专题9 平面向量及应用(教师版)

合集下载

高考数学大一轮复习 第五章 平面向量 5.4 平面向量的综合应用教师用书 文 新人教版-新人教版高三

高考数学大一轮复习 第五章 平面向量 5.4 平面向量的综合应用教师用书 文 新人教版-新人教版高三

2018版高考数学大一轮复习 第五章 平面向量 5.4 平面向量的综合应用教师用书 文 新人教版1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:问题类型所用知识公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0,其中a =(x 1,y 1),b =(x 2,y 2),b ≠0垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题 数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量 长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+-22=22,|AC →|=16+64=45,|BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·某某质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.(2016·某某模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2=8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.(2016·某某八校联考)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________. 答案 1-32解析 ∵cos∠BAC =AB →·AC→|AB →||AC →|=2+615,∴sin∠BAC =2-315,∴S △ABC =12|AB →|·|AC →|·sin∠BAC =1-32.题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心 答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB→|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12,所以cos∠BAC =12,又0<∠BAC <π,故∠BAC=π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),PA →=(2,-y ),PB →=(1,a -y ),则PA →+3PB →=(5,3a -4y ), 即|PA →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|PA →+3PB →|2的最小值为25.故|PA →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=________________________________________________________________________. 答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7),BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即yx=± 3. 思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·某某模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016·某某模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45B.34 C.35D.74 答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎪⎨⎪⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1, 所以OM →·ON →=⎝ ⎛⎭⎪⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝ ⎛⎭⎪⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016·某某一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点――――――――→作出点C 的对称点M D 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12 ――――――→A (-π6,0),AF =π4―→T =π―→ω=2 ―――――――→y =sin 2x +φ和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝ ⎛⎭⎪⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016·某某)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.3.(2016·某某模拟)已知向量a =(cos α,-2),b =(sin α,1)且a∥b ,则sin 2α等于( ) A .3 B .-3 C.45D .-45 答案 D解析 由a ∥b 得cos α+2sin α=0, ∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016·某某模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cosB ,3cos A ),若m·n =1+cos(A +B ),则C 等于( )A.π6B.π3C.2π3D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ),∴PA →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值X 围是________.答案 ⎣⎢⎡⎦⎥⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值X 围为⎣⎢⎡⎦⎥⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 答案 2 解析|x ||b |=|x ||x e 1+y e 2|=|x |x 2+y 2+3xy =1x 2+y 2+3xyx 2=1y x2+3y x+1=1y x +322+14. 因为(y x +32)2+14≥14, 所以|x ||b |的最大值为2.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________.答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23,sin∠CHE =CE CH =12,∴cos∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|·cos∠EHF =23×23×12=6.11.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. (1)证明 由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解 因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos(π-β), 由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.12.在△ABC 中,设内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos A ,sin A ),向量n =(2-sin A ,cos A ),若|m +n |=2. (1)求内角A 的大小;(2)若b =42,且c =2a ,求△ABC 的面积.解 (1)|m +n |2=(cos A +2-sin A )2+(sin A +cos A )2=4+22(cos A -sin A )=4+4cos(π4+A ).∵4+4cos(π4+A )=4,∴cos(π4+A )=0.∵A ∈(0,π),∴π4+A =π2,A =π4.(2)由余弦定理知:a 2=b 2+c 2-2bc cos A ,即a 2=(42)2+(2a )2-2×42×2a cos π4,解得a =42,∴c =8.∴S △ABC =12bc sin A =12×42×8×22=16.*13.设向量a =(cos ωx -sin ωx ,-1),b =(2sin ωx ,-1),其中ω>0,x ∈R ,已知函数f (x )=a·b 的最小正周期为4π. (1)求ω的值;(2)若sin x 0是关于t 的方程2t 2-t -1=0的根,且x 0∈⎝ ⎛⎭⎪⎫-π2,π2,求f (x 0)的值.解 (1)f (x )=a·b =(cos ωx -sin ωx ,-1)·(2sin ωx ,-1)=2sin ωx cos ωx -2sin 2ωx +1=sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π4.因为T =4π,所以2π2ω=4π,ω=14.(2)方程2t 2-t -1=0的两根为t 1=-12,t 2=1.因为x 0∈⎝ ⎛⎭⎪⎫-π2,π2,所以sin x 0∈(-1,1), 所以sin x 0=-12,即x 0=-π6.又由(1)知f (x 0)=2sin ⎝ ⎛⎭⎪⎫12x 0+π4,所以f ⎝ ⎛⎭⎪⎫-π6=2sin ⎝ ⎛⎭⎪⎫-π12+π4=2sin π6=22.。

备战2021年上海高考数学复习热点难点突破专题09 向量的性质及其应用(详解版)

备战2021年上海高考数学复习热点难点突破专题09  向量的性质及其应用(详解版)

