二项式定理的十一种考题解法-学习文档

合集下载

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

二项式定理的常见题型及解法特全版

二项式定理的常见题型及解法特全版

Cxy
3 7
4
4
,和第 5 项
C
二、通项公式的应用
1 .确定二项式中的有关元素
例 4.已知 (
a x 9 9 ) 的展开式中 x 3 的系数为 ,常数 a 的值为 x 2 4
r 3 r 9
解: Tr 1 令
r 9 a x C ( ) 9r ( ) r C9r (1) r 2 2 a 9r x 2 x 2
9 令 18 3x 9, 则 r 3 ,从而可以得到 x 的系数为:
C
3 9
1 21 21 ( ) 3 , 填 2 2 2
(备用题) : (05 年山东卷)已知 (3x
1
3
x
2
) n , n N 的展开式中各项系数和为 128,则展
开式中
1 的系数是( x3

1 的展开式中没有 常数项, 且 2≤n≤8, n N* , .. 3 x
n
分析:本小题主要考查二项式定理中求特定项问题。依题 ( x
1 n ) 对 n N * , 2 剟n 3 x
8 中,
只有 n 5 时,其展开式既不出现常数项,也不会出现与 x 、 x 2 乘积为常数的项。故填 5。 (备用题) (05 年湖北卷) (
C
1
5
11
(1) 5 462
(2) 一般的系数最大或最小问题 例 12.求 ( x
2 x
4
) 8 展开式中系数最大的项;
解:记第 r 项系数为 Tr ,设第 k 项系数最大,则有
Tk Tk 1 Tk Tk 1
又 Tr
C
r 1 8
.2 r 1 ,那么有

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

二项式定理题型及解题方法

二项式定理题型及解题方法

二项式定理题型及解题方法摘要:1.二项式定理的概念及意义2.二项式定理的基本形式3.二项式定理的应用场景4.解题方法的步骤与技巧5.典型例题分析正文:一、二项式定理的概念及意义二项式定理是数学中一个重要的定理,它揭示了二项式展开式的规律。

二项式定理的基本形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ...+ C(n, n)b^n其中,a、b为实数或复数,n为自然数,C(n, k)表示组合数,即从n个元素中取k个元素的组合数。

二、二项式定理的基本形式我们已经了解了二项式定理的基本形式,接下来看看如何利用这个定理解决问题。

三、二项式定理的应用场景1.求解二项式展开式的特定项或特定项的系数。

2.求解极限问题,如当a、b趋于0时,(a + b)^n的极限值。

3.求解不等式问题,如求(a + b)^n > 1的解集。

4.求解恒成立问题,如证明(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ...+ C(n, n)b^n。

四、解题方法的步骤与技巧1.确定问题类型,判断是否适用于二项式定理。

2.根据问题,选取合适的二项式定理形式。

3.利用组合数公式计算特定项或特定项的系数。

4.化简式子,求解问题。

五、典型例题分析例题1:求(2x - 1)^5的展开式中,x^2的系数。

解:根据二项式定理,展开式为:(2x - 1)^5 = C(5, 0)(2x)^5 - C(5, 1)(2x)^4 + C(5, 2)(2x)^3 - C(5, 3)(2x)^2 + C(5, 4)(2x)^1 - C(5, 5)展开式中,x^2的系数为-C(5, 3) * 2^2 = -40。

例题2:求极限:当x趋于0时,(1 + x)^(1/x)的极限值。

解:根据二项式定理,(1 + x)^(1/x) = (1 + x)^(x/x) = (1 + x)^(1/x) * (1 - 1/x + 1/x^2 - 1/x^3 + ...)当x趋于0时,(1 + x)^(1/x)趋于e(自然对数的底),即极限值为e。

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

二项式定理的常见题型及解法

二项式定理的常见题型及解法

二项式定理的常见题型及解法二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。

二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。

二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。

本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。

一、求二项展开式1.“(“+〃)"”型的展开式例1.求(3« + J)4的展开式:解:原式=(亨)4 = 3 y/x X-=3Gt),+ 0: 3靖 +(3x)2 + d 由)+。

