理解完全平方公式的运用。

六. 说教学过程1.导入新课:通过复习已学过的知识,引出完全平方公式,激发学生的学习兴趣。

2.自主学习:学生自主探究完全平方公式的含义和运用,培养学生的自主学习能力。

3.合作交流:学生分组讨论,分享各自的学习心得,提高团队合作精神。

4.教师引导:教师针对学生的学习情况,进行针对性的讲解和引导,帮助学生理解和掌握完全平方公式。

5.巩固练习:学生进行相关的练习题,检验自己对于完全平方公式的掌握程度。

6.课堂小结:教师引导学生总结本节课的学习内容,加深对完全平方公式的理解。

新人教版初中数学八年级上册14.3.2第2课时运用完全平方公式因式分解2公开课优质课教学设计

新人教版初中数学八年级上册14.3.2第2课时运用完全平方公式因式分解2公开课优质课教学设计

第2课时运用完全平方公式因式分解教学目标1.使学生理解用完全平方公式分解因式的原理。

2.使学生初步掌握适合用完全平方公式分解因式的条件,会用完全平方公式分解因式。

重点难点重点:让学生会用完全平方公式分解因式。

难点:让学生识别并掌握用完全平方公式分解因式的条件。

教学过程一、引入新课我们知道,因式分解是整式乘法的反过程。

倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法;运用平方差公式法。

现在,大家自然会想,还有哪些乘法公式可以用分解因式呢?在前面我们共学过三个乘法公式:平方差公式:(a+b)(a–b)=a2–b2。

完全平方公式:(a±b) 2= a2±2ab+ b2.这节课,我们就要讲用完全平方公式分解因式。

二、新课讲解1.将完全平方公式倒写:a2+2ab+ b2=(a+b) 2,a2–2ab+ b2=(a–b) 2。

便得到用完全平方公式分解因式的公式。

2.分析上面两个等式的左边,它们都有三项,其中两项符号为“+”是一个整式的平方,还有一项呢,符号可“+”可“–”,它是那两项幂的底的乘积两倍。

凡具备这些特点的三项式,就是一个二项式的完全平方。

将它写成平方形式,便实现了因式分解。

例如 x2 + 6x + 9↓↓↘=(x) 2+2(3)(x)+(3) 2=(x+3) 2.4 x 2 – 20x + 25↓ ↓ ↘=(2x) 2 – 2(2x)(5) + (5) 2=(2x+5) 2.3.范例讲解例4 把25x 4+10x 2+1分解因式。

[教学要点]按前面的分析,让学生先找两个平方项,写出这两个二次幂:25x 4=(5x 2) 2,1=12.再将另一项写成前述两个幂的底的积的二倍:10x 2=2•(5x 2)•1,原式便可以写成(5x 2+1) 2.可以问学生,如果题中第二项前面带“–”好呢?是否可用完全平方公式:仍可用完全平方公式,得出的是(5x 2–1)的平方。

例5 把–x 2–4y 2+4xy 分解因式。

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。

平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。

基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。

二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。

(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。

2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。

知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。

达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。

三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。

学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。

因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。

四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。

人教版八年级数学上册14.3.2《公式法》 课件第1课时(共17张PPT)

人教版八年级数学上册14.3.2《公式法》 课件第1课时(共17张PPT)
3.因式分解与整式乘法有着怎样的关系? 因式分解与整式乘法是方向相反的变形,把整式 乘法的平方差公式 (a b)(a b) a2 b2 的等号两 边互换位置,就得到 a2 b2 (a b)(a b) .
探究新知
4.将 a2 b2 (a b)(a b) 用文字语言表述, 并说明公式中的字母a,b可以表示什么?
(1)(a b)2 c2 a2 2ab b2 c2 ;
不正确. 对分解因式的概念不清,左边是多项式的形 式,右边应是整式乘积的形式,但右边还是多项 式的形式,因此,最终结果是未对所给多项式进 行因式分解.
课堂练习
(2)a4 1 (a2 )2 1 (a2 1)(a2 1) .
不正确. 因式分解不彻底.
3.因式分解应进行到每一个因式不能分解为止. 4.计算中应用因式分解,可使计算简便.
课堂小结
本图片资源介绍了用平方差公式分解因式,适用于公 式法的教学.若需使用,请插入图片【知识点解析】 用平方差公式分解因式.
课堂小结
本图片资源介绍了因式分解的一般步骤,适用于因式 分解的教学.若需使用,请插入图片【知识点解析】 因式分解的一般步骤.
(1)x2 4 与多项式和 (2)a2 36 进行因式
分解?
(1)x2 4 x2 22 (x 2)(x 2) ; (2) a2 36 a2 62 (a 6)(a 6) .
例题解析
【例1】分解因式:
(1)4x2 9 ; (2) (x p)2 (x q)2 .
解:(1)4x2 9 (2x)2 32 (2x 3)(2x 3) ; (2)(x p)2 (x q)2 [(x p)+(x q)][(x p) (x q)] (2x p q)( p q) .
文字语言表述:两个数的平方差,等于这两个数 的和与这两个数的差的积.字母a 、b可以表示任何 数、单项式或多项式.