专题09 向量的性质及其应用专题点拨1. 能灵活运用两个重要结论解决问题:(1)2AB AC AD +=(D 是BC 中点).(2)已知点O A B 、、不共线,且(R)OC m OA n OB m n =⋅+⋅∈、,则点A B C 、、共线的充要条件是1m n +=.2.运用建立坐标系的方法解决向量问题时,遵循向量的坐标易于表示的原则. 3.会用向量点乘向量等式(作数量积、两边平方、向量投影的几何意义)方法解决问题. 4.能熟练地运用向量运算的几何意义作图求解.真题赏析1.(2019·杨浦区二模)若△ABC 的内角A 、B 、C ,其中G 为△ABC 的重心,且GA ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =0,则cos C 的最小值为______.2.(2019·浦东新区二模)已知正方形ABCD 边长为8,BE ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ =3FA ⃗⃗⃗⃗⃗ ,若在正方形边上恰有6个不同的点P ,使PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =λ,则λ的取值范围为______. 例题剖析【例1】在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ,4a ,5a ,若i a 与j a 的夹角记为ij θ,其中i ,{1j ∈,2,3,4,5},且i j ≠,则||cos i ij a θ的最大值为 .【变式训练1】若正方形ABCD 的边长为1,点P 是对角线AC 上的一个动点,则的取值范围是 ________.【例2】已知平面向量a 、b 满足条件:0a b =,||cos a α=,||sin b α=,(0,)2πα∈,若向量(,)c a b R λμλμ=+∈.且22221(21)cos (21)sin 9λαμα-+-=,则||c 的最小值为 . 【变式训练2】已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=,且3παβ-=,若向量c 满足||1c a b --=,则||c 的最大值为 . 【例3】已知圆心为O 、半径为10的圆上有三点A 、B 、C ,6,10,,2105AB AC AO x AB y AC x y ===++= ,则cos BAC ∠= .【变式训练3】 已知圆心为O 、半径为1的圆上有三点A 、B 、C .若0857=++OC OB OA ,则=BC ______________.巩固训练一、填空题1. 已知点(2,0)A -,设B 、C 是圆22:1O x y +=上的两个不同的动点,且向量(1)OB tOA t OC =+-(其中t 为实数),则AB AC = .2.如图,已知半圆O 的直径4AB =,OAC ∆是等边三角形,若点P 是边AC (包含端点)AC 上的动点,点Q 在弧BC 上,且满足OQ OP ⊥,则OP BQ 的最小值为 .3.已知圆22:(1)1M x y +-=,圆22:(1)1N x y ++=.直线1l 、2l 分别过圆心M 、N ,且11与圆M 相交于A ,B 两点,21与圆N 相交于C ,D 两点,点P 是椭圆22194x y +=上任意一点,则PA PB PC PD +的最小值为 . 4. 已知平面向量a 、b 、c 满足||1a =,||||2b c ==,且0b c =,则当01λ时,|(1)|a b c λλ---的取值范围是 .5.已知A 、B 、C 是单位圆上三个互不相同的点,若||||AB AC =,则AB AC 的最小值是 .6.已知ABC ∆中,5BC =,6CA =,4AB =,P 是ABC ∆内一点,使得530PA PB PC ++=,设PD 垂直BC 于D ,PE 垂直CA 于E ,则PD PE = . 二、选择题7.设,a b 表示平面向量,||a ,||b 都是小于9的正整数,且满足(||||)(||3||)105a b a b ++=,()(3)33a b a b ++=,则a 和b 的夹角大小为( ) A .6πB .3π C .23π D .56π 8.在平面直角坐标系中,已知向量(1,2)a =,O 是坐标原点,M 是曲线||2||2x y +=上的动点,则a OM 的取值范围( )A .[2-,2]B .[C .[D .[9.已知点(1,2)A -,(2,0)B ,P 为曲线y =AP AB 的取值范围为( )A .[1,7]B .[1-,7]C .[1,3+D .[1,3-+三、解答题10.已知点P 是ABC ∆的中线EF 上任意一点,且EF BC ,实数x y 、满足:0PA xPB yPC ++=.记ABC S S ∆=,1PAC S S ∆=,2PAB S S ∆=,11S S λ=,22S Sλ=, 若乘积12λλ⋅取最大值时,求此时2x y +的值.11.已知O 为坐标原点,向量(3cos ,3sin )OA x x =,(3cos ,sin )OB x x =,(3OC =0),(0,)2x π∈.(1)求证:()OA OB OC -⊥;(2)若ABC ∆是等腰三角形,求x 的值.12.如图,在xoy 平面上,点(1,0)A ,点B 在单位圆上,(0)AOB θθπ∠=<< (1)若点3(5B -,4)5,求tan()24θπ+的值;(2)若OA OB OC +=,四边形OACB 的面积用S θ表示,求S OA OC θ+的取值范围.专题09 向量的性质及其应用专题点拨2. 能灵活运用两个重要结论解决问题:(1)2AB AC AD +=(D 是BC 中点).(2)已知点O A B 、、不共线,且(R)OC m OA n OB m n =⋅+⋅∈、,则点A B C 、、共线的充要条件是1m n +=.2.运用建立坐标系的方法解决向量问题时,遵循向量的坐标易于表示的原则. 3.会用向量点乘向量等式(作数量积、两边平方、向量投影的几何意义)方法解决问题. 4.能熟练地运用向量运算的几何意义作图求解.真题赏析1.(2019·杨浦区二模)若△ABC 的内角A 、B 、C ,其中G 为△ABC 的重心,且GA ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =0,则cos C 的最小值为______. 【答案】45【解析】解:因为G 为△ABC 的重心,所以AG ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(2AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ );BG ⃗⃗⃗⃗⃗ =13(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=13(2BC ⃗⃗⃗⃗⃗ −AC⃗⃗⃗⃗⃗ ), 因为GA ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =0,所以AG ⃗⃗⃗⃗⃗ ⋅BG ⃗⃗⃗⃗⃗ =0,即19(2AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )⋅(2BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=0,整理得5AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ −2AC ⃗⃗⃗⃗⃗ 2−2BC ⃗⃗⃗⃗⃗ 2=0,所以5|AC ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |cosC =2(|AC ⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2)≥4|AC ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |, 所以cosC ≥45, 故答案为45.2.(2019·浦东新区二模)已知正方形ABCD 边长为8,BE ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ =3FA ⃗⃗⃗⃗⃗ ,若在正方形边上恰有6个不同的点P ,使PE ⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =λ,则λ的取值范围为______. 【答案】(−1,8)【解析】解:以AB 所在直线为x 轴,以AD 所在直线为y 轴建立平面直角坐标系如图:如图,则F(0,2),E(8,4) (1)若P 在AB 上,设P(x,0),0≤x ≤8 ∴PF ⃗⃗⃗⃗⃗ =(−x,2),PE ⃗⃗⃗⃗⃗ =(8−x,4) ∴PE ⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =x 2−8x +8, ∵x ∈[0,8],∴−8≤PE ⃗⃗⃗⃗⃗ ⋅PF⃗⃗⃗⃗⃗ ≤8, ∴当λ=−8时有一解,当−8<λ≤8时有两解; (2)若P 在AD 上,设P(0,y),0<y ≤8, ∴PF ⃗⃗⃗⃗⃗ =(0,2−y),PE⃗⃗⃗⃗⃗ =(8,4−y) ∴PE ⃗⃗⃗⃗⃗ ⋅PF⃗⃗⃗⃗⃗ =(2−y)(4−y)=y 2−6y +8 ∵0<y ≤8,∴−1≤PE ⃗⃗⃗⃗⃗ ⋅PF⃗⃗⃗⃗⃗ <24 ∴当λ=−1或8<λ<24时有唯一解;当−1<λ≤8时有两解 (3)若P 在DC 上,设P(x,8),0<x ≤8 ∴PF −=(−x,−6),PE ⃗⃗⃗⃗⃗ =(8−x,−4), ∴PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =x 2−8x +24, ∵0<x ≤8,∴8≤PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ ≤24, ∴当λ=8时有一解,当8<λ≤24时有两解. (4)若P 在BC 上,设P(8,y),0<y <8, ∴PF ⃗⃗⃗⃗⃗ =(−8,2−y),PE⃗⃗⃗⃗⃗ =(0,4−y), ∴PE ⃗⃗⃗⃗⃗ ⋅PF⃗⃗⃗⃗⃗ =(2−y)⋅(4−y)=y 2−6y +8 ∵0<y <8,∴−1≤PE ⃗⃗⃗⃗⃗ ⋅PF⃗⃗⃗⃗⃗ <24, ∴当λ=−1或8<λ<24时有一解,当−1<λ≤8时有两解.综上,在正方形ABCD 的四条边上有且只有6个不同的点P ,使得PE ⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =λ成立,那么λ的取值范围是(−1,8) 故答案为:(−1,8)例题剖析【例1】在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ,4a ,5a ,若i a 与j a 的夹角记为ij θ,其中i ,{1j ∈,2,3,4,5},且i j ≠,则||cos i ij a θ的最大值为 .【答案】3【解析】由向量的投影的几何意义有:||cos i ij a θ的几何意义为向量i a 在向量j a 方向上的投影,由图可知:AD 在向量AE 方向上的投影最大,且为3, 故答案为:3.【变式训练1】若正方形ABCD 的边长为1,点P 是对角线AC 上的一个动点,则的取值范围是 ________.【答案】12()4AP PB PD -≤⋅+≤【解析】以点A 与坐标原点O 重合,AB 在x 轴正半轴上建立直角坐标系,则得(0,0)(1,0)(0,1)A B D 、、.可设(,)(01)P x x x ≤≤,于是,2()24AP PB PD x x ⋅+=-.由224(01)y x xx =-≤≤的图像可得,124y -≤≤.因此,12()4AP PB PD -≤⋅+≤. 【例2】已知平面向量a 、b 满足条件:0a b =,||cos a α=,||sin b α=,(0,)2πα∈,若向量(,)c a b R λμλμ=+∈.