:]A= -4(8 lx4 + 84x3 + 54x2 +12x +1) =81x2 +84x+—+ -4 + 54厂x 厂2."(“一匕)"”型的展开式例2.求(36一,=)4的展开式:分析:解决此题,只需要把(34一3)4改写成[36+(—一的形式然后按照二项展开式yjx y]X 的格式展开即可。

本题主要考察了学生的“问题转化”能力。

3.二项式展开式的“逆用”例3.计算1—3C:+9C:—27C:+~・+(-1)"3"C;:解:原式=<7>d(一到+C:(-3)2+C:(—3)3+....+ C»3)” =(1-3)” =(-2)”二、通项公式的应用1.确定二项式中的有关元素a反 Q? 9例4.已知(一一1一)’的展开式中工3的系数为一,常数4的值为______________x V 2 4解:= C;(色尸(J) = G;(-l)r-2^ •,产「x V 23 Q令三•一9 = 3,即〃=8依题意,得C;(一1)8・27.。

内=“解得。

=一12.确定二项展开式的常数项例5.(五一二,)1°展开式中的常数项是]5-5 5解:7;+1 =c;Q ^)i0-r (--y=(-\yc;0-x 令5—7r= 5 即r= 6. 所以常数项是(-l )6c* =2103 .求单一二项式指定器的系数例6.(』一一-)9展开式中X 9的系数是 _____________ 2%解:心=仁“产(-/ =仁”2(一'7=仁(-;)“心令18 - 3x = 9,则广=3,从而可以得到的系数为:。

(完整版)二项式定理公式、各种例题讲解及练习

(完整版)二项式定理公式、各种例题讲解及练习

二项式定理例题讲解分 类 计 数 原 理分 步 计 数 原理做一件事,完成它有n 类不同的办法.第一类办法中有m1种方法,第二类办法中有m2种方法……,第n 类办法中有mn 种方法,则完成这件事共有:N=m1+m2+…+mn 种方法。

做一件事,完成它需要分成n 个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n 步中有mn 种方法,则完成这件事共有:N=m1 m2 … mn 种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列组合从n 个不同的元素中取m (m≤n)个元素,按照一定的顺序排成一排,叫做从n 个不同的元素中取m 个元素的排列。

从n 个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同的元素中取m 个元素的组合。

排列数组合数从n 个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记为Pnm从n 个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记为Cnm选排列数全排列数二项式定理二项展开式的性质(1)项数:n+1项(2)指数:各项中的a 的指数由n 起依次减少1,直至0为止;b 的指出从0起依次增加1,直至n 为止.而每项中a 与b 的指数之和均等于n 。

(3)二项式系数:各奇数项的二项式数之和等于各偶数项的二项式的系数之和例1.试求:(1)(x 3-22x )5的展开式中x 5的系数; (2)(2x 2-x 1)6的展开式中的常数项;(3)(x -1)9的展开式中系数最大的项;(4)在1003)23(+x 的展开式中,系数为有理数的项的个数.解:(1)T r +1=rr r r r rx C xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2故(-2)2rC 5=40为所求x 5的系数(2)T r +1=rC 6(2x 2)6- rr x)1(-=(-1)r ·26- r ·r r x C 3126- 依题意12-3r =0,解得r =4故4)1(-·2226C =60为所求的常数项.(3)T r +1=r )1(-r r x C -99∵1265949==C C ,而(-1)4=1,(-1)5=-1∴ T 5=126x 5是所求系数最大的项(4)T r +1=r r rrr r r x C x C ---⋅⋅=1003250100310010023)2()3(,要使x 的系数为有理数,指数50-2r与3r 都必须是整数, 因此r 应是6的倍数,即r =6k (k ∈Z ), 又0≤6k ≤100,解得0≤k ≤1632(k ∈Z ) ∴x 的系数为有理数的项共有17项.评述 求二项展开式中具有某特定性质的项,关键是确定r 的值或取值范围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.例2.试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数;(3)321⎪⎪⎭⎫ ⎝⎛-+x x 的展开式中的常数项。

