华师大七年级下周末强化训练试题(8)

合集下载

华师大版初中数学七年级下册《8.2.1 不等式的解集》同步练习卷(含答案解析

华师大版初中数学七年级下册《8.2.1 不等式的解集》同步练习卷(含答案解析

华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<54.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤15.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥16.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8 7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3 9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.210.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>211.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>412.不等式组的解表示在数轴上,正确的是()A.B.C.D.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=214.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣315.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥017.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0 18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.19.下列不等式中,解集为空集的是()A.B.C.D.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤327.不等式x≥2的解集在数轴上表示为()A.B.C.D.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.30.不等式组的解集在数轴上可表示为()A.B.C.D.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是.33.若不等式组有实数解,则实数m的取值范围是.34.已知关于x的不等式组无解,则a的取值范围是.35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.36.不等式组的解集是x>4,那么m的取值范围是.37.不等式6﹣12x<0的解集是.38.不等式组的解集是;不等式组的解集是.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥140.已知x=3是关于x的不等式的解,求a的取值范围.华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷参考答案与试题解析一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小【分析】由已知不等式的解集确定出a与b的大小即可.【解答】解:∵关于x的不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,即a<b,故选:B.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由﹣x≤﹣1解得x≥1,由x+1>0解得x>﹣1,不等式的解集是x≥1,在数轴上表示如图,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<5【分析】先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【解答】解:由>1得,x>,由>0得,x>﹣,∵关于x的不等式>1的解都是不等式>0的解,∴≥﹣,解得a≤5.即a的取值范围是:a≤5.故选:C.【点评】本题考查了不等式的解集,解一元一次不等式,分别求出两个不等式的解集,再根据同大取大列出关于a的不等式是解题的关键.4.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤1【分析】根据不等式组有解的口诀解答即可.【解答】解:∵不等式组有解,∴m的取值范围为m>1.故选:A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥1【分析】根据已知不等式的解集,利用不等式的基本性质求出m的范围即可.【解答】解:∵(m﹣1)x>m﹣1的解集为x<1,∴m﹣1<0,解得:m<1,故选:C.【点评】本题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.6.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8【分析】首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【解答】解:,解①得:x≤m,解②得:x>﹣4,根据题意得:m>﹣4,解得:m>﹣8.故选:C.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.【分析】先移项、合并同类项、化系数为1即可求出x的取值范围,再把x的取值范围在数轴上表示出来即可.【解答】解:2x+1≥32x≥2x≥1,故选:A.【点评】本题考查的是解一元一次不等式及在数轴上表示不等式的解集,在解答此题时要注意实心圆点与空心圆点的区别.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.2【分析】首先解不等式组,求得其解集,又由,即可求得不等式组的解集,则可得到关于a的方程,解方程即可求得a的值.【解答】解:∵的解集为:﹣2≤x<a﹣1,又∵,∴﹣2≤x<1,∴a﹣1=1,∴a=2.故选:D.【点评】此题考查了在数轴上表示不等式的解集.注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>2【分析】根据不等式组的求解规律:大大取较大,小小取较小,大小小大中间找,大大小小无解,探究a的取值范围即可.【解答】解:由不等式组的解集是x>2,因此a的取值范围是a≤2.故选:A.【点评】本题考查了不等式组解集的求解方法.注意,这里的a可以等于2.11.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】利用不等式组取解集的方法判断即可得到m的范围.【解答】解:∵等式组的解集是x>4,∴m≤4,故选:A.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.12.不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选:D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【解答】解:解关于x的不等式ax+4<0,ax<﹣4,所以当a>0时,x<﹣;a<0时,x>﹣;a=0时,无解.由图可知,不等式的解集为x>2,故,a=﹣2.故选:C.【点评】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.14.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣3【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:根据题意得:a﹣3<0,解得:a<3.故选:C.【点评】本题考查了不等式的解法,解答此题学生一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.15.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】首先由数轴上表示的不等式组的解集为:﹣1≤x≤2,然后解各不等式组,即可求得答案,注意排除法在解选择题中的应用.【解答】解:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2,A、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确;B、解得:此不等式组的解集为:x≤﹣1,故本选项错误;C、解得:此不等式组的无解,故本选项错误;D、解得:此不等式组的解集为:x≥2,故本选项错误.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识.此题比较简单,注意掌握不等式组的解法是解此题的关键.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥0【分析】根据题意可得,不等式两边除以a后,不等式变号,从而可得出a的取值范围.【解答】解:∵ax>b的解集是,∴a<0.故选:B.【点评】此题考查了不等式的性质,注意掌握不等式两边同时除以一个负数,不等式变号.17.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0【分析】求不等式ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,因而a的范围即可确定.【解答】解:ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,则a<0.故选:A.【点评】本题主要考查了不等式的性质,不等式的左右两边同时除以同一个负数时,不等号的方向要改变.18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.【分析】利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,进行解方程.【解答】解:移项得,x>4﹣2,合并同类项得,x>2,把解集画在数轴上,故选:B.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错19.下列不等式中,解集为空集的是()A.B.C.D.【分析】根据不等式组解集的确定方法:两大取大,两小取小,大小小大,中间找,大大小小无处找,即可确定.【解答】解:A、空集,故选项正确;B、解集是:x<﹣2,故选项错误;C、解集是:﹣3<x<7,故选项错误;D、解集是:x>3,故选项错误.【点评】本题考查了不等式组的解集的确定方法,正确理解法则是关键.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】先根据数轴上表示不等式解集的方法求出此不等式组的解集,再分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可.【解答】解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;B、,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x<3,故本选项正确;C、,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=【分析】解第一个不等式得到x>3,由于不等式的解集是x>3,则对于mx<﹣1要得到x>﹣,即m为负数,再根据同大取大得3≥﹣,然后再解关于m的不等式即可.【解答】解:解x+8<4x﹣1得x>3,∵不等式组的解集是x>3,∴解mx<﹣1得x>﹣(m<0),∴3≥﹣,∴3m≤﹣1,∴m≤﹣.故选:A.【点评】本题考查了不等式组的解集:先解出各个不等式的解集,再根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选:B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选:D.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心圆点,没有等于号的画空心圆圈.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式x≥2的解集在数轴上表示为()A.B.C.D.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选:C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),如果数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.【解答】解:由于x<1,所以表示1的点应该是空心点,折线的方向应该是向左,由于x≥0,所以表示0的点应该是实心点,折线的方向应该是向右,如图:故选:C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.【分析】首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.【解答】解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选:D.【点评】解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.30.不等式组的解集在数轴上可表示为()A.B.C.D.【分析】在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.【解答】解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选:D.【点评】注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【解答】解:不等式组的解集是x>4,得m≤4,故答案为:m≤4.【点评】本题考查了不等式组解集,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.33.若不等式组有实数解,则实数m的取值范围是m≤2.【分析】根据大小小大中间找可得答案.【解答】解:由6﹣3x≥0,解得x≤2.由x﹣m≥0,解得x≥m,由不等式组有实数解,则实数m的取值范围是m≤2,故答案为:m≤2.【点评】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).34.已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15.【分析】表示出不等式的解集,由x=5是一个解,x=4不是它的解,确定出a的范围即可.【解答】解:不等式2x+5>a,解得:x>,由x=5是不等式的一个解,但x=4不是它的解,得到4≤<5,解得:13≤a<15,则a的取值范围是13≤a<15,故答案为:13≤a<15【点评】此题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.36.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】首先解不等式﹣x+2<x﹣6得x>4,而x>m,并且不等式组解集为x >4,由此即可确定m的取值范围.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.【点评】此题主要考查了如何确定不等式组的解集,首先确定已知不等式的解集,然后结合不等式组的解集和另一个不等式的形式就可以确定待定系数m的取值范围.37.不等式6﹣12x<0的解集是x>.【分析】先移项,然后将系数化为1即可.【解答】解:移项得,﹣12x<﹣6,解得x>.【点评】本题主要考查了不等式的解法,解不等式时要注意,不等式两边都乘以或除以一个负数,要改变不等号的方向.38.不等式组的解集是x>1;不等式组的解集是x<1.【分析】根据求不等式组解集的方法求解即可.【解答】解:∵不等式组,∴此不等式组的解集为x>1;∵不等式组,∴此不等式组的解集为x<1.故答案为:x>1;x<1.【点评】本题考查的是不等式组的解集,熟知“同大取较大,同小取较小”的原则是解答此题的关键.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥1【分析】(1)在﹣2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.【解答】解:(1)如图所示;;(2)如图所示..【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.40.已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.。