且22221(21)cos (21)sin 9λαμα-+-=,则||c 的最小值为 . 【答案】13【解析】由题意可设(cos ,0)a α=,(0,sin )b α=,(,)c x y =,且设OC c =(cos ,sin )c a b λμλαμα=+=, ∴cos sin x y λαμα=⎧⎨=⎩,(0,)2πα∈,22221(21)cos (21)sin 9λαμα-+-=, 则221(2cos )(2sin )9x y αα-+-=,即22111(cos )(sin )2236x y αα-+-=,C ∴ 在以11(cos ,sin )22D αα为圆心,以16为半径的圆上,(0,)2πα∈,1111||||6263mn OC OD ∴=-=-=,故答案为:13.【变式训练2】已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=,且3παβ-=,若向量c 满足||1c a b --=,则||c 的最大值为 .1 【解析】(cos cos ,sin sin )a b αβαβ+=++,∴222()(cos cos )(sin sin )a b αβαβ+=+++22cos()αβ=+- 3=,令OD a b =+, 则||3OD =,D ∴令OC c =,则||||1OC OD DC -==, C ∴点轨迹是以原点为原心,1的两个圆及其之间的部分,∴||OC 1,即||c 1.1. 【例3】已知圆心为O 、半径为10的圆上有三点A 、B 、C ,6,10,,2105AB AC AO x AB y AC x y ===++= ,则cos BAC ∠= .【答案】13【解析】欲得到cos BAC ∠,可用AC 与已知等式作数量积,即AC AO xAC AB yAC AC ⋅=⋅+⋅,结合投影的几何意义,有||cos ||AO OAD AD ∠=(过O 作OD AC ⊥,则D 是AC 中点)将数值代入化简,得5060cos 100x BAC y =∠+.将y 用x 表示,可得cos BAC ∠=13.【变式训练3】 已知圆心为O 、半径为1的圆上有三点A 、B 、C .若0857=++OC OB OA ,=______________.【解析】方法一 758058=7OA OB OC OB OC OA ++=⇒+- 两边平方,得1cos 2BOC ∠=-. 因此,||3BC =.方法二 分析 设cos 1,cos 2,cos 3x y z ∠=∠=∠=. 分别用OA OB OC 、、与0857=++OC OB OA 作数量积,可得7580,17580,||327580.x z x y y BC z y ++=⎧⎪++=⇒=-⇒=⎨⎪++=⎩巩固训练二、填空题2. 已知点(2,0)A -,设B 、C 是圆22:1O x y +=上的两个不同的动点,且向量(1)OB tOA t OC =+-(其中t 为实数),则AB AC = . 【答案】3【解析】由向量(1)OB tOA t OC =+-(其中t 为实数), 可得:A ,B ,C 三点共线, 且AB ,AC 同向,设圆O 与x 轴正半轴交于点E ,由圆的割线定理可得,||||||||AB AC AO AE =,∴||||cos0||||||||133AB AC AB AC AB AC AO AE ====⨯=故答案为:32.如图,已知半圆O 的直径4AB =,OAC ∆是等边三角形,若点P 是边AC (包含端点)AC 上的动点,点Q 在弧BC 上,且满足OQ OP ⊥,则OP BQ 的最小值为 .【答案】2【解析】OQ OP ⊥,∴0OP OQ =,半圆O 的直径4AB =,OAC ∆是等边三角形,且边长为2,由题意可得,()OP BQ OP BO OQ OP BO OP OQ OP BO OP OA =+=+==, 由数量积的几何意义可知,当P 与C 重合时,OP 在OA 上的投影最短,此时1()2222min OP OA =⨯⨯=. 故答案为:2 3.已知圆22:(1)1M x y +-=,圆22:(1)1N x y ++=.直线1l 、2l 分别过圆心M 、N ,且11与圆M 相交于A ,B 两点,21与圆N 相交于C ,D 两点,点P 是椭圆22194x y +=上任意一点,则PA PB PC PD +的最小值为 . 【答案】3【解析】由题意可得,(0,1)M ,(0,1)N -,1M N r r ==,22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-, P 为椭圆22194x y +=上的点, ∴222221022()89x PA PB PC PD PM PN x y +=+-=+=+ 由题意可知,33x -,21088189x ∴+, 故答案为:8.5. 已知平面向量a 、b 、c 满足||1a =,||||2b c ==,且0b c =,则当01λ时,|(1)|a b c λλ---的取值范围是 .【答案】1,3]【解析】设(1)n b c λλ=+-,则|(1)|||a b c a n λλ---=-,||||||||||||n a a n n a --+,|||1|||||1n a n n ∴--+,222222|||(1)|||(1)||2(1)n b c b c b c λλλλλλ=+-=+-+-2222144(1)8848()22λλλλλ=+-=-+=-+又01λ,22||4n ∴,∴||2n ,∴1||3a n -21|(1)|3a b c λλ----.故答案为:1,3].5.已知A 、B 、C 是单位圆上三个互不相同的点,若||||AB AC =,则AB AC 的最小值是 . 【答案】12- 【解析】如图所示,取(1,0)OA =,不妨设(cos ,sin )B θθ,((0,))θπ∈.||||AB AC =,(cos ,sin )C θθ∴-.∴(cos 1AB AC θ=-,sin )(cos 1θθ-,sin )θ-22(cos 1)sin θθ=--2112(cos )22θ=--, 当且仅当1cos 2θ=,即3πθ=时,上式取得最小值12-. 即AB AC 的最小值是12-. 故答案为:12-.6.已知ABC ∆中,5BC =,6CA =,4AB =,P 是ABC ∆内一点,使得530PA PB PC ++=,设PD 垂直BC 于D ,PE 垂直CA 于E ,则PD PE = . 【答案】17596- 【解析】以C 为坐标原点,以CB 所在直线为x 轴建立平面直角坐标系,如图,在ABC ∆中,由5BC =,6CA =,4AB =,得2536163cos 2564BCA +-∠==⨯⨯,sin BCA ∴∠==(0,0)C ∴,(5,0)B ,9(2A ,设(,)P m n ,则455(55)2PA m n =--,3(153,3)PB m n =--,(,)PC m n =--,由530PA PB PC ++=,得45515302530m m m n n n ⎧-+--=⎪⎪---=,即25(6P .设9()2CE CA λλ==,则925(26PE CE CP λ=-=-, 由9253757937(,)(,)0262PE CA λλ=--=,得5572λ=. ∴35(48PE =-,而(0,PD =,∴35(48PD PE =-(0,175********==-=-. 故答案为:17596-.二、选择题7.设,a b 表示平面向量,||a ,||b 都是小于9的正整数,且满足(||||)(||3||)105a b a b ++=,()(3)33a b a b ++=,则a 和b 的夹角大小为( )A .6πB .3πC .23πD .56π 【答案】C【解析】由(||||)(||3||)105a b a b ++=,得:22||4||||3||105a a b b ++=, 由105357=⨯⨯,又因为||a ,||b 都是小于9的正整数, 则||3a =,||4b =,又()(3)33a ba b ++=,所以22||43||33a a b b ++=,所以6a b =-,61cos 342θ-==-⨯ 又[0θ∈,]π 所以23πθ=, 故选:C .8.在平面直角坐标系中,已知向量(1,2)a =,O 是坐标原点,M 是曲线||2||2x y +=上的动点,则a OM 的取值范围( )A .[2-,2]B .[C .[D .[ 【答案】A【解析】去绝对值整理后知,曲线为菱形BCDE ,易知CD AN ⊥,BE AN ⊥,故当点M 在曲线上运动时, OM 在a 上的射影必在FN 上, 且当M 在CD 上时得到最大值,在BE 上时得到最小值, 最大值为||||52a OF =⨯=,最小值为2-,故选:A .9.已知点(1,2)A -,(2,0)B ,P 为曲线y =AP AB 的取值范围为( )A .[1,7]B .[1-,7]C .[1,3+D .[1,3-+【答案】A【解析】设(,)P x y 则由y =221(0)43x y y +=,令2cos x y θθ==,([0θ∈,]π,∴(1,2)AP x y =-+,(1,2)AB =,∴124232cos 34sin()36AP AB x y x y πθθθ=-++=++=++=++,0θπ, ∴7666πππθ+, 1sin()126πθ-+, 14sin()376πθ∴++, 故选:A .三、解答题10.已知点P 是ABC ∆的中线EF 上任意一点,且EF BC ,实数x y 、满足:0PA xPB yPC ++=.记ABC S S ∆=,1PAC S S ∆=,2PAB S S ∆=,11S S λ=,22S S λ=, 若乘积12λλ⋅取最大值时,求此时2x y +的值.【解析】设2BC a =,PE t =,则(0)PF a t t a =-≤≤.结合图形,可算得 112S a t S a λ-==,222S t S a λ==.于是,2212221111()()4164216a at t t a a λλ=-=--≤. 当2a t =时,等号成立.因此,乘积12λλ⋅取最大值时,点P 是EF 的中点. 所以,PB PC PA +=-.代入0PA xPB yPC ++=,得(1)(1)0x PB y PC -+-=.又PB PC 、不平行,所以,1,1.x y =⎧⎨=⎩所求23x y +=. 11.已知O 为坐标原点,向量(3cos ,3sin )OA x x =,(3cos ,sin )OB x x =,(3OC =0),(0,)2x π∈. (1)求证:()OA OB OC -⊥;(2)若ABC ∆是等腰三角形,求x 的值.【解析】(1)(0,2sin )OA OB x -=,∴()02sin 00OA OB OC x -=⨯=, ()OA OB OC ∴-⊥.(2)若ABC ∆是等腰三角形,则AB BC =,222(2sin )(3cos sin x x x ∴=+,整理得:22cos 0x x =, 解得cos 0x =,或cos x =, (0,)2x π∈,cos x ∴,6x π=. 12.如图,在xoy 平面上,点(1,0)A ,点B 在单位圆上,(0)AOB θθπ∠=<<(1)若点3(5B -,4)5,求tan()24θπ+的值; (2)若OA OB OC +=,四边形OACB 的面积用S θ表示,求S OA OC θ+的取值范围.【解析】(1)34(,)55B -,AOB θ∠=, 3cos 5θ∴=-,4sin 5θ=. ∴4sin 5tan 2321cos 15θθθ===+-.∴1tan 122tan()324121tan 2θθπθ+++===---. (2)||||sin sin S OA OB θθθ==, (1,0)OA =,(cos ,sin )OB θθ=, ∴(1cos ,sin )OC OA OB θθ=+=+, ∴1cos OA OC θ=+,∴sin cos 1)1(0)4S OA OC θπθθθθπ+=++=++<<,5444πππθ<+<,∴sin()14πθ<+, ∴021S OA OCθ<++.。