二项式定理常见题型(老师用)

二项式定理常见题型(老师用)

二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L ,变形式1221r n nn n n n C C C C +++++=-L L 。

(完整版)二项式定理题型及解题方法

(完整版)二项式定理题型及解题方法

二项式定理题型及解题方法【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法.2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r n C a b -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r r r n T C a b -+=, 其中的系数r n C (r=0,1,2,…,n )叫做二项式系数,2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为r n C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈) ②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式二项展开式的通项:公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是r n C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n.要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n r r n C a b -和(b+a)n 的二项展开式的第r+1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-(只需把-b 看成b 代入二项式定理).要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导.在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数. n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 12)(b a +……………………………………1 2 13)(b a +…………………………………1 3 3 14)(b a +………………………………1 4 6 4 15)(b a +……………………………1 5 10 10 5 16)(b a +…………………………1 6 15 20 15 6 1…… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质.表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和.用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()n a b a b a b +++这n 个括号中取r 个b ,则这种取法种数为r n C ,即为n r r a b -的系数.2.()n a b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质: ①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即r n n r n C C -=;②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n ,即012342n n n n n n n n C C C C C C ++++++=;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C . 要点诠释:二项式系数与展开式的系数的区别二项展开式中,第r+1项r r n r n b a C -的二项式系数是组合数rn C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等.如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-,在这里对应项的二项式系数都是r n C ,但项的系数是(1)r r n C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且p q r n ++=) r q q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C 要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决.要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和.二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立.利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.设2012()()n n n f x ax b a a x a x a x =+=++++(1) 令x=0,则0(0)n a f b ==(2)令x=1,则012(1)()n n a a a a f a b ++++==+(3)令x=-1,则0123(1)(1)()n n n a a a a a f a b -+-+-=-=-+ (4)024(1)(-1)2f f a a a ++++= (5)135(1)-(-1)2f f a a a +++= 3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈)4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明.①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n )11(2+< 5.进行近似计算:求数的n 次幂的近似值时,把底数化为最靠近它的那个整数加一个小数(或减一个小数)的形式. 当||x 充分小时,我们常用下列公式估计近似值: ①nx x n +≈+1)1(;②22)1(1)1(x n n nx x n -++≈+; 如:求605.1的近似值,使结果精确到0.01;。

二项式定理题型

二项式定理题型

二项式定理题型一、求二项展开式中的特定项1. 题目- 求二项式(2x - (1)/(x))^6展开式中的常数项。

2. 解析- 根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,对于(2x-(1)/(x))^6,a = 2x,b=-(1)/(x),n = 6。

- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r。

- 化简T_r + 1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。

- 要求常数项,则令x的指数6-2r = 0,解得r = 3。

- 把r = 3代入通项公式中,可得常数项为C_6^32^6 - 3(-1)^3。

- 计算C_6^3=(6!)/(3!(6 - 3)!)=(6×5×4)/(3×2×1)=20。

- 所以常数项为20×2^3×(-1)=-160。

二、求二项展开式的系数和1. 题目- 已知二项式(1 + 2x)^n,设(1 + 2x)^n=a_0+a_1x + a_2x^2+·s+a_nx^n,求a_0+a_1+a_2+·s+a_n的值。

2. 解析- 令x = 1,则(1+2×1)^n=(1 + 2)^n=3^n。

- 此时(1 + 2x)^n变为a_0+a_1×1+a_2×1^2+·s+a_n×1^n,即a_0+a_1+a_2+·s+a_n=3^n。

三、二项式系数的性质相关题目1. 题目- 在二项式(x + y)^n的展开式中,二项式系数最大的项是第5项和第6项,求n的值。

2. 解析- 当n为偶数时,二项式系数最大的是中间一项,即第(n)/(2)+1项;当n为奇数时,二项式系数最大的是中间两项,即第(n + 1)/(2)项和第(n+3)/(2)项。