14.3.2公式法(2)

14.3.2公式法(2)

表示为 (a b)2 或 (a b)2 形式
x2 6x 9

a表示:x b表示:3
x2 2 • x • 3 32
(x 3)2
4y2 4y 1 1 4a2
是 不是
a表示:2y b表示:1
(2y)2 2• (2y) •112
(2 y 1)2
x2 x 1 24
4 y2 12 xy 9x2
5、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
6、英国数学家狄摩根在青年时代,曾有人问他:“今年 多大年龄?”狄摩根想了想说:“今年,我的年龄 和我弟弟年龄的平方差是141,你能算出我的年龄 和我弟弟的年龄吗?”假设狄摩根的年龄为x岁,他 弟弟的年龄为 y岁,你能算出他们的年龄吗?
C、10 D、-10
8、如果x2+mxy+9y2是一个完全平方式,
那么m的值为(
B)
A、6 B、±6
C、3 D、±3
9、把 a b2 4a b 4 分解因式得
(C )
A、a b 12 B、a b 12 C、a b 22 D、a b 22
10、计算1002 210099 992 的
首2 2首尾尾2
口答:下列各式是不是完全平方式
1 a2 b2 2ab 是
22xy x2 y 2 是 3 x2 4xy4 y 2 是 4a2 6abb2 否 5x2 x 1 是
4
6 a2 2ab 4b2 否
填写下表
多项式
是否是完 a 、b各 全平方式 表示什么
表示为:
a2 2ab b2
a2 + 2 ·a ·b + b2 解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)