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。

平面向量的应用(教师版)

平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

二、平面的法向量及其应用+课件-高二上学期数学北师大版(2019)选择性必修第一册

二、平面的法向量及其应用+课件-高二上学期数学北师大版(2019)选择性必修第一册

5
8
是平面 α 内的三点,设平面 α 的法向量 =
2: 3: −4
x, y, z ,则 x: y: z = ___________.
>
m
<
[解析] 因为 AB = 1, −3, −
>
m
<
所以
x − 3y
>
m
<
7
− z=
4
7
7
4
0,
−2x − y − z = 0,
4
2
3
>
/m
<
4
3
>
/m
<
>
/m
<
m
<
>
/m
<
是 AB , BA , A1 B1 , DC , C1 D1 等.每一个表面的法向量也有多个,例如平面 ABB1 A1 的法
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
向量可以是 AD , CB , D1 A1 , B1 C1 等.
>
m
<
>
/m
<
>
m
<
>

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。

平面向量及其应用专题(有答案) 百度文库

平面向量及其应用专题(有答案) 百度文库

一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭3.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,ABC S =△b = )A .1cos 2B =B .cos 2B =C .a c +=D .a c +=4.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .7.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ<8.ABC 中,4a =,5b =,面积S =c =( )A BC D .9.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D 10.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 11.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量12.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=13.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .314.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==15.题目文件丢失!二、平面向量及其应用选择题16.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .323D .832317.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭ 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( )A .不确定B .直角三角形C .钝角三角形D .等边三角形19.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .120.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m21.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心22.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定23.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-24.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶225.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)226.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形27.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33(,)2B .3(,3)2 C .3(,3]2D .3(,3)228.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形29.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 30.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .531.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A 5B 10C .4D .532.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心D .外心重心内心33.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤34.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭35.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰或直角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD.本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.3.AD 【分析】利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,整理可得:,∵A 为三角形内角,, ∴,故A 正确解析:AD 【分析】利用正弦定理,两角和的正弦函数公式化简cos cos 2B bC a c=-,结合sin 0A ≠,可求1cos 2B =,结合范围()0,B π∈,可求3B π=,进而根据三角形的面积公式和余弦定理可得a c += 【详解】 ∵cos sin cos 22sin sin B b BC a c A C==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠, ∴1cos 2B =,故A 正确,B 错误, ∵()0,B π∈, ∴3B π=,∵4ABC S =△,且3b =,∴11sin 42224ac B a c ac ==⨯⨯⨯=, 解得3ac =,由余弦定理得()()2222939a c ac a c ac a c =+-=+-=+-,解得a c +=C 错误,D 正确. 故选:AD. 【点睛】本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.4.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题.解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.5.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 6.AC【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC 【分析】利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a = 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.7.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D .【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a 与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC .【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题. 8.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin C =60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 9.AD【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值.【详解】由正弦定理,可得,,则,所以,为锐角或钝角.因此,.故选:AD.【点睛】本题考查利用正弦定理与同解析:AD【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值.【详解】 由正弦定理sin sin b a B A =,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos 3B ==±. 故选:AD.【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题. 10.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】 本题考查平行向量的数量积及共线定理的应用,属于基础题. 11.AC 【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反, 解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意;对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意;对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.12.ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.13.AB【分析】由余弦定理得,化简即得解.【详解】由题意得,由余弦定理得,解得或.故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 解析:AB【分析】由余弦定理得293cos306x x︒+-=,化简即得解. 【详解】 由题意得30ABC ︒∠=,由余弦定理得293cos306x x ︒+-=,解得x =x故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 14.AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B,由平面向量基本解析:AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的,所以不正确;对于C ,当两向量的系数均为零,即12120λλμμ====时,这样的λ有无数个,所以不正确.故选:AD .【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.15.无二、平面向量及其应用选择题16.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45HB =︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,103534623v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.17.C 【解析】【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++, ∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形. 故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 19.C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥,所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.20.D由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】 15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC 302sin 45203BC3tan 3020320ABBC故选D 【点睛】 本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.21.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心.【详解】 ()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅ ()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME += 20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线M ∴轨迹必过ABC ∆的外心本题正确选项:D【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论.22.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】 解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.23.D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.24.B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。

高中数学《平面向量的应用》微课精讲+知识点+教案课件+习题

高中数学《平面向量的应用》微课精讲+知识点+教案课件+习题

▼知识点:(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;(3)证明垂直问题,常用向量垂直的充要条件;1、向量在三角函数中的应用:(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。

2、向量在物理学中的应用:由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。

3、向量在解析几何中的应用:(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。

平面向量在几何、物理中的应用1、用向量解决几何问题的步骤:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等;(3)把运算结果“翻译”成几何关系。

2、用向量中的有关知识研究物理中的相关问题,步骤如下:(1)问题的转化,即把物理问题转化为数学问题;(2)模型的建立,即建立以向量为主题的数学模型;(3)求出数学模型的有关解;(4)将问题的答案转化为相关的物理问题。

高中数学平面向量的应用知识点总结(二)1.向量的概念(1)定义:既有大小又有方向的量叫做向量,向量可以用字母a、b、c等表示,也可以用表示向量的有向线段的起点和终点字母表示,如(A为起点,B为终点)(2)向量的大小(或称模):也就是向量的长度,记作||(3)向量的两个要素:大小和方向(4)零向量:长度为零的向量,记作0(5)单位向量:长度等于一个长度单位的向量(6)平行向量:方向相同或相反的非零向量叫做平行向量(也叫共线向量)规定0与任何向量平行(7)相等向量:长度相等且方向相同的向量叫相等向量,记作a=b(8)相反向量:长度相等且方向相反的向量叫相反向量2.向量的运算(1)向量的加法(3)实数与向量的积(4)平面向量基本定律:如果e1和e2是同一平面内的两个不共线向量,那么该平面内任一向量a,有且只有一对实数我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底教案:教材分析向量概念有明确的几何背景:有向线段,可以说向量概念是从几何背景中抽象而来的,正因为如此,运用向量可以解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。

6.3平面向量及运算的坐标表示课件(人教版)

6.3平面向量及运算的坐标表示课件(人教版)

(3)两向量差的坐标与两向量的顺序无关。( ) (4)向量(2,3)与向量(-4,-6)同向。( )
【提示】(1)×。对于同一个向量,无论位置在哪里, 坐标都一样。 (2)√。根据向量的坐标表示,当始点在原点时,终 点与始点坐标之差等于终点坐标。 (3)×。根据两向量差的运算,两向量差的坐标与两 向量的顺序有关。
2
线,则C的坐标可以是( )
A.(-9,1) B.(9,-1)
C.(9,1)
D.(-9,-1)
【思维·引】设出点C的坐标,因为A,B,C三点共线, 写出向量 AB,AC(或 BC),由向量共线的条件结合选项 求解。
【解析】选C。设点C的坐标是(x,y),
【内化·悟】 1.由共线的坐标条件求参数的解题步骤是怎样的? 提示:(1)分别写出共线的两个向量的坐标。 (2)通过共线条件列出方程(组)。 (3)解方程(组)求出参数。
2.如何判断共线的向量u与v是同向还是反向? 提示:写成u=λv的情势,若λ>0,同向,若λ<0,反向。
角度3 三点共线问题 【典例】已知A(1,-3),B (8,1 ),且A,B,C三点共
量 AB共线的单位向量是( )
A.(3, 4) C.(6,8)
B.( 3,4 ) 55
D.( 4, 3 ) 55
【思维·引】利用向量共线的坐标表示判断。 【解析】选B。因为AB =(7,-3)-(4,1)=(3,-4), 由向量共线的条件可知,A,B,C选项中的向量均与AB共 线,但A,C中向量不是单位向量。
因为A(0,1),AC=(-3,-3),
所以
x y
3, 1 3,
解得
x y
3, 2,
所以点C的坐标为(-3,-2)。又B(3,2),所以BC=(-

专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习

专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习

r
交换律: a + b = b + a
r
r
r
r
r
r
结合律:( a + b )+ c = a +( b + c )
(二)减法:共起点,连终点,指向被减
高中数学一轮复习讲义
r
(三)数乘:求实数λ与向量 a 的积的运算
r
r
r
r
1.数乘意义:|λ a |=|λ|| a |,当λ>0 时,λ a 与 a 的方向相同;
8
C.
3
5
D.
3