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

练:求 (x2 1 )9 展开式中 x9 的系数? 2x
解: Tr1
C9r
(
x
2
)9
r
(
1 2x
)r
C9r
x182r
(
1 2
)r
xr
C9r
(
1 2
)r
x183r
,令18
3r
9 ,则 r
3

x9
的系数为 C93 (
1 )3 2
21 2

题型三:利用通项公式求常数项;
例:求二项式 (x2 1 )10 的展开式中的常数项? 2x
令x则①1, a0 a1 a2 a3 an (a 1)n
令x则 1, a0 a1 a2 a3 an (a 1)n ②
①② 得奇,数a0项 的 a2 系 a数4 和
an
(a
1)n
2
(a
1) n
(
)
①② 得偶,数a1项 a的3 系a数5 和 an
(a
1)n
(a 2
1) n
(
)
n
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大
值。
n1
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时
取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分
变形式 Cn1 Cn2 Cnr Cnn 2n 1 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令 a 1, b 1 ,则 Cn0 Cn1 Cn2 Cn3 (1)n Cnn (11)n 0 ,

二项式定理九种常见的考查题型归纳

二项式定理九种常见的考查题型归纳

二项式定理常见的题型归纳吴友明 整理题型一:指定项有关的问题 例1.在12)13(xx -展开式中,3-x 的系数为 . 解析:由二项式定理的通项公式得1121212211212(3)(3(1)r r rr r r r rr T C x C x x ----+=⋅⋅=⋅-⋅⋅⋅ 312122123(1)rrrr C x--=⋅-⋅⋅.令31232r -=-可得10r =,即121010103311123(1)594T C x x ---=⋅-⋅⋅=.故3-x 项的系数为594.点评:解决此类问题的一般策略是:先求二项式展开式的通项,再利用化简后的通项与指定项之间的联系求解。

特别题型解题之前先确认题目是求二项式的展开式的系数或二项式的系数,另外二项式的展开式的通项化简时,要注意指数运算的性质的准确运用.练习.若n xx x )1(3+的展开式的常数项为84,则n = .解析:由二项式定理的通项公式得333321()r r n rrr n rr nnT C x C xx---+=⋅⋅=⋅⋅932n rr nC x-=⋅.令9302n r -=可设3,2n k r k ==,其中k N +∈. 故有23384r k kn k k C C C ===,解得3k =.故39n k ==.题型二:有理项有关的问题例2. 二项式24展开式中,有理项的项数共有( )项A. 3B. 4C. 5D. 7 解析:由二项式定理的通项公式得241136424r !2424T ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭rrr r r C x x C x,其中0,1,2,,24r =L , 由题意得364r Z -∈,则0,4,8,12,16,20,24r =,所以共有7个有理项点评: 有理项是指变量的指数是整数(可以是正整数,也可以是负整数和零)的项,所以此类问题的一般解题思路是:先求二项式的展开式的通项,化简后令x 的指数为整数解决问题。

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧

二项式定理1.二项式定理:(a + b)n = cy + 叫+ ••• + cy-r b r + …+ C;:b" (neN*),2.基本概念:①二项式展开式:右边的多项式叫做(a + b)n的二项展开式。

②二项式系数:展开式中各项的系数C:(厂=0,1,2,•••,“).③项数:共(r + 1)项,是关于a与b的齐次多项式④通项:展开式中的第厂+ 1项C;,a n-r b r叫做二项式展开式的通项。

用T r+{ = C;t a''-r b r表示。

3.注意关键点:①项数:展开式中总共有(n +1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a + b)n与e + a)"是不同的。