华师大版七年级(下) 中考题单元试卷:第8章 一元一次不等式(07)

华师大版七年级(下) 中考题单元试卷:第8章 一元一次不等式(07)

华师大版七年级(下)中考题单元试卷:第8章一元一次不等式(07)一、选择题(共2小题)1.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足()A.n≤m B.n≤C.n≤D.n≤2.图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?()A.6B.7C.8D.9二、填空题(共3小题)3.不等式组的解集是.4.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.5.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米.三、解答题(共25小题)6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?7.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.48 4.8零售价(元/kg) 5.48.4147.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?8.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的进价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?9.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.10.解不等式组:,并把解集在数轴上表示出来.11.解不等式组,并把它的解集在数轴上表示出来.12.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?13.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?14.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元);130290 (x)累计购物实际花费在甲商场127…在乙商场126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?15.为增强市民的节能意识,我市试行阶段电价,从2013年开始,按照每户的每年的用电量分三个档次计费,具体规定如图,小明统计了自家2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题:(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?16.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?17.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.18.某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,两个月的销售量的比是9:10,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?19.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.20.为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?21.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?22.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?23.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?24.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?26.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?27.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)28.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?29.为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:某居民五月份用电190千瓦时,缴纳电费90元.(1)求x和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.30.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?华师大版七年级(下)中考题单元试卷:第8章一元一次不等式(07)参考答案一、选择题(共2小题)1.B;2.C;二、填空题(共3小题)3.﹣3<x≤2;4.78;5.1.3;三、解答题(共25小题)6.;7.;8.;9.;10.;11.;12.;13.;14.271;0.9x+10;278;0.95x+2.5;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

强化训练华东师大版七年级数学下册第9章多边形综合练习试卷(含答案详解)

强化训练华东师大版七年级数学下册第9章多边形综合练习试卷(含答案详解)

七年级数学下册第9章多边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm2、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为()A.9 B.10 C.11 D.123、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6 B.6或7 C.5或6或7 D.6或7或84、已知三角形的两边长分别为4cm和10cm,则下列长度的四条线段中能作为第三边的是()A.15cm B.6cm C.7cm D.5cm5、七边形的内角和为()A.720°B.900°C.1080°D.1440°∠+∠+∠+∠+∠=()6、如图,12345A.180°B.360°C.270°D.300°7、下列各组数中,不能作为一个三角形三边长的是()A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,98、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为()A.35°B.42°C.45°D.48°9、如图,在ABC∆中,若点D使得BD DC∆的()=,则AD是ABCA.高B.中线C.角平分线D.中垂线10、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.2、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.3、在ABC 中,若50,A B C ∠=︒∠=∠,则B ∠=_______.4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.5、如图,在△ABC 中,CD 平分∠ACB .若∠A =70°,∠B =50°,则∠ADC =_____度.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A 、B 、C 都在格点上,按下列要求画图:(1)连结AC ,画射线BC ,则三角形ABC 的面积是(2)过点C 画直线CD ,使CD ∥AB ;过点C 画AB 的垂线CE ,垂足为F ;(3)线段 的长度是点C 到AB 的距离;(4)直线CD 、CE 的位置关系为________2、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.3、如图,在ABC 中,点D 、E 分别在边AB 、AC 上,BE 与CD 交于点F ,62A ∠=︒,25ACD ∠=︒,53EFC ∠=︒.求BDC ∠和DBE ∠的度数.4、如图所示,在一副三角板ABC 和三角板DEC 中,90ACB CDE ∠=∠=︒,60BAC ∠=︒,∠B =30°,∠DEC =∠DCE =45°.(1)当AB∥DC 时,如图①,DCB ∠的度数为 °;(2)当CD 与CB 重合时,如图②,判断DE 与AC 的位置关系并说明理由;(3)如图③,当DCB ∠= °时,AB∥EC ;(4)当AB∥ED 时,如图④、图⑤,分别求出DCB ∠的度数.5、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1E ∠=∠(已知),∴∠2=∠3(_____④______),∴AD 平分BAC ∠(角平分线的定义).-参考答案- 一、单选题1、C【解析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2、D【解析】【分析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n-2)•180°=1800°,解得n=12.故选:D.本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.3、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.4、C【解析】【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614<<,x故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.5、B【解析】【分析】根据多边形内角和公式即可求解.【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B.【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键.6、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.7、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.8、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.9、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.10、A【解析】【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.二、填空题1、720°##720度【解析】【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.2、五【解析】【分析】根据过多边形的一个顶点的所有对角线,将这个多边形分成(n -2)个三角形,计算可求解.【详解】解:设这是个n 边形,由题意得n -2=3,∴n =5,故答案为:五.【点睛】本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.3、65°##65度【解析】【分析】由三角形的内角和定理,得到180A B C ∠+∠+∠=︒,即可得到答案;【详解】解:在ABC 中,180A B C ∠+∠+∠=︒,∵50,A B C ∠=︒∠=∠,∴502180B ︒+∠=︒,∴65B ∠=︒;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.4、144°##144度【解析】【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4, ∴四个外角的度数分别为:360°×1361234=︒+++; 360°×2721234=︒+++;360°×3108 1234=︒+++;360°×4144 1234=︒+++;∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.5、80【解析】【分析】首先根据三角形的内角和定理求得∠BCA=180°-∠A-∠B=60°,再根据角平分线的概念,得∠ACD=12∠BCA=30°,最后根据三角形ADC的内角和来求∠ADC度数.【详解】解:∵在△ABC中,∠A=70°,∠B=50°,∴∠BCA=180°-∠B-∠C=60°;又∵CD平分∠BCA,∴∠DCA=12∠BCA=30°,∴∠ADC=180°-70°-30°=80°.故答案为:80.【点睛】本题主要考查了三角形的内角和定理以及角平分线的概念.解题的关键是找到已知角与所求角之间的数量关系.三、解答题1、(1)作图见解析,3;(2)作图见解析;(3)CF;(4)垂直. 【解析】【分析】(1)按要求画图,求出三角形面积即可;(2)直接利用网格作图即可;(3)根据点到直线的距离的定义即可判断;(4)直接利用网格得出直线CD、CE的位置关系.【详解】(1)如图:三角形ABC的面积=12332⨯⨯=,故答案为:3;(2)如图:(3)由(2)可知线段CF的长度是点C到AB的距离,故答案为:CF;(4)两直线CD、CE的位置关系为:垂直,故答案为:垂直.【点睛】本题考查复杂作图以及三角形的面积,正确借助网格作图是解题关键.2、这个多边形的边数是6【解析】【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.3、87°,40°【解析】【分析】根据三角形外角的性质可得,BDC A ACD ∠=∠+∠,代入计算即可求出BDC ∠,再根据三角形内角和定理求解即可.【详解】解:∵62A ∠=︒,25ACD ∠=︒,∴622587BDC A ACD =∠+∠=︒+︒=︒∠,∵53EFC DFB ∠=∠=︒,∴18040DBE BDC DFB ∠=︒-∠-∠=︒.【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.4、(1)30;(2)DE ∥AC ,理由见解析;(3)15;(4)图④∠DCB =60°;图⑤∠DCB =120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB ∥EC ,得到∠ECB =∠B =30°,即可得到∠DCB =∠DCE -∠ECB =15°;(4)如图④所示,,设CD 与AB 交于F ,由平行线的性质可得∠BFC =∠EDC =90°,再由三角形内角和定理∠DCB =180°-∠BFC -∠B =60°;如图⑤所示,延长AC 交ED 延长线于G ,由平行线的性质可得∠G =∠A =60°,再由∠ACB =∠CDE =90°,得到∠BCG =∠CDG =90°,即可求出∠DCG =180°-∠G -∠CDG =30°,则∠BCD =∠BCG +∠DCG =120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.5、垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD⊥BC于D,EG⊥BC(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴EG∥AD(同位角相等,两直线平行),∴∠E=∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.。