2.已知 A(﹣3,0),B(0,2),O 为坐标原点,点 C 在第二象限内,|��| = 2 2,且∠��� = ,
4



设�� = ��� + ��(� ∈ �),则λ的值为(
2
B.− 3
A.1

1
C.
2
2
D.
3
3.如图,正方形 ABCD 中,E 为 AB 上一点,P 为以点 A 为圆心,以 AB 为半径的圆弧上一
r
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定: 0 与任一向量平行或共
线.
(5)相等向量:长度相等且方向相同的向量
(6)相反向量:长度相等且方向相反的向量
二.向量的线性运算
(一)加法:求两个向量和的运算
1.三角形法则:首尾连,连首尾
2.平行四边形法则:起点相同连对角
3.运算律
r
r
r
4.平面向量基本定理
ur
ur
r
如果 e1 , e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 a ,有且只

新人教版高中数学必修二第六章平面向量及其应用精品教案

新人教版高中数学必修二第六章平面向量及其应用精品教案

平面向量的概念【教学过程】一、问题导入预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、新知探究 1.向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 教师小结(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可.(2)理解零向量和单位向量应注意的问题 ①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 2.向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上;(2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.教师小结:用有向线段表示向量的步骤3.共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.互动探究:(1)变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. (2)变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →. 教师小结共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .注意:对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.【课堂总结】1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.【课堂检测】1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C .图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |.A .①③B .②③C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →. (2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0,所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO →=OE →.又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD=2,求对角线AC 的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB →=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F与位移s的数量积,即W=F·s=|F||s|cos θ(θ为F与s的夹角).四、课堂检测1.河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10 m/s B.226 m/sC.4 6 m/s D.12 m/s解析:选B.由题意知|v水|=2 m/s,|v船|=10 m/s,作出示意图如图.所以小船在静水中的速度大小|v|=102+22=226(m/s).2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=()A.(-1,-2)B.(1,-2)C.(-1,2)D.(1,2)解析:选D.由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).3.设P,Q分别是梯形ABCD的对角线AC与BD的中点,AB∥DC,试用向量证明:PQ ∥AB.证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ→∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB . 【第二课时】教学重难点教学目标核心素养余弦定理 了解余弦定理的推导过程 逻辑推理 余弦定理的推论掌握余弦定理的几种变形公式及应用数学运算三角形的元素及解三角形 能利用余弦定理求解三角形的边、角等问题数学运算【教学过程】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B .30 C .29D .2 5(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值? 解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解.探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2. 三、课堂总结1.余弦定理2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、课堂检测1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【第三课时】教学重难点教学目标核心素养正弦定理通过对任意三角形边长和角度关系的探索,掌握正弦 定理的内容及其证明方法逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形.【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°.由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102.因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin Bsin C =10×sin(A+C)sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角.(2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B, b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.(1)已知两边及其中一边的对角解三角形的思路①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径画弧,此弧与除去顶点A的射线AB的公共点的个数即为三角形解的个数,解的个数见下表:A为钝角A为直角A为锐角a>b 一解一解一解a=b 无解无解一解a<b 无解无解a>b sin A 两解a =b sin A 一解a<b sin A 无解判断三角形的形状:已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理条件在△ABC中,角A,B,C所对的边分别为a,b,c结论asin A=bsin B=csin C文字叙述在一个三角形中,各边和它所对角的正弦的比相等■名师点拨对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3 B.3∶2∶1C.2∶3∶1 D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B -sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【教学过程】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°,由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里).答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103. 即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m .解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ).答案:100 6互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离.(2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线实际测量中的有关名称、术语名称 定义图示仰角在同一铅垂平面内,视线在水平线上方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)南偏西60°(指以正南方向为始边,转向目标方向线形成的角)方位角从正北的方向线按顺时针到目标方向线所转过的水平角四、课堂检测1.若P在Q的北偏东44°50′方向上,则Q在P的()A.东偏北45°10′方向上B.东偏北45°50′方向上C.南偏西44°50′方向上D.西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°. 即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】【教学重难点】【教学目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则? 2.向量加法的运算律有哪两个? 二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB→=b ; (2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.规律方法:(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合; ②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和. (2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解:(1)BC→+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 规律方法:向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.规律方法:应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题. 三、课堂总结1.向量加法的定义及运算法则 定义求两个向量和的运算,叫做向量的加法法则三角形法则前提 已知非零向量a ,b作法在平面内任取一点A ,作AB→=a ,BC →=b ,再作向量AC →结论向量AC→叫做a 与b 的和,记作a +b , 即a +b =AB→+BC →=AC →图形法则平行四边形法前提 已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB。

平面向量及其应用全章综合测试卷(基础篇)(教师版)

平面向量及其应用全章综合测试卷(基础篇)(教师版)

D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2

C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =

平面向量应用举例PPT课件

平面向量应用举例PPT课件

化的主要手段是向量的坐标运算.( )
(4)在△ABC中,若
则△ABC为钝角三角形.( )
AB AC,
AB BC<0,
【解析】( 1)正确 .因为
有相同 的起点 A,故 A,B, C三点 共线, 故正确.
(2)正确. 解析几 何中的 坐标、 直线平 行、垂 直、长 度等问 题可利 用向量 的共线 、数量 积、模 等知识 解决, 故正确.
(A)2 (B)3 (C)4 (D)6 【解析】 选B.由 题意可 知,
则CM CB
CM CB=(CA+1 AB) CB 3
=CA CB+1 AB CB 3
=0+1 3 2 3cos45=3. 3
BM=2MA,
4.在△ABC中,已知向量 满足 则△ABC为( )
(A)等边三角形 (C)等腰非等边三角形 (D)三边均不相等的三角形
1.一质点受到平面上的三个力F1,F2,F3( 单位: 牛顿) 的作用 而处于平衡状态,已知F1,F2成60°角, 且F1,F2的大小 分别 为2和4,则F3的大小为( ) 【解析】选D.|F3|2=|F1|2+|F2|2+2|F1||F2|cos 60°=28,所 以|F3|= 选D.
A6B2C2 5D2 7
②用含θ 的关系 式表示m,n,然 后转化 为三角 函数的 最值问 题
求解.
| BC BA | 2
【规范解答】(1)选C.已知a=(1,cos θ),b=(-1,2cos θ), ∵a⊥b, ∴a·b=0, ∴-1+2co s2θ=cos 2θ= 0,故 选C.
2① | BC BA |2 | AC |2 ( 2cos 1)2 ( 2sin 1)2
AB AC且AB,AC

《平面向量》优秀说课稿(通用3篇)

《平面向量》优秀说课稿(通用3篇)

《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。

那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。

《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。

本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。

为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。

本节内容也是全章重要内容之一。

二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。

通过精讲多练,充分调动学生自主学习的积极性。

如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。

人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)

人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)

必修第二册·人教数学A版
返回导航 上页 下页
探究二 平面向量在几何求值中的应用
[例 2] (1)已知边长为 2 的正六边形 ABCDEF,连接 BE,CE,
点 G 是线段 BE 上靠近 B 的四等分点,连接 GF,则G→F·C→E( )
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
的合力的大小为( )
课件
课件
课件
课件
A.5 课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
N
B.5 2 N
C.5 3 N
D.5 6 N
解析:两个力的合力的大小为|F1+F2|= F21+F22+2F1·F2=5 6(N). 答案:D
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;
④把几何问题向量化.
(2)向量的坐标运算法的四个步骤:
基底表示,利用向量的运算法则、运算律或性质计算.
②坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、
平行、夹角等问题转化为代数运算.

二轮复习-平面向量爪子图的应用(优秀生)-教师版

二轮复习-平面向量爪子图的应用(优秀生)-教师版

形如AD xAB yAC =+条件的应用一、基础知识1、平面向量基本定理:若平面上两个向量12,e e 不共线,则对平面上的任一向量a ,均存在唯一确定的()12,λλ,(其中12,R λλ∈),使得1122a e e λλ=+。

其中12,e e 称为平面向量的一组基底。

(1)不共线的向量即可作为一组基底表示所有的向量(2)唯一性:若1122a e e λλ=+且1122a e e μμ=+,则1122λμλμ=⎧⎨=⎩2、“爪”字型图及性质:(1)已知,AB AC 为不共线的两个向量,则对于向量AD ,必存在,x y ,使得AD xAB yAC =+。

则:当01x y <+<时,则D 与A 位于BC 同侧,且D 位于A 与BC 之间 当1x y +>时,则D 与A 位于BC 两侧当1x y +=时,若0,0x y >>,则D 在线段BC 上、若0xy <,则D 在线段BC 延长线上 (2)若D 在线段BC 上,且::BD CD m n =,则n mAD AB AC m n m n=+++ 3、AD xAB yAC =+中,x y 确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”字型图完成向量的表示,进而确定,x y (2)若题目中某些向量的数量积已知,则对于向量方程AD xAB yAC =+,可考虑两边对同一向量作数量积运算,从而得到关于,x y 的方程,再进行求解(3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于,x y 的方程,再进行求解B二、典型例题【例1-1】在ABC 中,D 为BC 边的中点,H 为AD 的中点,过点H 作一直线MN 分别交,AB AC 于点,M N ,若,AM xAB AN yAC ==,则4x y +的最小值是( ) A.94B. 2C. 3D. 1 思路:若要求出4x y +的最值,则需从条件中得到,x y 的关系。