14.3.2 因式分解 —平方差公式 教案 (含答案)2023--2024学年人教版八年级数学上册

14.3.2 因式分解 —平方差公式 教案 (含答案)2023--2024学年人教版八年级数学上册

第十四章整式的乘法与因式分解·14.3因式分解·第二课时平方差公式教案班级:课时:课型:一、学情分析平方差公式是最基本、用途最广泛的公式之一,它在整式乘法、因式分解、分式运算及其他代数式的变形中起十分重要的作用.但是这一阶段的学生抽象思维能力还不够完整,需要在教师的引导下进行探索.二、教学目标1.探索并运用平方差公式进行因式分解,体会转化思想;2.会综合运用提公因式法和平方差公式对多项式进行因式分解.三、重点难点【教学重点】运用平方差公式分解因式.【教学难点】综合运用提公因式法与平方差公式来分解因式.四、教学过程设计第一环节【复习旧知引入新课】1.师:因式分解的定义?生:把一个多项式分解成几个整式的积的形式.2.师:提公因式法的定义?生:在一个多项式中,若各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.3.5ab3+20ab2的公因式是什么?(答案)5ab2(b+4).4.x2-1和4m2-n2可以用提公因式法分解吗?设计意图:通过师生互动共同回顾上节课所学知识,避免学生遗忘知识,同时为这节课所学知识做铺垫.第二环节【合作交流探索新知】1.观察多项式x2-1和4m2-n2,试着用已经学过的知识找出他们之间有什么特点?学生通过因式分解发现x2-1可以变成(x-1)(x+1),4m2-n2可以变成(2m-n)(2m-n),老师引出平方差概念.(答案)都可以写成a2-b2(两个数的平方差)的形式.x2-1=x2-12和4m2-n2=(2m)2-n2.2.师:你能将a2-b2分解因式吗?学生思考后将其变成(a-b)(a+b),老师给出互逆过程,给出相关概念.两个数的平方差,等于这两个数的和与这两个数的差的积.这种分解因式的方法称为公式法.3.下列多项式能用平方差公式法进行因式分解吗?x2-1=4m2-n2=-4m2-9=x2-(x+y)2=(答案)x2-1=(x+1)(x-1)4m2-n2=(2m)2-n2=(2m+n)(2m-n)-4m2-9不能转变为平方差形式x2-(x+y)2=[x+(x+y)][x-(x+y)]=-y(2x+y)4.老师带领学生进行知识归纳,让学生印象更加深刻.因式分解的平方差公式:公式中的ɑ,b可以是单独的数字、字母,也可以是单项式、多项式.5.师:多项式2x2-8y2怎么分解?老师强调:如果多项式的各项含有公因式,那么先提公因式,且必须分解到不能分解为止.设计意图:通过观察两个多项式运用因式分解引出平方差的概念,再由特殊到一般总结规律.通过几道习题让学生能够熟悉的运用公式法进行因式分解,让学生更清楚哪些式子是不能用平方差公式法.第三环节【应用迁移巩固提高】例1:(1) 4x2-9;(2)(x+p)2-(x+q)2 .例2.把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.例3.分解因式:(1)x4-y4;(2)ɑ3b-ɑb.设计意图:本环节通过三道例题的练习,考察学生对平方差公式法运用的熟练程度,巩固基础.【答案】例1.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式= [(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2.(1)解:原式= [3(m+n)]2-(m-n)2=(4m+2n)(2m+4n)= 4(2m+n)(m+2n);(2)原式= 2x(x2-4)= 2x(x+2)(x-2).例3.(1)解:原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y);(2)原式=ɑb(ɑ2-1)=ɑb(ɑ+1)(ɑ-1).第四环节 【随堂练习 巩固新知】1.下列多项式不能用平方差公式分解因式的是( )A.-ɑ2+b 2B.16m 2-25m 4C.2x 2-21y 2D.-4x 2-92.下列各式能用平方差公式分解因式的是( )A .2x 2+y 2B .-x 2+y 2C .-x 2-y 2D .x 3+(-y )23.将(ɑ-1)2-1 分解因式,结果正确的是( )A.ɑ(ɑ-1)B.ɑ(ɑ-2)C.(ɑ-2)(ɑ-1)D.(ɑ-2)(ɑ+1)4.分解因式:x 2y 2-49 = ;5.分解因式:-25ɑ2+9b 2 = .设计意图:本环节在于夯实基础,通过解答简单练习让学生在习题中找到学习的乐趣,增强学生学习的主动性.【答案】1.D2. B3.B4.(xy+7)(xy-7)5.(3b+5ɑ)(3b-5ɑ)第五环节【当堂检测及时反馈】1.(2019秋•乳山市期末)下列多项式,不能用平方差公式分解因式的是()A.a2b2-1 B.4-0.25a2C.-x2+1 D.-a2-b22.(2019•贺州)把多项式4a2-1 分解因式,结果正确的是()A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)23.把ɑ3-4ɑ分解因式,结果正确的是()A.ɑ(ɑ2-4)B.(ɑ+2)(ɑ-2)C.ɑ(ɑ+2)(ɑ-2)D.ɑ(ɑ+4)(ɑ-4)4.(2019春•金坛区期中)已知x-y= 3,y-z= 2,x+z= 4,则代数式x2-z2的值是()A.9 B.18 C.20 D.245.下列分解因式正确的是()A.ɑ2-2b2=(ɑ+2b)(ɑ-2b)B.-x2+y2=(-x+y)(x-y)C.-ɑ2+9b2=-(ɑ+9b)(ɑ-9b)D.4x2-0.01y2=(2x+0.1y)(2x-0.1y)6.(珠海·中考)因式分解:ɑx2-ɑy2=.7.(2020•哈尔滨模拟)分解因式:-(a+2)2+16(a-1)2=.8.(2020秋•广西期中)运用公式“a2-b2=(a+b)(a-b)”计算:9992-1 =,99982=.9.把下列各式分解因式:(1)(a-1)+a2(1-a);(2)x5-16x.10.已知4m+n= 40,2m-3n= 5.求(m+2n)2-(3m-n)2的值.设计意图:通过本环节的练习,深化学生对平方差公式的运用,同时让学生体会到公式法的优越性.【答案】1.D2.B3.C4.C5.D6.ɑ(x+y)(x-y)7.3(5a-2)(a-2)8.998000;999600049.解:(1)原式=(a-1)-a2(a-1)=(a-1)(1-a2)=(a-1)(1+a)(1-a)=-(a-1)2(1+a);(2)原式=x(x4-16)=x[(x2)2-42]=x(x2+4)(x2-4)=x(x2+4)(x+2)(x-2).10.解:(m+2n)2-(3m-n)2=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),当4m+n= 40,2m-3n= 5 时,原式=-40×5 =-200.第六环节【拓展延伸能力提升】1.利用因式分解计算:1002-992+982-972+962-952+…+22-12.2.已知乘法公式a5+b5=(a+b)(a4-a3b+a2b2-ab3+b4);a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4).利用或者不利用上述公式,分解因式:x8+x6+x4+x2+1.设计意图:本环节习题在于考察学生能够灵活的运用公式法求解,对式子的转化能力要求较高.【答案】1.解:原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)= 100+99+98+97+…+2+1= 5050.2.解:x 10-1=(x 5)2-1=(x 2)5-1=(x 2-1)(x 8+x 6+x 4+x 2+1),则有x 8+x 6+x 4+x 2+1=11210--x x =()()()()111155-+-+x x x x= (x 4+x 3+x 2+x +1)(x 4-x 3+x 2-x +1).第七环节 【总结反思 知识内化】课堂小结:1.利用平方差公式分解因式: ɑ2-b 2 = (ɑ+b )(ɑ-b ).2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因式分解应进行到每一个因式不能分解为止.4.将因式分解应用到计算中,简化计算.设计意图:通过知识小结,使学生梳理本节课所学内容,理解本课核心知识,提高学习质量.第八环节 【布置作业 夯实基础】。