2022年最新强化训练华东师大版七年级数学下册第8章一元一次不等式专项训练试卷(含答案详解)

2022年最新强化训练华东师大版七年级数学下册第8章一元一次不等式专项训练试卷(含答案详解)

七年级数学下册第8章一元一次不等式专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果不等式组12x x a⎧>-⎪⎨⎪>⎩的解集是12x >-,那么a 的值可能是( ) A .13- B .0 C .﹣0.7 D .12、若a b <,则下列式子中,错误..的是( ) A .22a b < B .22a b -<- C .11a b ->- D .1122a b -<- 3、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A .5B .2C .4D .64、不等式3442(2)x x -+-的最小整数解是( )A .4-B .3C .4D .55、如果有理数a <b ,那么下列各式中,不一定成立的是( )A .4-a >4-bB .2a <2bC .a 2<abD .a -3<b -1.6、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 7、不等式组31x x <⎧⎨≥⎩的解集在数轴上表示正确的是( ) A . B .C .D .8、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <09、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣410、若x +2022>y +2022,则( )A .x +2<y +2B .x -2<y -2C .-2x <-2yD .2x <2y第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、新双文具店所售文具款式新颖、价格实惠,深受学生喜爱.2020年,文具店购进甲、乙、丙、丁四种文具,甲与乙的销量之和等于丁的销量,丙的销量占丁销量的19,四种文具的销量之和不少于2850件,不多于3540件,甲、乙两种文具的进价相同,均为丙与丁的进价之和,四种文具的进价均为正整数且丁文具的进价是偶数,店家购进这四种文具成本一共12012元,且四种文具全部售出;2021年,受疫情影响,文具店不再购进丙文具,每件甲文具进价是去年的85倍,每件乙文具进价较去年上涨了20%,每件丁文具进价是去年的2倍,销量之比为4:3:10,其中甲、乙文具单件利润之比为3:4,最后三种文具的总利润率为60%,则甲、乙、丁单价之和为________元.(每种文具售价均为正整数)2、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 3、中午放学后,有a 个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.4、一般地,一个含有未知数的不等式的所有的解,组成这个______.求不等式的解集的过程叫______.5、关于x 的不等式()250a b x a b -+->的解集是1x <,则关于x 的不等式20ax b ->的解集是___ .三、解答题(5小题,每小题10分,共计50分)1、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用A ,B 两种货车共10辆,一次性将所有物资送到群众手中,已知A 种货车最多可装食品40箱和矿泉水10箱,B 种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,A 种货车每辆需付运费600元,B 种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?2、解不等式:(1)2x+3>6﹣x;(2)524(1)21125x xxx+≥-⎧⎪+⎨->-⎪⎩.3、解不等式(组):(1)3x﹣2<x+10;(2)2(3)831214x xxx-+>⎧⎪⎨+≥-⎪⎩.4、求不等式组()3210143x xx x⎧+>+⎪⎨-≥⎪⎩的整数解.5、解不等式组523(2)4113x xxx+<+⎧⎪+⎨-≤⎪⎩,并写出它的所有非负整数解.-参考答案-一、单选题1、C【解析】【分析】根据不等式组解集的确定方法:大大取大可得12a≤-,再在选项中找出符合条件的数即可.【详解】解:∵不等式组12xx a⎧>-⎪⎨⎪>⎩的解集是12x>-,∴a ≤12-, 而1132->-;102>-;112>-;10.72-<-, 故选:C .【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.2、D【解析】【分析】利用不等式的基本性质逐一判断即可.【详解】解:A. 若a b <,则22a b <正确,故A 不符合题意;B. 若a b <,则22a b -<-正确,故B 不符合题意;C. 若a b <,则a b ->-,11a b ->-正确,故C 不符合题意;D. 若a b <d ,则1122a b ->-,所以D 错误,故D 符合题意,故选:D .【点睛】本题考查不等式的性质,掌握相关知识是解题关键.3、C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.4、C【解析】先求出不等式解集,即可求解.【详解】 解: 3442(2)x x -+-32444,x x解得:4x ≥所以不等式的最小整数解是4.故选:C .【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.5、C【解析】【分析】根据a >b ,应用不等式的基本性质,逐项判断即可.【详解】解:∵a <b ,∴-a >-b ,∴4-a >4-b ,∴选项A 不符合题意;∵a <b ,∴2a <2b ,∴选项B 不符合题意;∴a 2<ab (0a >),或a 2=ab (a =0),20,aab a∴选项C 符合题意;∵a <b ,∴a -3<b -1,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6、C【解析】【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.7、C【解析】【分析】根据不等式组的解集的表示方法即可求解.【详解】解:∵不等式组的解集为31 xx<⎧⎨≥⎩故表示如下:故选:C.【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a <﹣1,∴﹣a >1,故A 选项判断错误,不合题意;∵﹣b <0,∴b >0,b ﹣a >0,故B 正确,符合题意;∵a <﹣1,∴a +1<0,故C 判断错误,不合题意;∵a <﹣b ,∴a +b <0,∴﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.9、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.10、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.