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)一.平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0例1:(1).如图,在矩形ABCD中,可以用同一条有向线段表示的向量是()A.DA和BC B.DC和ABC.DC和BC D.DC和DA(2).如图,O是正六边形ABCDEF的中心,且OA a=,OB b=,OC c=.在以A,B,C,D,E,F,O这七个点中任意两点为起点和终点的向量中,问:(1)与a相等的向量有哪些?(2)b的相反向量有哪些?(3)与c共线的向量有哪些?.举一反三1.下列说法正确的是()A .若a b =,则a b =±B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量2.(多选)如图,在四边形ABCD 中,若AB DC =,则图中相等的向量是( )A .AD 与BCB .OB 与ODC .AC 与BDD .AO 与OC3.如图,在矩形ABCD 中,AD =2AB =2,M ,N 分别为AD 和BC 的中点,以A ,B ,C ,D ,M ,N 为起点和终点作向量,回答下列问题:(1)在模为1的向量中,相等的向量有多少对? (2)2二.平面向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb例2:①.如图,已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,则BC 可以表示为( )A .a b +B .a b -C .b a -D .a b --②.如图,已知下列各组向量a ,b ,求作a b +.③.在ABC 中,已知AB b =,AC c =,求作: (1)2b ; (2)()2b c -;(3)32b c -.④.化简: (1)AB BC DC +-;(2)AB BC DC DE EA +-++; (3)()OA O BC B --. 举一反三1.5()3(2)a b a b ---= ___________.2.如图,已知M ,N 分别是四边形ABCD 的边AB ,CD 的中点,求证:()12MN AD BC =+.3.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,设AB =a ,DA =b ,OC =c .证明:b c a +-=OA .4.(1)设O 是正五边形ABCDE 的中心,求OA OB OC OD OE ++++; (2)设O 是正n 边形12n A A A 的中心,求12n OA OA OA +++.5.如图,已知a ,b 为两个非零向量.(1)求作向量a b +及a b -;(2)向量a ,b 成什么位置关系时,a b a b +=-?(不要求证明)三.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .例3(1)如图,OA ,OB 不共线,且()AP t AB t =∈R ,用OA ,OB 表示OP .(2)已知任意两个非零向量a ,b ,若23OA a b =+,22OB a b =+,25OC a b =+,你能判断A ,B ,C 三点之间的位置关系吗?为什么? 举一反三1.在ABC 中,已知D 是AB 边上的一点,若13CD CA CB λ=+,则λ等于( )A .13B .23C .12D .342.设1e 与2e 是不共线的非零向量,若12ke e +与12e ke +共线且方向相反,则k 的值是( ) A .1- B .1C .±1D .任意不为零的实数3.已知1e 与2e 不共线,12AB e e =+,1228BC e e =+,()123CD e e =-.求证:A ,B ,D 三点共线.四.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.例4(1).等腰直角三角形ABC 中,90A ︒=,,AB AC D =是斜边BC 上一点,且3BD DC =,则AD =( )A .3544AC AB +B .3144AC AB +C .5144AC AB +D .3144AC AB -(2)(多选).在ABC 中,边BC 上的中线与边AC 上的中线的交点为E ,若CE AB AC λμ=+,则2λμ+=______.举一反三1.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的2倍.若存在正实数,x y 使得1141AC AB AD x y ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭成立,则2x y +的最小值为( )A .1B .2C .3D .42.(多选)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+ B .3255AF AB AD →→→=+ C .1255BF AB AD →→→=-+D .13105CF AB AD →→→=-五.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.例5(1)已知向量(1,4)a =-,(2,3)b =,则2a b -的坐标为( ) A .(-3,-10) B .(-3,-2) C .(-3,2)D .(3,-10)(2).已知向量1(1,)2a =-,(2,)b m =-,若a 与b 共线,则||b =( )A .3B .5C .6D .22(3).已知向量a ,b 满足()1,2a λ=+,()1,b λ=,//a b ,则实数λ的值为______. 举一反三1.已知向量()3,4a =-,2AB a =,点A 的坐标为()3,4-,则点B 的坐标为______. 2.若(1,1),(1,2)a b ==-,则与a b +同方向的单位向量是_______. 3.已知点A (1,2),B (4,5),O (0,0)及OP mOA AB =+. (1)当m 为何值时,P 在x 轴上?P 在y 轴上?P 在第四象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的m 的值;若不能,说明为什么.六.平面向量的数量积1,概念:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质(1)e·a =a·e =|a |cos θ; (2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b |a||b|; (5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b =b·a (交换律); (2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.例6:(1).如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是( )A .18B .22C .18-D .22-(2).已知,a b 是非零向量,且,a b 不共线,3,4a b ==,若向量a kb +与a kb -互相垂直,则实数k 的值为( ) A .2± B .12±C .43±D .34±3.已知平面向量a ,b 满足()1,2a =,10b =,522a b ⋅=,则cos a b ⋅=______.举一反三1.设两向量12,e e 满足12122,1,,e e e e ==的夹角为60︒,12122,2=+=+a e e b e e ,则a 在b 上的投影为( ) A 53B 521C 57D 522.(多选)已知在△ABC 中,2AB =,2AB AM =,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM -C .AB AC ⊥D .45ACM ∠=︒3.已知向量()3,2a =-,()1,0b =,向量()()2a b a b λ+⊥-,则向量()()a b a kb λ-+时实数k的值为______.4.已知向量()2,3a =,()3,1b =,若()a ab λ⊥+,则λ的值为___________.七.向量在平面几何中的应用 用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2) 垂直问题 数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,a =(x 1,y 1),b =(x 2,y 2),其中a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b|a |·|b |(θ为向量a ,b 的夹角)长度问题 数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y )例7:①.已知2a =,4b =,a 与b 的夹角为60︒.(1)计算()a ab ⋅+的值;(2)若()0a a kb ⋅-=,求实数k 的值.②.已知非零向量a ,b 满足2a b =,且()a b b -⊥. (1)求a 与b 的夹角;(2)若14a b +=,求b .③.已知2a =,3b =,在下列情况下,求()2()a b a b +-的值: (1)//a b ;(2)a b ⊥;(3)a 与b 的夹角为120°.举一反三1.已知向量(5,12)a =-,(3,4)b =-.(1)求a 与b 夹角θ的余弦值;(2)若向量a tb +与a b -垂直,求实数t 的值. 2.在平行四边形ABCD 中,AC 为一条对角线.若()2,4AB =,()1,3AC =.(1)求cos DAB ∠的值;(2)求BD AD ⋅的值.3.已知向量2,1(),1,),3,1(b m a b n b a a k -==+=-=-. (1)若mn ,求k 的值;(2)当=2k 时,求m 与n 夹角的余弦值.八、正弦定理和余弦定理解三角形正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c aC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===二.三角形面积1.B ac A bcC ab S ABC sin 21sin 21sin 21===∆三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.变形:bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=ab c b a C 2cos 222-+= 注意整体代入,如:21cos 222=⇒=-+B ac b c a利用余弦定理判断三角形形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若,,所以为锐角②若为直角A a b c ⇔=+222 ③若, 所以为钝角,则是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B);三角形三边关系:两边之和大于第三边:,,; 两边之差小于第三边:,,; 在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔>4) 三角形内的诱导公式:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-)2sin()2cos()22cos()22sin()22tan(2tan C C C C C B A =--=-=+πππ7) 三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点例9:1.在ABC 中,角,,A B C 分别对应边,,a b c ,已知2a =,3b =.角60B =,求角C .2.已知:如图,在梯形ABCD 中,//AD BC ,2AB AD ==,60A ∠=︒,5BC =,求CD 的长3.△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ;(2)求∠A .4.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.5.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.举一反三1.若ABC 的面积为22,1,6b c ==,且A ∠为锐角. (1) 求cos A 的值;(2) 求sin 2sin A C的值. 2.在ABC ∆中,32b =,6cos 3A =,2B A π=+. (Ⅰ)求a 的值;(Ⅱ)求cos 2C 的值.3.在ABC 中,a 、b 、c 分别是角A.B.C 的对边,且()2cos cos a c B b C -=. (1)求角B 的大小;(2)若7b =,8a c +=,求ABC 的面积.4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-. (Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状5.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足1cos 2a b c B +=⋅. (1)求角C ;(2)若2,3a b ==,求ABC 外接圆的半径.6.在ABC中,已知12 tan5A .(1)若ABC外接圆的直径长为132,求BC的值;(2)若ABC为锐角三角形,其面积为6,求BC的取值范围.。