14.3.3运用完全平方公式因式分解(教案)

14.3.3运用完全平方公式因式分解(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解完全平方公式的基本概念。完全平方公式是指a^2 ± 2ab + b^2 = (a ± b)^2,它可以帮助我们快速将特定类型的二次多项式进行因式分解。这一工具在解决二次方程和简化代数表达式方面具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例,比如x^2 - 6x + 9的因式分解。这个案例将展示如何识别并应用完全平方公式来简化问题。
-引导学生总结因式分解步骤,即识别公式结构、应用完全平方公式、写出分解结果。
2.教学难点
-难点内容:对完全平方公式的理解和灵活运用,特别是在复杂多项式中的识别和应用。
-难点举例与解释:
-难点一:识别多项式是否适合用完全平方公式进行因式分解。例如,在多项式x^2 - 4x + 4中,学生需要能够快速识别出其符合完全平方公式的结构。
14.3.3运用完全平方公式因式分解(教案)
一、教学内容
本节课选自教材第十四章第三节,主要教学内容为运用完全平方公式因式分解。具体内容包括:
1.完全平方公式的回顾与掌握:a^2 ± 2ab + b^2 = (a ± b)^2。
2.利用完全平方公式分解因式:将符合完全平方公式的多项式分解为两个因式的乘积。
-难点三:对完全平方公式中的正负号处理。学生在应用公式时,容易混淆正负号,导致错误。
解决方法:设计特定的练习题,让学生在不同情况下练习正负号的应用,加强记忆和理解。
-难点四:将完全平方公式与其他因式分解方法结合使用。在遇到复杂的二次多项式时,学生需要能够将完全平方公式与其他方法(如十字相乘法)结合使用。
在今后的教学中,我将继续关注学生的学习情况,及时调整教学策略,以期提高教学质量。通过这次教学反思,我相信我能够更好地指导学生,让他们在数学学习上取得更好的成绩。