二、填空题1、28【解析】【分析】设2020年丙的销量为x件,则丁的销量为9x件,甲与乙的销量之和为9x件,设2020年丙的进价为a元,丁的进价为b元,则甲与乙的进价均为()a b+元,再建立不等式组求解甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,设甲,乙,丁的销售单价分别为m元,n元,h元,再建立方程组可得313,5h n 利用二元一次方程组的正整数求解,,h n 从而可得答案. 【详解】 解:设2020年丙的销量为x 件,则丁的销量为9x 件,甲与乙的销量之和为9x 件,2850993540,x x x解得:6150186,19x 且x 为正整数,则150186,x设2020年丙的进价为a 元,丁的进价为b 元,则甲与乙的进价均为()a b +元,9912012,x a b ax bx596006,ax bx 600659,a b x 而150186,x 6006600659,186150a b 即91325940,3125a b 四种文具的进价均为正整数且丁文具的进价是偶数,335940,a b1,2,a b而1,a = 4b =时,594140,a b 不符合题意,舍去,2,b ∴= 234,5a a 为正整数,则3a =或4,a =当3,2a b ==时,代入596006ax bx 中可得182,x当4,2a b ==时,代入596006ax bx 中可得1158,19x 舍去, 所以甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,所以2021年,甲文具的进价为85=85(元),乙文具的进价为51+20%=6(元), 丁文具的进价唯一22=4⨯(元),甲,乙,丁的销量之比为4:3:10,则设甲,乙,丁的销量分别为4y 件,3y 件,10y 件,∴ 总的进价为:846341090,y y y y总的销售额为:90160%144,y y设甲,乙,丁的销售单价分别为m 元,n 元,h 元,甲、乙文具单件利润之比为3:4,83,64m n 且9,7,m n 4143m n ①,而4310144,m y n y h y y4310144m n h ②,结合①,②可得: 3565,n h 即313,5h n 且221,3n 每种文具售价均为正整数,且9,7,m n10,7n h 此时11,m1520,41n n h h 都不符合题意; 所以:1110728.m n h故答案为:28【点睛】本题考查的是三元一次方程组的应用,二元一次方程的正整数解问题,不等式组的应用,理解题意,设出恰当的未知数,建立方程组寻求各未知量之间的关系是解本题的关键.2、﹣1<a≤0【解析】【分析】先求出不等式组的解集,再根据已知条件得出−1<a≤0即可.【详解】解:921xx a--⎧⎨-≥⎩>①②,解不等式①,得x<5,解不等式②,得x≥a,所以不等式组的解集是a≤x<5,∵关于x的不等式组921xx a->-⎧⎨-≥⎩的整数解共有5个,∴−1<a≤0,故答案为:−1<a≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.3、29【解析】【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:101012 21421420a x ya x y+=⨯⎧⎨+⨯=⨯⎩,∴570x ya y=⎧⎨=⎩,设两个食堂同时一共开放m个配餐窗口,依题意得:15my≥a+2a+15×(x+2x),解得:m≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、不等式的解集解不等式【解析】略5、x<14##x<0.25【解析】【分析】根据不等(2a−b)x+a−5b>0的解集是x<1,可得a与b的关系,根据解不等式的步骤,可得答案.【详解】解;不等式(2a−b)x+a−5b>0的解集是x<1,∴2a−b<0,2a−b=5b−a,a=2b,b<0,2ax−b>04bx−b>04bx>bx<14,故答案为:x<14.【点睛】本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.三、解答题1、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆,方案2:租用A种货车4辆,B种货车6辆,方案3:租用A种货车5辆,B种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【解析】【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有x 箱,矿泉水有y 箱,依题意,得410110x y x y +=⎧⎨-=⎩, 解得260150x y =⎧⎨=⎩, 答:食品有260箱,矿泉水有150箱;(2)设租用A 种货车m 辆,则租用B 种货车(10)m -辆,依题意,得4020(10)2601020(10)150m m m m +-≥⎧⎨+-≥⎩解得:3≤m ≤5,又∵m 为正整数,∴m 可以为3,4,5,∴共有3种运输方案,方案1:租用A 种货车3辆,B 种货车7辆;方案2:租用A 种货车4辆,B 种货车6辆;方案3:租用A 种货车5辆,B 种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.2、(1)x>1;(2)﹣6≤x<2【解析】【分析】(1)把不等式移项,合并同类项,然后系数化1即可;(2)先把不等式组标号,解每个不等式,求每个不等式解集的公共部分即可.【详解】解:(1)2x+3>6﹣x,移项得:2x+x>6﹣3,合并得:3x>3,系数化1得x>1;(2)524(1)21125x xxx+≥-⎧⎪⎨+->-⎪⎩①②,解不等式①得:x≥﹣6,解不等式②得:x<2,不等式组的解集为:﹣6≤x<2.【点睛】本题考查一元一次不等式,与一元一次不等式组的解法,掌握一元一次不等式的解法与步骤,不等式组的解法是解题关键.3、 (1)x<6(2)﹣2<x ≤1【解析】【分析】(1)根据解不等式的步骤:移项,合并同类项,系数化为1进行计算.(2)分别解出不等式的解集,然后找出公共部分.(1)解: 3x ﹣2<x +10,移项得,3x ﹣x <10+2,合并同类项得,2x <12,系数化为1得,x <6. (2)2(3)8?31214x x x x -+>⎧⎪⎨+≥-⎪⎩①②, 解不等式①得,x >﹣2,解不等式②得,x ≤1,所以原不等式的解集为:﹣2<x ≤1.【点睛】本题考查的是解一元一次不等式,以及解一元一次不等式组,正确求出每一个不等式解集是基础,“熟知同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、不等式组的整数解是3,4.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,再确定其整数解.【详解】解:解不等式3(x+2)>x+10,得x>2;解不等式143x x-≥,得x≤4.∴不等式组的解集为2<x≤4,∴不等式组的整数解是3,4.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5、-4≤x<2;0,1【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出非负整数解即可.【详解】解:() 52324113x xxx⎧+<+⎪⎨+-≤⎪⎩①②,由①得:x<2,由②得:x≥-4,∴不等式组的解集为-4≤x<2,则不等式组的非负整数解为0,1.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.。