6.4.1平面几何中的向量方法6.4.2向量在物理中的应用举例课件(人教版)

6.4.1平面几何中的向量方法6.4.2向量在物理中的应用举例课件(人教版)
2
问题2:如何利用向量推导三角题转化 D
E
为求向量的模的问题
B
C
学习目标
新课讲授
课堂总结
例1:DE是△ABC的中位线,用向量的方法证明:DE//BC, DE 1 BC.
2
解:取{AB, AC} 为基底,因为DE是△ABC的中位线
A
所以 AD 1 AB, AE 1 AC.
解:设 AB a, AC b, AD m,
BD AD AB m a,CD AD AC m b
因为 AB2+CD2=AC2+BD2
2
a
(m b)2
2
b
(m a)2
2
2
2
2
2
2
a m 2m b b b m 2m a a
2m (a b) 0 2 AD ( AB AC) 0
课堂总结
知识点:向量在物理中的应用
问题1:物理中力与向量有何异同? ①相同点:力和向量都既要考虑大小又要考虑方向 ②不同点:向量与始点无关,力和作用点有关
问题2:向量的运算与速度、加速度、位移有什么联系? 向量的运算与速度、加速度、位移的运算是一致的
学习目标
新课讲授
课堂总结
思考:在日常生活中,我们有这样的经验:两个人共提一个旅行包、两个拉
力夹角越大越费力如何从数学的角度解释这种现象?
设作用在旅行包上的两个拉力分别为F1,F2,|F1|=|F2|. F1 另设F1,F2的夹角为θ,旅行包所受的重力为G.
F F2
θ
由向量的平行四边形法则、力的平衡以及直角三角形的知识可得
F1
|G|
G
2 cos
2
F1,F2之间的夹角越大越费力,夹角越小越省力

2021届新课改高三数学复习:平面向量的应用(教师版)

2021届新课改高三数学复习:平面向量的应用(教师版)

精品资源·备战高考
4
高考复习·学与练
【解析】 由题意得A→B=(2,-y2),B→C=(x,y2),又A→B⊥B→C,∴A→B·B→C=0,即(2,-y2)·(x,y2)=0,化简得 y2=8x(x≠0).
P→A P→B P→C A→B 6、在△ABC 所在平面上有一点 P,满足 + + = ,则△PAB 与△ABC 的面积的比值是___.
―AB→ ―AC→ ―AD→ + =2 (D 为 BC 的中点),所以点 P 的轨迹必过△ABC 的重心.故选 C.
B→C B→A A→C A→C
2、在△ABC 中,( + )· =| |2,则△ABC 的形状一定是________三角形.(
)Hale Waihona Puke A. 等边 B. 等腰 C. 直角 D. 等腰直角
1. 向量在平面几何中的应用 (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定 义. (2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件,
x1 y1 a∥b⇔x2=y2⇔x1y2-x2y1=0(x2≠0,y2≠0).
(2)与 a=(a1,a2)平行且过 P(x0,y0)的直线方程为 y-y0=a1(x-x0),过点 P(x0,y0)且与向量 a=(a1,a2)垂 a1
直的直线方程为 y-y0=-a2(x-x0).
精品资源·备战高考
3
高考复习·学与练
3、自主热身、归纳总结
1、已知 O 是平面上的一定点,A,B,C 是平面上不共线的三个动点,若动点 P 满足
―O→P ―O→A ―AB→ ―AC→ = +λ( + ),λ∈(0,+∞),则点 P 的轨迹一定通过△ABC 的( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题9 平面向量及应用★★★高考在考什么【考题回放】1、如图,在平行四边形ABCD 中,下列结论中错误的是 (C )(A )→--AB =→--DC ; (B )→--AD +→--AB =→--AC ;(C )→--AB -→--AD =→--BD ; (D )→--AD +→--CB =→0. 2、若a 与b c - 都是非零向量,则“a b a c ⋅=⋅ ”是“()a b c ⊥-”的( C )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件3、已知三点(2,3),(1,1),(6,)A B C k --,其中k 为常数.若AB AC = ,则AB与AC的夹角为( D )(A )24arccos()25- (B )2π或24arccos 25(C )24arccos 25 (D )2π或24arccos 25π-4、已知向量(1sin )a θ= ,,(1cos )b θ=,,则a b - 5、设向量a ,b ,c 满足0a b c ++= ,()a b c -⊥ ,a b ⊥,若|a |=1,则|a |22||b + +|c |2的值是 4 .6、设函数()()f x a b c =+ ,其中向量(sin ,cos )a x x =- ,(sin ,3cos )b x x =-,(cos ,sin )c x x =-,x R ∈。

(Ⅰ)、求函数()f x 的最大值和最小正周期;(Ⅱ)、将函数()f x 的图像按向量d平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d。

【专家解答】(Ⅰ)由题意得()()f x a b c =+=(sinx ,-cosx)·(sinx -cosx ,sinx -3cosx) =sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.A BC D★★★高考要考什么【考点透视】本专题主要涉及向量的概念、几何表示、加法和减法,实数与向量的积、两个向量共线的充要条件、向量的坐标运算,以及平面向量的数量积及其几何意义、平面两点间的距离公式、线段的定比分点坐标公式和向量的平移公式.【热点透析】在高考试题中,主要考查有关的基础知识,突出向量的工具作用。

在复习中要重视教材的基础作用,加强基本知识的复习,做到概念清楚、运算准确,不必追求解难题。

热点主要体现在平面向量的数量积及坐标运算以及平面向量在三角,解析几何等方面的应用.★★★高考将考什么【范例1=,则=;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件; ③若==,,则=; ④==∥; ⑤若a ∥b ,b ∥c ,则a ∥c 。

其中,正确命题材的序号是_________________.解析:①不正确性。

两个向量长度相同,但它的方向不一定相同。

②正确。

∵=且//,又A 、B 、C 、D 为不共线的四点, ∴ 四边形ABCD 为平行四边形;反之,若四边形为平行四边形, 则DC AB DC AB =且//,因此=。

③正确。

∵=,∴、的长度相等且方向相同,又=,∴b 、c 的长度相等且方向相同,∴a 、c 的长度相等且方向相同,故c a =。

④不正确。

当∥==。

⑤不正确。

考虑0=b 这种极端情况。

答案:②③。

【点晴】本题重在考查平面的基本概念。

【范例2】平面内给定三个向量:)1,4(),2,1(),2,3(=-==。

回答下列问题: (1)求c b a 23-+; (2)求满足c n b m a +=的实数m 和n ; (3)若)(k +∥)2(-,求实数k ;(4)设),(y x d =满足)(b a +∥)(c d -且1||=-c d ,求d解:(1)依题意,得23-+=3(3,2)+(-1,2)-2(4,1)=(0,6) (2)∵R n m c n b m a ∈+=,,,∴(3,2)=m (-1,2)+n (4,1)=(-m+4n,2m+n )∴⎩⎨⎧=+=+-,2234n m n m 解之得⎪⎪⎩⎪⎪⎨⎧==;98,95n m(3)∵)(c k a +∥)2(a b -,且c k a +=(3+4k ,2+k ),a b -2=(-5,2)∴(3+4k )×2-(-5)×(2+k )=0,∴1316-=k ; (4)∵c d -=(x-4,y-1),b a +=(2,4), 又∵)(b a +∥)(c d -且1||=-c d ,∴⎩⎨⎧=-+-=---,1)1()4(0)1(2)4(422y x y x 解之得⎪⎪⎩⎪⎪⎨⎧+=+=55255520y x 或⎪⎪⎩⎪⎪⎨⎧-=-=55255520y x ∴d =(5520+,5525+)或d =(5520-,5525-)【点晴】根据向量的坐标运算法则及两个向量平等行的充要条件、模的计算公式,建立方程组求解。

【范例3】已知射线OA 、OB 的方程分别为)0(33≥=x x y ,)0(33≤-=x x y ,动点M 、N 分别在OA 、OB 上滑动,且34=MN 。

(1)若=,求P 点的轨迹C 的方程;(2)已知)0,24(1-F ,)0,24(2F ,请问在曲线C 上是否存在动点P 满足条件021=⋅PF PF ,若存在,求出P 点的坐标,若不存在,请说明理由。