③指数:a的指数从"逐项减到0,是降幕排列。

"的指数从0逐项减到〃,是升幕排列。

各项的次数和等于④系数:注意正确区分二项式系数与项的系数,二项式系数依次是…,C:,…,C;:.项的系数是d与方的系数(包括二项式系数)。

4.常用的结论:令a = \,b = x y (1 + x)n = C:: + C> + C>2 + …+ C;t x r + …+ C;:x” (neN*)令a = \,b = -x, (1-x)n = C;; -C\x + C>2 _... + + …+ (-1)"C;:x”(neN*)5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C;【= C;;,・・・U②二项式系数和:令a = h = \,则二项式系数的和为C,; + G +…+ C:+…+ C;: = 2",变形式C* + C; +-. + C; + ..•+ C; = 2n -1 o③奇数项的二项式系数和二偶数项的二项式系数和:在二项式定理中,令"=1/ = 一1,则u _C + c: _ C:+…+(_I)”c;: = (I _ = 0,从而得到:C;:+C:+C:・・・+C,7+••• = (?,;+C; +…+ C;E+••• = [><2“ = 2心2④奇数项的系数和与偶数项的系数和:①-②得,q +为4,设第厂+1项系数,从而解出r 来。

二项式定理—十一种考题的解法

二项式定理—十一种考题的解法

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理题型及解题方法(可打印修改)

二项式定理题型及解题方法(可打印修改)


C
r n
a
nr
b
r
的二项式系数是组合数
C
r n
,展开式的系数是单项式
C
r n
a
nr
b
r

系数,二者不一定相等.
如(a-b)n 的二项展开式的通项是 Tr1 (1)r Cnr anrbr ,在这里对应项的二项式系数都是 Cnr ,但项的
第 2 页 共 12 页
系数是 (1)r Cnr ,可以看出,二项式系数与项的系数是不同的概念.
于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.
设 f (x) (ax b)n a0 a1x a2 x2 L an xn
(1) 令 x=0,则 a0 f (0) bn
(2)令 x=1,则 a0 a1 a2 L an f (1) (a b)n
(1)项数:共有 n+1 项,比二项式的次数大 1;
(2)二项式系数:第
r+1
项的二项式系数为
C
r n
,最大二项式系数项居中;
(3)次数:各项的次数都等于二项式的幂指数 n.字母 a 降幂排列,次数由 n 到 0;字母 b 升幂排列,
次数从 0 到 n,每一项中,a,b 次数和均为 n;
3.两个常用的二项展开式:
C51(4x3 )4 (3)
C52 (4x3 )3 (3)2
C53 (4x3 )2 (3)3
C54 (4x3 )(3)4
C55 (3)5 ]
1 (1024x15 3840x12 5760x9 4320x6 1620x3 243) 32 x10
32x5 120x2 180 135 405 243 . x x4 8x7 32x10

二项式定理题型种种及解析

二项式定理题型种种及解析

二项式定理题型种种及解析
二项式定理主要应用在排列组合概念上,可以求解给定n个物体,选择m个物体排列组合成一组并且可以重复计算出选择不同个数的物体组合的数量。

二项式定理考题主要有以下几种:
一、从n个元素中取m个元素的所有可能性
这种考题的关键就在于搞清楚n个元素中取m个元素的所有可能性有多少种。

二项式定理可以游刃有余的解决这种题目,前提条件是没有重复的元素选择。

具体的求解方法是运用二项式定理:Cnm=n(n-1)(n-2)…(n-m+1)/m!
二、从n个元素中取m个元素的组合数
二项式定理也可以求解从n个元素中取m个元素的组合数,它可以求出在选取不需要重复元素的情况下,挑选m个组合的数量。

公式是:组合数=C(n,m)/m!
三、n的阶乘的计算
二项式定理也可以求解n的阶乘,其计算公式是:n!=n(n-1)(n-2) (1)
/2!,也就是二项式定理中NSm=0时的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理的十一种考题解法1.二项式定理: 2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n r r r n T C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n nn n x C C x C x C x C xn N*+=++++++∈令1,,a b x ==- 0122(1)(1)()n r rn nn n n nn nx C C x C x C x C x n N*-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n nC C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。

⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;例:12321666 .nn nn n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n nn n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,练:1231393 .n nn n n n C C C C -++++=解:设1231393n nn nn n n S C C C C -=++++,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-(13)14133n n n S +--∴==题型二:利用通项公式求nx 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数?解:由条件知245n n C -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

练:求291()2x x-展开式中9x 的系数?解:291821831999111()()()()222r r r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r = 故9x 的系数为339121()22C -=-。

题型三:利用通项公式求常数项; 例:求二项式210(x +的展开式中的常数项?解:5202102110101()()2r r rrr r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22rr r r r r r r rr T C x C x x ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx --==,令2120n -=,得6n =.题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或,所以当3r =时,2746r-=,334449(1)84T C x x =-=-,当9r =时,2736r-=,3933109(1)T C x x =-=-。

题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=②将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。

练:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。

解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462n T C x -+==⋅,611561462T x-+=⋅题型六:最大系数,最大项;例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。

练:在2()n a b +的展开式中,二项式系数最大的项是多少? 解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。

练:在(2n x -的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C =例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b=-的系数最小,43457T C a b=系数最大。

例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n nn C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+ 1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有121010*********()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1102rr rr T C x +=⋅111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x它的系数为1445423240C C =。

解法②:255505145051455555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++⋅⋅⋅+++⋅⋅⋅+故展开式中含x 的项为4554455522240C xC C x x +=,故展开式中x 的系数为240.练:求式子31(2)x x+-的常数项? 解:361(2)xx +-=,设第1r +项为常数项,则66261661(1)()(1)rr rr r rr T C xC x x--+=-=-,得620r -=,3r =, 33316(1)20T C +∴=-=-.题型八:两个二项式相乘; 例:342(12)(1)x x x +-求展开式中的系数.解:333(12)(2)2,m m mm m x x x +⋅=⋅⋅的展开式的通项是C C 练:610(1(1+求展开式中的常数项.解:436103412610610(1(1m n m nm n m nC x C x C C x --+⋅=⋅⋅展开式的通项为练:2*31(1)(),28,______.nx x x n N n n x+++∈≤≤=已知的展开式中没有常数项且则 解:3431()C C ,n r n r r r n r n n x x x x x---+⋅⋅=⋅展开式的通项为通项分别与前面的三项相乘可得 题型九:奇数项的系数和与偶数项的系数和;例:2006(,,,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当 解:2006123200601232006(x a a x a x a x a x +++++设=-------① 题型十:赋值法;例:设二项式1)n x的展开式的各项系数的和为p ,所有二项式系数的和为s ,若272p s +=,则n 等于多少?解:若20121)n n n a a x a x a x x=+++⋅⋅⋅+,有01n P a a a =++⋅⋅⋅+,02nn n n S C C =+⋅⋅+=,令1x =得4n P =,又272p s +=,即42272(217)(216)0n n n n +=⇒+-=解得216217()n n ==-或舍去,4n ∴=.练:若的展开式中各项系数之和为64,则展开式的常数项为多少?解:令1x =,则的展开式中各项系数之和为264n=,所以,则展开式的常数项为540=-. 例:200912320092009120123200922009(12)(),222a a a x a a x a x a x a x x R -=+++++∈++⋅⋅⋅+若则的值为 解:2009200912120022009220091,0,2222222a a a a a a x a a =+++⋅⋅⋅+=∴++⋅⋅⋅+=-令可得 练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 解:0012345032,11,x a x a a a a a a ==-=+++++=-令得令得 题型十一:整除性;例:证明:22*389()n n n N +--∈能被64整除 证:2211389989(81)89n n n n n n +++--=--=+--nx x ⎪⎪⎭⎫⎝⎛-13nx x ⎪⎪⎭⎫ ⎝⎛-136n=3336(C ⋅由于各项均能被64整除22*389()64n n n N +∴--∈能被整除。

相关文档
最新文档