2022年最新强化训练华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案详解)

2022年最新强化训练华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案详解)

七年级数学下册第7章一次方程组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用哪种方法消元()A.代入消元法B.加减消元法C.代入、加减消元法都可以D.以上都不对2、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是()A.-1 B.1 C.-2 D.23、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩4、用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程()A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=12x+2 D.x﹣2(x﹣2)=05、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是()A.100730010000500x yx y+=⎧⎪⎨+=⎪⎩B.100500300100007x yx y+=⎧⎪⎨+=⎪⎩C.100730010000500x yx y+=⎧⎪⎨+=⎪⎩D.100500300100007x yx y+=⎧⎪⎨+=⎪⎩6、在下列方程中,属于二元一次方程的是()A.x2+y=3 B.2x=y C.xy=2 D.2x+y=z﹣17、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩8、方程组839845x yx y-=⎧⎨+=-⎩消去x得到的方程是()A.y=4 B.y=-14 C.7y=14 D.-7y=149、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为()A.2 B.1 C.﹣1 D.﹣210、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为()A .48B .52C .58D .64第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x ,y 的方程258m n m n x y +-++=是二元一次方程,则mn 的值是__________.2、加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.加减消元法的条件:同一未知数的系数_______或_______.3、求方程组22y x x y =-⎧⎨+=⎩①②的解 把方程组①代入②,得:____________,得出x =2,将x =2代入②得出:y =____________,所以方程组的解为:____________4、一元一次方程的一般形式为:______(a ,b 为常数,a ≠0);一元一次不等式的一般形式为:______或______(a ,b 为常数,a ≠0);二元一次方程的一般形式为:______(a ,b ,c 为常数,a ≠0,b ≠0)5、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.三、解答题(5小题,每小题10分,共计50分)1、小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m ,2.5m 且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的,现钢材市场的这种规格的钢管每根为6m .(1)试问一根6m 长的圆钢管有哪些剪裁方法呢,请填写下空(余料作废).方法①:当只裁剪长为0.8m 的用料时,最多可剪_______根.方法②:当先剪下1根2.5m 时,余下部分最多能剪_______根0.8m 长.方法③:当先剪下2根2.5m 时,余下部分最多能剪________根0.8m 长.(2)分别用(1)中的方法②和方法③各裁剪多少根6m 长的钢管,才能刚好得到所需要的相应数量的材料.2、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?3、解方程组:(1)33?15?x y x y -=⎧⎨+=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩. 4、列方程组解应用题:全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?5、解下列三元一次方程组:2325213z y x x y z x y z =+⎧⎪-+=⎨⎪++=⎩①②③-参考答案-一、单选题1、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.【详解】解:325223x yx y-=⎧⎨+=⎩①②,①+②,得58x=,消去了未知数y,即二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用加减法消元,故选:B.【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.2、A【解析】【分析】根据题意把x=3,y=-2代入方程2x+my=8,可得关于m的一元一次方程,解方程即可求出m的值.【详解】解:把x=3,y=-2代入方程2x+my=8,可得:628m-=,解得:1m=-.故选:A.【点睛】本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3、A【解析】【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x 尺,竿长y 尺,则5152x y x y =+⎧⎪⎨=-⎪⎩ 故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.4、B【解析】【分析】把x ﹣2y =0中的x 换成(y +2)即可.【详解】解:用代入消元法解二元一次方程组220x y x y =+⎧⎨-=⎩①②,将①代入②消去x ,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.5、B【解析】【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+5007y=10000.联立两方程组成方程组得:100500 300100007x yx y+=⎧⎪⎨+=⎪⎩.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6、B【解析】【分析】直接利用二元一次方程的定义求解即可;【详解】解:A、该方程中未知数的最高次数是2,不属于二元一次方程,故不符合题意.B、该方程符合二元一次方程的定义,故符合题意.C、该方程含有未知数的项最高次数是2,不属于二元一次方程,故不符合题意.D、该方程中含有3个未知数,不属于二元一次方程,故不符合题意.故选:B.【点睛】本题主要考查二元一次方程的定义,含有两个未知数,且未知数的最高次数都是一次的整式方程是二元一次方程.熟练掌握二元一次方程的概念是解题的关键.7、B【解析】【分析】设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的23=50,据此列方程组可得.【详解】解:设甲持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.8、D【解析】【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】解:839 845x yx y-=⎧⎨+=-⎩①②①-②得:-7y=14.故答案为:-7y=14,故选:D.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.9、A【解析】【分析】把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.【详解】∵x=2,y=﹣1是方程ax+y=3的一组解,∴2a-1=3,解得a=2,故选A .【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.10、B【解析】【分析】设小长方形的宽为a ,长为b ,根据图形列出二元一次方程组求出a 、b 的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为a ,长为b ,由图可得:31626a b b a +=⎧⎨-=⎩①②, ①-②得:2a =,把2a =代入①得:10b =,∴大长方形的宽为:3632612a +=⨯+=,∴大长方形的面积为:1612192⨯=,7个小长方形的面积为:77210140ab =⨯⨯=,∴阴影部分的面积为:19214052-=.故选:B .【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出a 、b 的等量关系式是解题的关键.二、填空题【解析】【分析】根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.【详解】解:∵关于x ,y 的方程258m n m n x y +-++=是二元一次方程,∴121m n m n +=⎧⎨-+=⎩, 解得01m n =⎧⎨=⎩, ∴mn =0,故答案为:0.【点睛】本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.2、 加减消元法 加减法 相等 互为相反数【解析】略3、 x +x -2=2 0 20x y =⎧⎨=⎩【解析】略4、 ax +b =0 ax +b ≥0 ax +b ≤0 ax +by +c =0【解析】5、58【解析】【分析】设原来的两位数的十位数字为x ,个位数字为y ,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(10x +y )中即可求出结论.【详解】解:设原来的两位数的十位数字为x ,个位数字为y ,依题意得:()13101027x y y x x y +=⎧⎨+-+=⎩, 解得:58x y =⎧⎨=⎩, ∴10x +y =58.故答案为:58.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题1、(1)7,4,1(2)用方法②剪24根,方法③裁剪4根6m 长的钢管.【解析】【分析】(1)由总数÷每份数=份数就可以直接得出结论;(2)设用方法②剪x 根,方法③裁剪y 根6m 长的钢管,就有x +2y =32,4x +y =100,由此构成方程组求出其解即可.【详解】解:(1)①6÷0.8=7…0.4,因此当只裁剪长为0.8m的用料时,最多可剪7根;②(6-2.5)÷0.8=4…0.3,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根;③(6-2.5×2)÷0.8=1…0.2,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料1根;故答案为:7,4,1.(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得232 4100x yx y,解得:244xy.答:用方法②剪24根,方法③裁剪4根6m长的钢管;【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2、上坡路2.25千米、平路0.8千米、下坡路0.25千米【解析】【分析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:从家到学校的路程为3.3千米;去时上坡时间+下坡时间+平路时间=1小时;回时上坡时间+下坡时间+平路时间=44分,据此可列方程组求解.【详解】解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:3.313454434560x y z x y z z y x ⎧⎪++=⎪⎪++=⎨⎪⎪++⎪⎩=, 解得 2.250.80.25x y z =⎧⎪=⎨⎪=⎩.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.【点睛】本题考查了三元一次方程组的应用,本题有三个未知量,还需注意去时是上坡路回时是下坡路,回来时恰好相反,平路不变.3、 (1)123x y =⎧⎨=⎩(2)21x y =⎧⎨=-⎩【解析】【分析】(1)②﹣①得出4y =12,求出y ,再把y =3代入②求出x 即可;(2)整理后①+②得出6x =12,求出x ,再把x =2代入①求出y 即可.(1)3315x y x y -=⎧⎨+=⎩①②, ②﹣①,得4y =12,解得:y =3,把y =3代入②,得x +3=15,解得:x =12,所以方程组的解是123x y =⎧⎨=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩, 原方程组化为:324328x y x y +=⎧⎨-=⎩①②, ①+②,得6x =12,解得:x =2,把x =2代入①,得6+2y =4,解得:y =﹣1,所以方程组的解是21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.4、全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒【解析】【分析】设全自动红外体温检测仪的平均测温用时为x 秒,人工测量的平均测温用时为y 秒,根据“全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒”列出方程组,解方程求组解即可【详解】解:设全自动红外体温检测仪的平均测温用时为x 秒,则人工测量的平均测温用时为y 秒,则 6050402x y x y +=⎧⎨+=⎩解得 1.53.5x y =⎧⎨=⎩答:全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒.【点睛】本题考查了二元一次方程组的应用,根据题意列出等量关系是解题的关键.5、235x y z =⎧⎪=⎨⎪=⎩【解析】【详解】将①代入②、③,消去z ,得4525313x y x y -=⎧⎨+=⎩ 解得23x y =⎧⎨=⎩ 把x =2,y =3代入①,得z =5。

2022年强化训练华东师大版七年级数学下册第9章多边形综合练习试题(含答案及详细解析)

2022年强化训练华东师大版七年级数学下册第9章多边形综合练习试题(含答案及详细解析)