解:(1)设)0)(33,(),0)(33,(222111≤-≥x x x N x x x M ,),(y x P , 则)33,(11x y x x --=,)33,(22y x x x ---=,所以⎪⎩⎪⎨⎧--=--=-y x x y x x x x 21213333,即⎩⎨⎧=-=+y x x x x x 3222121。

又因为34=MN ,所以 48)](33[)(221221=++-x x x x ,代入得:)0,33(143622><<-=+y x y x 。

(2)),(00y x P ,所以),24(001y x PF ---=,),24(002y x PF -=因为021=⋅PF PF ,所以0)24)(24(0200=+-+-y x x ,得32220=+o y x , 又14362020=+y x ,联立得2630±=x ,因为3263>,所以不存在这样的P 点。

【点晴】本题是一道综合题,重在考查向量的概念及轨迹方程的求法。

【文】设向量a =(sinx ,cosx ),b =(cosx ,cosx ),x ∈R ,函数f(x)=a·(a +b). (Ⅰ)求函数f(x)的最大值与最小正周期;(Ⅱ)求使不等式f(x)≥23成立的x 的取值集。

解:(Ⅰ)∵()()222sin cos sin cos cos f x a a b a a a b x x x x x =+=+=+++1131sin 2cos 21)22224x x x π=+++++()= ∴()f x的最大值为32,最小正周期是22ππ=。

(Ⅱ)由(Ⅰ)知 ()333)sin(2)0222424f x x x ππ≥⇔++≥⇔+≥3222,488k x k k x k k Z ππππππππ⇔≤+≤+⇔-≤≤+∈即()32f x ≥成立的x 的取值集合是3|,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭.【点睛】本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.【范例4】已知→a =(x,0),→b =(1,y ),(→a +3→b )⊥(→a –3→b ). (I ) 求点P (x ,y )的轨迹C 的方程; (II ) 若直线l : y=kx +m (m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有|AD|=|BD|,试求m 的取值范围.解:(I )→a +3→b =(x,0)+3(1,y)=(x+3,3 y),→a –3→b =(x, 0)-3(1,y)= (x -3,–3 y). (→a +3→b )⊥(→a -3→b ), ∴(→a +3→b )·(→a -3→b )=0, ∴(x+3)( x -3)+3y·(-3y)=0,故P 点的轨迹方程为2213x y -=. (II )考虑方程组22,1,3y kx m x y =+⎧⎪⎨-=⎪⎩ 消去y ,得(1–3k 2)x 2-6kmx-3m 2-3=0 (*) 显然1-3k 2≠0, ∆=(6km)2-4(1-3k 2)( -3m 2-3)=12(m 2+1-3k 2)>0.设x 1,x 2为方程*的两根,则x 1+x 2=2316kkm -,x 0=2213132kkm x x -=+, y 0=kx 0+m=231k m -,故AB 中点M 的坐标为(2313k km -,231km-), ∴线段AB 的垂直平分线方程为y -213m k -=(-k 1)23()13km x k --,将D (0,–1)坐标代入,化简得 4m=3k 2-1,故m 、k 满足222130,431,m k m k ⎧+->⎨=-⎩ 消去k 2得 m 2-4m>0, 解得 m<0或m>4.又 4m=3k 2-1>-1, ∴ 1,4m >-故m ∈(-41,0) (4,+∞).【点睛】本题用向量语言来表达平面几何问题,是亮点。

【文】在平面直角坐标系中,O 为坐标原点,已知点(1,3)M -,(5,1)N ,若点C满足(1)()OC tOM t ON t R =+-∈,点C 的轨迹与抛物线24y x =交于A 、B 两点;(1)求点C 的轨迹方程;(2)求证:OA OB ⊥;(3)在x 轴正半轴上是否存在一定点(,0)P m ,使得过点P 的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m 的值;若不存在,请说明理由.解:(1)设(,)C x y ,由(1)OC tOM t ON =+-知,点C 的轨迹为4y x =-.(2)由244y x y x=-⎧⎨=⎩消y 得:212160x x -+=设11(,)A x y ,22(,)B x y ,则1216x x =,1212x x +=,所以1212(4)(4)16y y x x =--=-,所以12120x x y y +=,于是OA OB ⊥(3)假设存在过点P 的弦EF 符合题意,则此弦的斜率不为零,设此弦所在直线的方程为x ky m =+,由24x ky m y x=+⎧⎨=⎩消x 得:2440y ky m --=,设33(,)E x y ,44(,)F x y , 则344y y k +=,344y y m =-.因为过点P 作抛物线的弦的长度是原点到弦的中点距离的2倍,所以OE OF ⊥即34340x x y y +=,所以223434016y y y y +=得4m =,所以存在4m =.★★★自我提升1.如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD =( A )A.12BC BA -+B. 12BC BA --C. 12BC BA -D. 1BC BA +2.已知向量a =,b 是不平行于x 轴的单位向量,且a b = 则b =(B )A 12)B .(12C .(14)D .(1,0) 3. ABC ∆的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =-- ,若//p q,则角C 的大小为( B ) A.6π B.3π C. 2π D.23π4.已知||2||0a b =≠ ,且关于x 的方程2||0x a x a b ++⋅= 有实根,则a 与b 的夹角的取值范围是 ( B )A.[0,6π] B.[,]3ππ C.2[,]33ππ D.[,]6ππ5.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b +的值等于__________.126.已知向量a =(cos α,sin α),b =(cos β,sin β),且a ±≠b ,那么a+b 与a-b 的夹角的大小是 .2π7.已知()2,32-=+=n m ,与垂直,与的夹角为120,且b 4-=⋅c 22=,求实数n m ,的值及a 与b 的夹角.解:设()11,y x =,()22,y x =,则023211=+-=y x a ;423222-=+-=⋅y x c b ; 82121=+=y x 42222=+=y x .解得⎩⎨⎧==6211y x ,或⎩⎨⎧-=-=6211y x ,对应的分别为⎩⎨⎧-==2022y x ,或⎩⎨⎧==1322y x ,分别代入()2,32-=+=n m ,解得6,4±=-=m n ;5,.6a b π<>=8.已知定点(1,0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP到点N ,且0,PM PF PM PN ⋅==.(Ⅰ)求点N 的轨迹;(Ⅱ)直线l 与N 的轨迹交于A B 、两点,若4OA OB ⋅=-,且AB ≤求直线l 的斜率k 的取值范围.解:(1)设(0,),(,0)P b M a ,则,PF PM bk b k a=-=-201PF PM PM PF k k a b ⋅=∴⋅=-∴=-2(,0)M b ∴-,又PM PN =,即P 为MN 的中点,2(,2)N b b ∴ 因此,N 的轨迹方程为:24y x =,其轨迹为以(1,0)F 为焦点的抛物线.(2)设:l y kx b =+,与24y x =联立得:20(*)4ky y b -+=设1122(,),(,)A x y B x y ,则12y y 、是(*)式的两根,且124by y k=由4OA OB ⋅=- 得:12124x x y y +=-,即221212124,844y y y y y y ⋅+=-∴=-482bb k k∴=-∴=-.因此,直线方程可写为:2(2)y kx k k x =-=- (*)式可化为:21212420,84k y y k y y y y --=∴+==-而AB ⎡=⎣ 即:22116(1)(2)30k k≤++≤令211x k=+,解得211125141122x k k k ≤≤∴≤≤∴-≤≤-≤≤或【文】,82,(),2,(=+-=+=y x y x(Ⅰ)求M(y x ,)的轨迹C ;(Ⅱ)过点(0,3)作直线l 与曲线交于A,B 两点,+=,是否存在直线l使OAPB 为矩形.解:(Ⅰ)88a b +=⇒=设12(0,2),(0,2)F F -,则128MF MF +=因此,点M 的轨迹是以12F F 、为焦点,长轴长为8的椭圆,其方程为2211216x y +=(Ⅱ)假设存在这样的直线,使得OAPB 为矩形,并设:3l y kx =+与椭圆方程联立得:22(34)18210(*)k x kx ++-= 设1122(,),(,)A x y B x y ,则12x x 、是(*)的两根,且1212221821,3434k x x x x k k +=-=-++ 因为OAPB 为矩形,故OB OA ⊥则02121=+y y x x ,()()0332121=+++kx kx x x()()093121212=++++x x k x x k由此可得:()094183431212222=++⨯-++-k k k k解得:2516k k =∴= 因此,当直线的斜率为时,可使OAPB 为矩形. 来源 臂力论文网 yxlBAOP。

相关文档
最新文档