14.3.2 公式法 课件 人教版数学八年级上册

14.3.2 公式法  课件 人教版数学八年级上册

必须相同,否则就不是完全平方式,也就不能用完全平方公
式进行因式分解.
3. 用完全平方公式分解因式时,若多项式各项有公因式,要先
提取公因式,再用完全平方公式分解因式.
感悟新知
知2-练
例 2 已知9a2+ka+16是一个完全平方式,则k的值是
___±__2_4____.
解题秘方:根据平方项确定乘积项,进而确定字母的值.
第十四章 整式的乘法与因式分解
14.3 因式分解
14.3.2 公式法
感悟新知
知识点 1 用平方差公式分解因式
知1-讲
1. 平方差公式法:两个数的平方差,等于这两个数的和与 这两个数的差的积. 即:a2-b2=(a+b)(a-b).
a,b可以是单项式,也可以是多项式
感悟新知
知1-讲
2. 平方差公式的特点 (1)等号的左边是一个二项式,各项都是平方的形式且 符号相反; (2)等号的右边是两个二项式的积,其中一个二项式是 这两个数的和,另一个二项式是这两个数的差.
感悟新知
知2-讲
2. 完全平方公式 两个数的平方和加上(或减去)这两个数的积的2倍,
等于这两个数的和(或差)的平方. 即:a2±2ab+b2=(a±b)2.
感悟新知
3. 公式法分解因式
知2-讲
如果把乘法公式的等号两边交换位置,就可以得到
用于分解因式的公式,用这些公式把某些具有特殊形式
的多项式分解因式,这种分解因式的方法叫做公式法.
例 3 分解因式: (1)x2-14x+49; (2)-6ab-9a2-b2;
知2-练
(3)116a2-12ab+b2; (4)(x2+6x)2+18(x2+6x)+81.
解题秘方:先确定完全平方公式中的“a”和“b”,再运 用完全平方公式分解因式.

人教版数学八年级上册课件:14.3.2 公式法

人教版数学八年级上册课件:14.3.2 公式法


提公因式法
平方差公式 a2–b2=(a+b)(a–b)
3.完全平方公式 (a±b)2=a2±2ab+b2
探究新知
探究
你能把下面4个图形拼成一个正方形并求出你
拼成的图形的面积吗?
a a² a
ab a ab a b²b
b
b
b
同学们拼出图形为:
探究新知
这个大正方形的面积可以怎么求? (a+b)2 = a2+2ab+b2
探究新知
辨一辨:下列多项式能否用平方差公式来分解因式,为什么?
(1)x2+y2
×
(2)x2–y2

★符合平方差的形 式的多项式才能用
(3)–x2–y2 (4)–x2+y2 (5)x2–25y2 (6)m2–1
–(x×2+y2) y√2–x2
(x√+5y)(x–5y) (m√+1)(m–1)
平方差公式进行因 式分解,即能写成: ( )2–( )2的形式.
这两项都是数或式的平方,并且符号相同.
(3)中间项和第一项,第三项有什么关系?
是第一项和第三项底数的积的±2倍.
探究新知
完全平方式: a 2 2ab b2
完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍.
探究新知
简记口诀:首平方,尾平方,首尾两倍在中央. 凡具备这些特点的三项式,就是完全平方式,将
答:剩余部分的面积为36 cm2.
课堂检测
拓广探索题
(1)992–1能否被100整除吗? (2)n为整数,(2n+1)2–25能否被4整除?

人教版八年级数学上册:14.3.2公式法(教案)

人教版八年级数学上册:14.3.2公式法(教案)
人教版八年级数学上册:14.3.2公式法(教案)
一、教学内容
人教版八年级数学上册:14.3.2公式法。本节课我们将学习以下内容:
1.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²。
2.平方差公式:a² - b² = (a + b)(a - b)。
-理解公式之间的内在联系,提高数学知识体系的建构能力。
举例解释:
-完全平方公式的重点在于理解两项平方项和一项交叉乘积项的结构,如(a + b)² = a² + 2ab + b²,以及பைடு நூலகம்何将其应用于因式分解,如x² + 6x + 9 = (x + 3)²。
-平方差公式的重点在于掌握两项平方差的结构,如a² - b²,以及如何分解为两个一次因式的乘积,如x⁴ - 16 = (x² + 4)(x² - 4)。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式、平方差公式和立方和公式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何识别和运用这些公式。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与公式法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用公式法解决实际问题。
此外,我也在思考如何更好地在课堂上激发学生的思维。我认为,提出一些开放性问题,让学生不仅仅停留在公式的记忆和应用上,而是去探索公式背后的数学原理,这将有助于他们更深层次地理解数学。
最后,今天的课堂总结环节,学生们提出了很多有价值的问题,这让我感到他们对这一章节的学习非常投入。我意识到,作为教师,我需要不断地反思和调整教学方法,以满足学生的学习需求。