七年级数学下册第9章多边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°2、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,93、若一个多边形的内角和为720°,则该多边形为( )边形A .四B .五C .六D .七4、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A.30°B.40°C.50°D.60°5、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13∠+∠+∠+∠+∠+∠=()度.6、如图,123456A.180 B.270 C.360 D.5407、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°8、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE=,CD的长为5,则ABC的面积为()A .8B .10C .20D .409、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG10、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______.2、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.3、如图,从A 处观测C 处的仰角是36∠=︒CAD ,从B 处观测C 处的仰角74CBD ∠=︒,则从C 处观测A ,B 两处的视角BCA ∠的度数是__________.4、若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.5、如图,在△ABC 中,点D ,E ,F 分别是BC ,AD ,EC 的中点,若△ABC 的面积等于36,则△BEF 的面积为________.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在一副三角板ABC 和三角板DEC 中,90ACB CDE ∠=∠=︒,60BAC ∠=︒,∠B =30°,∠DEC =∠DCE =45°.(1)当AB∥DC时,如图①,DCB∠的度数为°;(2)当CD与CB重合时,如图②,判断DE与AC的位置关系并说明理由;(3)如图③,当DCB∠=°时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出DCB∠的度数.2、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE =∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.3、如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?4、已知:如图,AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于点E ,DF ∥AB ,DF 交AC 于点F .求证:DA 平分∠EDF .5、证明:n 边形的内角和为(n -2)·180°(n ≥3).-参考答案-一、单选题1、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE∥AF,∴∠CAF=∠CED=45°,∵∠BAC=60°,∴∠BAF=60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.3、C【解析】【分析】根据多边形的内角和,可得答案.【详解】解:设多边形为n边形,由题意,得n-︒=︒,(2)180720n=,解得6故选:C.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和.4、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.5、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.6、C【解析】【分析】∠=∠+∠∠=∠+∠,再由四边形的内角和等于360°,即可求根据三角形外角的性质,可得946,1015解.【详解】解:如图,根据题意得:946,1015∠=∠+∠∠=∠+∠ ,∵23910360∠+∠+∠+∠=︒ ,∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.7、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.8、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.9、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.10、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.二、填空题1、19.2【解析】【分析】+>,当点P与点点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得PM PN MNB或点C重合时,P、M、N三点共线,MN最长,由轴对称可得BF AC=,再由三角形等面⊥,BF FN积法即可确定MN长度.【详解】解:如图所示:点P 关于直线AB 、AC 的对称点分别为M 、N ,由图可得:PM PN MN +>,当点P 与点B 或点C 重合时,如图所示,MN 交AC 于点F ,此时P 、M 、N 三点共线,MN 最长,∴BF AC ⊥,BF FN =,∵等腰ABC 面积为48,10AB AC ==, ∴1·482AC BF =,9.6BF =,∴219.2MN BF ==,故答案为:19.2.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.2、144°##144度【解析】【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×136 1234=︒+++;360°×272 1234=︒+++;360°×3108 1234=︒+++;360°×4144 1234=︒+++;∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.3、38︒【解析】【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得36∠=︒CAD ,74CBD ∠=︒,∴743638BCA DBC CAD ∠=∠-∠=︒-︒=︒,故答案为:38︒【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.4、8【解析】【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n 边形的每个内角都等于135°,∴则这个n 边形的每个外角等于18013545︒-︒=︒360458÷=∴该n 边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.5、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点D ,E ,F 分别是BC ,AD ,EC 的中点,∴AE =DE =12AD ,EF =CF =12CE ,BD =DC =12BC ,∵△ABC 的面积等于36, ∴11361822ABD ACD ABC S S S ===⨯=, 192ABE BED ABD S S S ===,192AEC CDE ACD S S S ===, ∴9918BEC BDE CDE S S S =+=+=,∴1118922BEF BCF BEC S S S ===⨯=, 故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..三、解答题1、(1)30;(2)DE ∥AC ,理由见解析;(3)15;(4)图④∠DCB =60°;图⑤∠DCB =120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB ∥EC ,得到∠ECB =∠B =30°,即可得到∠DCB =∠DCE -∠ECB =15°;(4)如图④所示,,设CD 与AB 交于F ,由平行线的性质可得∠BFC =∠EDC =90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.2、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【解析】【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系3、三条,分成的三角形分别是:△ABC、△ACD、△ADE、△AEF【解析】【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.【详解】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【点睛】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.4、见解析【解析】【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE ∥AC ,∴∠ADE =∠DAF ,∵DF ∥AB ,∴∠ADF =∠DAE ,又∵AD 是△ABC 的角平分线,∴∠DAE =∠DAF ,∴∠ADE =∠ADF .∴ DA 平分∠EDF .【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.5、见解析【解析】【分析】在n 边形内任取一点O ,连接O 与各顶点的线段把n 边形分成了n 个三角形,然后利用n 个三角形的面积减去以O 为公共顶点的n 个角的和,即可求证.【详解】已知: n 边形A 1A 2……An ,求证:()21123112180n n n A A A A A A A A A n -∠+∠++∠=-⋅︒ ,证明:如图,在n 边形内任取一点O ,连接O 与各顶点的线段把n 边形分成了n 个三角形,∵n 个三角形内角和为n ·180°,以O 为公共顶点的n 个角的和360°(即一个周角),∴n 边形内角和为()18036018021802180n n n ⋅︒-︒=⋅︒-⨯︒=-⋅︒ .【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n 边形的内角和等于n 个三角形的面积减去以O 为公共顶点的n 个角的和是解题的关键.。

(华师大版)初中数学七年级下册 第8章综合测试试卷02及答案

(华师大版)初中数学七年级下册 第8章综合测试试卷02及答案

第8章综合测试第Ⅰ卷 选择题一、选择题(每题3分,共30分)1.下列方程或不等式的解法正确是( )A .由5x -=,得5x =-B .由5x ->,得5x ->C .由24x ->,得2x -<D .由132x -≤,得6x -≤2.把不等式324x ->的解集在数轴上表示正确的是( )A .B .C .D .3.若a b <,则下列不等式中正确的是( )A .ma mb<B .0ab >C .11a b --<D .33a b--<4.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本,售价至少定为每千克多少元?设售价为每千克x 元,则根据题意所列不等式正确的是()A .10015%1140x -()≥B .10015%1140x -()>C .10015%1140x -()<D .10015%1140x -()≤5.一个不等式组的两个不等式解集如图,则该不等式组是()A .23x x ìí-î≥>B .23x x ìí-î≤<C .23x x ìí-î≥<D .23x x ìí-î≤>6.关于x 的不等式0mx n ->的解集是15x <,则关于x 的不等式m n x n m +-()>的解集是()A .23x ->B .23x -<C .23x <D .23x >7.不等式组321123x x x a --ì-ïíï-î≤<恰有整数解3个,则a 的取值范围是( )A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤8.已知关于x 的方程315315m x m x x ++=--()()的解是负数,那么实数m 的取值范围是( )A .54m ->B .54m -<C .54m >D .54m <9.如图是测量一物体体积的过程:步骤一:将180mL 的水装进一个容量是300mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一个范围内?( )A .310 cm 以上,320 cm 以下B .320 cm 以上,330 cm 以下C .330 cm 以上,340 cm 以下D .340 cm 以上,350 cm 以下10.若关于x 的一元一次不等式组02443x mx x -ìïïí-ï--ïî<的解集是4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=ìí+=î的解为整数,则符合条件的所有整数m 的和为()A .2-B .2C .6D .10第Ⅱ卷 非选择题二、填空题(每题3分,共15分)11.不等式组1134x x -ìí+î≤>的解集为________.12.在某次排球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣1分.某队预计在赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则该队至少要胜________场才有希望进入季后赛.13.关于x 的不等式组21x a x m -ìíî<>解集是11x -<<,则11a m +-=()()________.14.已知有理数x 满足31752233x xx -+--,若32x x --+的最大值为a ,最小值为b ,则ab =________.15.定义运算a b Ä:当a b ≥时,a b a Ä=;当a b <时,a b b Ä=.如果222x x x +Ä=+(),那么x 的取值范围是________.三、解答题(共75分)16.(8分)解不等式3264113x x x x --ìï+í-ïî()≤<,并将解集在数轴上表示.17.(8分)若关于x y 、的二元一次方程组23224x y m x y +=-+ìí+=î的解满足502x y -+<≤,求出满足条件的m的所有整数的和.18.(8分)阅读下面的材料,根据要求解答问题:求不等式2130x x -+()()>的解集.解:根据“同号得正,异号得负”可得①21030x x -ìí+î>>或②21030x x -ìí+î<<,解不等式组①得12x >,解不等式组②得3x -<,\不等式2130x x -+()()>的解集是12x >或3x -<.请你仿照上述方法解决下列问题:求不等式2130x x -+()()<的解集.19.(8分)已知关于x y 、的方程组225x y x y a-=ìí+=î的解满足1123x y -<,求实数a 的取值范围.20.(9分)某商场准备销售A 、B 两种商品.售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 商品和5件B 商品所的利润为1 100元.(1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?(2)由于需求量大,A 、B 两种商品很快售完.商场准备再次购进A 、B 两种商品共34件,如果将这34件商品全部售完所得利润不低于4 000元,那么商场至少购进多少件A 种商品?21.(11分)已知:方程组713x y ax y a +=--ìí-=+î的解x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简32a a -++;(3)在a 的取值范围中,求当a 为何整数时,不等式221ax x a ++>的解为1x <.22.(11分)规定:[]m 为不大于m 的最大整数;(1)填空:[]3.2=________,[]4.8-=________.(2)已知动点C 在数轴上表示数a ,且[]24a -≤≤,则求a 的取值范围;(3)求方程[]4350x x -+=的整数解.23.(12分)某风景区票价如下表所示:人数/人1~4041~8080以上价格/元/人150130120有甲乙两个旅游团共计100人,计划到该景点游玩.已知乙队多于甲队人数的14,但不超过甲队人数的23,且甲乙两队分别购票共需13 600元.(1)试通过计算判断,甲乙两队购票的单价分别是多少元?(2)求甲乙两队分别有多少人?(3)暑假将至,该风景区计划对门票做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a 元;人数超过80人时,每张门票降价2a 元,其中0a >.若甲乙两队联合购票比分别购票最多可节约2 250元,直接写出a 的取值范围.第8章综合测试答案解析一、1.【答案】A【解析】由5x ->,得5x -<,故B 错误;由24x ->,得,故C 错误;由132x -≤,得6x -≥,故D 错误.2.【答案】B【解析】由324x ->得2x >,根据数轴表示不等式的解集即可.故选B.【考点】解一元一次不等式和在数轴上表示不等式的解集3.【答案】C【解析】由不等式的性质可知11a b --<正确.故选C.【考点】不等式的基本性质.4.【答案】A【解析】由题意得10015%1140x -()≥,故选A.【考点】一元一次不等式的应用.5.【答案】D【解析】由数轴可得,这个不等式组的解集分别为23x x ìí-î≤>故选D.【考点】在数轴上表示不等式组的解集.“大大小小中间找”.6.【答案】B【解析】关于x 的不等式0mx n ->的解集是15x <,则0m <,0n <,5m n=55n n x n n \+-()>,即64nx n ->,23x \-<,故选B.【考点】带参数的一元一次不等式7.【答案】A【解析】解不等式组得1x a -≤<,而整数解只能是:101-,,.所以12a <≤.故选A.【考点】一元一次不等式组的整数解,先求出解集,再确定临界值.8.【答案】A【解析】方程变形得451m x +=-(),即145x m -=+,因为方程的解是负数,所以450m +>,解得54m ->,故选A.9.【答案】C【解析】设玻璃球的体积为x ,则33001804300180x x -ìí-î<>,解得3040x <<.故选C.【考点】一元一次不等式组的应用10.【答案】B【解析】解不等式02x m ->得x m >,解不等式443x x ---<得4x >,所以4m ≤.由831mx y x y +=ìí+=î解得732113x m y m ì=ïï-íï=-ï-î,x y Q 、都是整数,3m -是21的因数,31177m \-=--,,,,即42104m =-,,,,\符合条件的m 为424-,,,则4242++-=(),故选B.【考点】带参数的一元一次不等式组和二元一次方程组11.【答案】12x <≤【解析】解不等式组1134x x -ìí+î≤>得21x x ìíî≤>,即12x <≤.【考点】解一元一次不等式.12.【答案】20【解析】设胜的场次为x ,则负的场次为32x -,则313248x x +--()()≥,得20x ≥.【考点】一元一次不等式的应用.13.【答案】4-【解析】解不等式组得12a x x m +ìïíïî<>,则由题意得1121a m +ì=ïíï=-î,所以112114a m +-=´--=-()()().【考点】解一元一次不等式组14.【答案】5【解析】解不等式得1x ≥,则分类讨论,当13x ≤<时,323212x x x x x --+=---=-,此时最大值为1-,最小值是5-,当3x ≥时,32325x x x x --+=---=-,总之,15a b =-=-,,所以5ab =.【考点】解一元一次不等式15.【答案】2x ≤【解析】由题意得22x x +≥,解得2x ≤.【考点】解一元一次不等式组三、16.【答案】3264113x x x x ì--ïí+-ïî()≤①<②,解①得2x ≤,解②得4x ->,所以,不等式组的解集为42x -<≤.用数轴表示为:【考点】解不等式组和解集的数轴表示.17.【答案】解:23224x y m x y +=-+ìí+=î①②,由①+②得336x y m +=-+(),即2x y m +=-+,又502x y -+<≤,5202m \--+<≤,解得922m ≤<,234m \=,,,所以,满足条件的m的所有整数的和为9.【考点】解一元一次不等式组.18.【答案】根据“同号得正,异号得负”可得①23010x x -ìí+î><或②23010x x -ìí+î<>,解不等式组①,无解,解不等式组②得312x -<<,\不等式2310x x -+()()<的解集是312x -<<.【考点】不等式的求解19.【答案】解:关于x y 、的方程组225x y x y a -=ìí+=î得253543a x a y +ì=ïïí-ï=ïî,1123x y -Q <,所以,2554112333a a +--´´<,解得115a >,所以,实数a 的取值范围是115a >.【考点】解二元一次方程组和不等式的解集.20.【答案】解:(1)设A 种商品售出后所得利润x 元,B 种商品售出后所得利润y 元.则4600351100x y x y +=ìí+=î,解得200100x y =ìí=î答:A 种商品售出后所得利润200元,B 种商品售出后所得利润100元.(2)设购进A 种商品a 件,购进B 种商品y 件,则200100344000a a +-()≥,解得6a ≥答:商场至少需购进6件商品.【考点】二元一次方程组的实际应用和一元一次不等式的实际应用21.【答案】(1)由713x y a x y a +=--ìí-=+î解得324x a y a =-ìí=--î,x Q 为非正数,y 为负数,30240a a -ì\í--î≤<,解得:23a -<≤(2)23a -Q <≤,32325a a a a \-++=-+++=(3)221ax x a ++>得2121a x a ++()>,Q 不等式的解集为1x <,210a \+<,∴12a \-<,122a \--<<,1a \=-【考点】解方程组和解不等式组的应用.22.【答案】解:(1)根据定义可得[]3.23=,[]4.85-=-;(2)[]24a -Q ≤≤,[]a 为不大于a 的最大整数,则25a -≤<;(3)整理得[]453x x +=,即4513x x x +-<≤,解得85x --<≤,又[]453x x +=是整数,则设453x n +=(其中n 是整数),即354n x -=,35854n -\--<≤解得95n --<≤,n Q 是整数,8765n \=----,,,,当5n =-时,方程的整数解是5x =-.【考点】一元一次不等式组的应用.23.【答案】解:(1)设甲队人数有x 人,乙队人数为100x -()人.则1100421003x x x xì-ïïíï-ïî>≤,解得6080x ≤<,\乙队不超过40人.答:甲队购票的单价为130元/人,乙队购票的单价为150元/人.(2)根据题意得13015010013600x x +-=(),解得70x =,1007030\-=(人)答:甲乙两队分别有70人和30人.(3)根据题意得150307013010012022250a a ´+---()()≤,解得5a ≤,又0a >,所以,05a <≤【考点】一元一次方程和一元一次不等式组的实际应用.。

华师大七年级下周末强化训练试题(8)

华师大七年级下周末强化训练试题(8)