14.3.2应用完全平方公式因式分解(公开课)

14.3.2应用完全平方公式因式分解(公开课)
方式.
第4页,共11页。
完全平方式的特点:
a2 2ab b2
1、必须是三项式(或可以看成三项的);
2、有两个同号的平方项;
3、有一个乘积项(等于平方项底数 的±2倍)。
第5页,共11页。3 源自练”公式,学以致用判别下列各式是不是完全平方式?
(1)x 2 6x 9 是
No x 2 2 x 3 32 (x 3)2 Image a² - 2 a b + b²= ( a - b)2
14.3.2 因式分解——
人教新课标
第1页,共11页。
1.理解因式分解的完全平方公式的特点. 2.能正确地运用完全平方公式分解因式.
3.能灵活应用提公因式法、完全平方公式法 分解因式.
第2页,共11页。
1 “引”公式,激情引趣
生活在线
如图,一幅正方形图片的面积为 a 2 6a 9,
它的边长该如何表示?如果面积是 a2 ,2ab b 2,
(2)4y 2 4y 1 是
(2y )2 2 (2y ) 1 12 (2y 1)2
a² + 2 a b + b² = ( a+b)2
第6页,共11页。
3 “练”公式,学以致用
多项式
1 4a2
是否是 如果是
完全平
方式
a
b
不是
表示为 (a b)2 或 (a b)2 形式
x 2 x 1 不是
则它的边长又该如何表示?
第3页,共11页。
2 “说”公式,提炼提升
因式分解的完全平方公式
a2 2ab b2 (a b)2
a2 2ab b2 (a b)2
如何用文字语言来叙述完全平方公式?
两数和(或差)的平方,等于这两数的平方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3.2 因式分解——
人教新课标
1.理解因式分解的完全平方公式的特点. 2.能正确地运用完全平方公式分解因式.
3.能灵活应用提公因式法、完全平方公式法 分解因式.
1
生活在线
“引”公式,激情引趣
如图,一幅正方形图片的面积为 a 6a 9,
2
, 它的边长该如何表示?如果面积是 a 2 2ab b 2 ,
2
1 4a
x
2
2
不是
x 1 2 4
不是
x 4x 4y 不是
2 2
4y 12xy 9x
2
2

2y
3x (2y 3x )
2
(a b ) 6(a b ) 9
2

a+b
3 (a b 3)
2
游戏环节
找朋友
三项能凑成完全平方式的就为朋友!
你会把下列各式分解因式吗?
2
a² - 2 a 2 (2) 4y 4y 1 是 2 2 (2y ) 2 (2y ) 1 12 (2y 1)
2 = ( a b) b + b²
a² + 2 a
2 = ( a+b) b + b²
3
“练”公式,学以致用
多项式
是否是 完全平 方式
如果是 a b
表示为 (a b) 2 或 (a b) 形式
完全平方式的特点: 2 2 a 2ab b
1、必须是三项式(或可以看成三项的); 2、有两个同号的平方项; 3、有一个乘积项(等于平方项底数 的±2倍)。
3
“练”公式,学以致用
判别下列各式是不是完全平方式?
(1) x 6x 9 2
2
x 2x 33

2
(x 3)
(1) 4xy 4x y
2
2
2
(2)(m n ) 4m(m n ) 4m
2
我学会了形如 a 2ab b 的多项式ቤተ መጻሕፍቲ ባይዱ以用完全平方公式分解因 2 式,最后的结果为 的 (a b) 形式;
2 2
我明白了因式分解通常先考虑 提公因式
公式
法,再考虑
法。
则它的边长又该如何表示?
2
“说”公式,提炼提升
因式分解的完全平方公式
如何用文字语言来叙述完全平方公式?
a 2ab b (a b) 2 2 2 a 2ab b (a b)
2 2
2
两数和(或差)的平方,等于这两数的 平方和,加上(或减去)这两数积的2倍。 把形如 a 2 2ab b 2 的多项式称为完全平 方式.
相关文档
最新文档