周末强化训练试题(8)一、选择题(每题3分,共24分)1、 不等式组 ⎩⎨⎧≥-<-0302x x 的整数解有 ( )A 、 1个B 、2个C 、3个D 、4个2、 如果m 2、m 、m -1这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( )A 、0>mB 、 21>mC 、0<mD 、210<<m 3、 要使代数式1-x 与2-x 的符号相同,那么x 的取值范围是 ( )A 、2<xB 、1<xC 、1<x 或2>xD 、 21<<x4、若0<a ,则不等式组⎩⎨⎧>>ax a x 32 的解集是 ( )A 、2a x >B 、3a x >C 、2a x -> D、3a x ->5、已知23+=x a ,32+=x b ,且b a >>2,那么x 的取值范围是 ( )A 、1>xB 、4<xC 、41<<xD 、1>x 或4<x的解集是1<x ,则 ( )6、若不等式组 A 、1<a B 、1>a C 、1=a D 、1≥a7. 如果11+=+x x ,2323--=+x x ,那么x 的取值范围是 ( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x8、若不等式02<-m x 的正整数解是1,2,3,那么m 的取值范围是 ( )A 、86<≤mB 、86≤<mC 、8<mD 、6≥m二、填空题(每题3分,共24 分)9、已知23=+y x ,23-≤≤-x ,则y 的取值范围是10、同时满足不等式221->-x 和x x≥--311的自然数x 的值为 9514xx a-⎧>⎪⎨⎪<⎩11、不等式22133<-<-x 的整数解为12、不等式组⎩⎨⎧+<->21b x a x 的解集为42<<x ,则a=,b= .13、若不等式组⎩⎨⎧->-+≥-a x a x 212113无解,则a 的取值范围是 .14、已知不等式组⎩⎨⎧<->-10a x a x 的解集中任意一个x 的值均不在52≤≤x 的范围内,则a 的取值范围是15、如果方程x m x +=+527的解在-1和1之间,则m 的取值范围是________16、有43本书,每人平均分8本有剩余,每人再多分一本又不够,那么人数为________ . 三、解下列不等式组(每题5分,共10分)17、⎪⎩⎪⎨⎧<-+≤+321)2(352x x x x 18;⎪⎩⎪⎨⎧<+-+--≤-121331)3(410)8(2x x x x四、解答下列各题(第19—22题每题8分,第23题10分,共42分)19、已知a 是非零整数,且⎩⎨⎧+>-+>+aa a a 12512)1(4, 20、已知方程组⎩⎨⎧-=-+=+133a y x a y x 的解是 一对正数. 求代数式200522++a a 的值. 求:(1)a 的取值范围;(2)化简212--+a a21、先阅读理解下面的例题,再完成(1)(2)题.例 : 解不等式0)12)(23(>+-x x解 : 根据有理数的乘法法则(同号得正),可得①⎩⎨⎧>+>-012023x x 或②⎩⎨⎧<+<-012023x x 解不等式组①,得32>x ;解不等式组②,得21-<x ∴不等式0)12)(23(>+-x x 的解集是23x >或12x <- (1)解不等式0)13)(12(>+-x x (2)解不等式0321>-+x x22、某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,如果每个小组每天比原先多生产一件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数)23、某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.若2元的奖品购买a 件.(1) 用含a 的代数式表示另外两种奖品的件数;(2) 请你设计购买方案,并说明理由.【同步测试20】 1、 C 2、 C 3、 C 4、 B 5、 C 6、 D 7、 A 8、 B 9、 8≤y ≤1110、 x=0,1 11、 x= -1,0,1 12、 a=3,b=2 13、 a ≤-51 14、 a 51≥≤a 或 15、 -21121<<m 16、 5 17、 -13<≤x 18、 –1<x ≤319 19、 2008 20、 (1) -221<<a ; (2) 3a-1 21、 (1)x>3121-<x 或; (2) x>123-<x 或 22、 16件 23、(1)4元的件数为5543a -件,10元的件数为73a -件.(2)方案一:2元10件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.。

2022年强化训练华东师大版七年级数学下册第9章多边形同步训练试卷(精选含答案)

2022年强化训练华东师大版七年级数学下册第9章多边形同步训练试卷(精选含答案)

七年级数学下册第9章多边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条2、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、63、下列图形中,内角和等于外角和的是()A.B.C.D.4、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 115、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF 上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有()A .2个B .3个C .4个D .5个6、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则α∠的度数是( )A .45°B .60°C .75°D .85°7、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°8、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A .80°B .90°C .100°D .120°9、下列多边形中,内角和与外角和相等的是( )A .B .C .D .10、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段AF AE ⊥,垂足为点A ,线段GD 分别交AF 、AE 于点C ,B ,连结GF ,ED .则D G AFG AED ∠∠∠∠+++的度数为______.2、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.3、已知一个多边形的内角和比外角和多180°,则它的边数为______.4、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.5、如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,完成下面的证明:∵MG平分∠BMN,∴∠GMN=1∠BMN(),2∠DNM.同理∠GNM=12∵AB∥CD∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________,∴∠G=________.2、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.3、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.4、如图,Rt△ABC中,90∠=︒,D、E分别是AB、AC上的点,且12C∠=∠.求证:ED⊥AB5、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.-参考答案-一、单选题1、A【解析】【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.2、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.3、B【解析】【分析】设n边形的内角和等于外角和,计算(n-2)×180°=360°即可得出答案;【详解】解:设n边形的内角和等于外角和(n-2)×180°=360°解得:n=4故答案选:B【点睛】本题考查了多边形内角和与外角和,熟练掌握多边形内角和计算公式是解题的关键.4、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.5、C【解析】【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=12×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.【详解】解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=12∠AEA′+12∠B′EB=12×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.故选:C.【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.6、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.7、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.8、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.9、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.10、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A .【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.二、填空题1、270°【解析】【分析】由题意易得90ACB ABC ∠+∠=︒,然后根据三角形内角和定理可进行求解.【详解】解:∵AF AE ⊥,∴90A ∠=︒,∴90ACB ABC ∠+∠=︒,∵180,180D DBE AED ABC ACB A ∠∠∠∠∠++=︒++∠=︒,且ABC DBE ∠=∠,∴D AED ACB A ∠∠∠+=+∠,同理可得:G AFG ABC A ∠∠∠+=+∠,∴2270D G AFG AED A ABC ACB ∠∠∠∠+++=∠+∠+∠=︒,故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.2、9【解析】【分析】设正多边形的外角为x 度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x 度,则内角为(5x −60)度由题意得:560180x x +-=解得:40x =则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.3、5【解析】【分析】设边数为n ,由题意知多边形的内角和为540︒,用边数表示为()2180540n -⨯︒=︒计算求解即可.【详解】解:设边数为n∵多边形的外角和为360︒∴多边形的内角和为360180540︒+︒=︒∴()2180540n -⨯︒=︒解得5n =故答案为:5.【点睛】本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.4、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.5、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.三、解答题1、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°【解析】【分析】根据角平分线的定义,可得∠GMN=12∠BMN,∠GNM=12∠DNM.再由AB∥CD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.【详解】证明:∵MG平分∠BMN,∴∠GMN=12∠BMN(角分线的定义),同理∠GNM=12∠DNM.∵AB∥CD,∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).∴∠GMN+∠GNM=90°.∵∠GMN +∠GNM +∠G =180°,∴∠G =90°.【点睛】本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.2、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解40,ACB ∠=︒ 再利用三角形的高的含义求解50,CAD 再结合角平分线的定义求解25,CAE 再利用三角形的内角和定理可得答案.【详解】 解: ∠BAC =80°,∠B =60°,180806040,ACBAD ⊥BC ,90,904050,ADC CADAE 平分∠DAC , 125,2CAE DAC 1802540115.AEC 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.3、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.4、见解析【解析】【分析】根据三角形内角和定理可得90ADE C ∠=∠=︒,从而可得结论.【详解】解:在ABC ∆中,2180A C ∠+∠+∠=︒,在ADE ∆中,1180A ADE ∠+∠+∠=︒∵,12A A ∠=∠∠=∠∴90ADE C ∠=∠=︒∴ED ⊥AB【点睛】本题主要考查了垂直的判定,证明90ADE C ∠=∠=︒是解答本题的关键.5、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABCS AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.。

华师版七年级数学下第八周周考试题

华师版七年级数学下第八周周考试题

初2021届七年级下第八周数学周考试题考试范围:第六章,第七章; 命题人: 考试时间:40分钟; 满分:100分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(每小题3分,共12小题,共36分)1.下列各式中是二元一次方程的是( )A .3x 2−2y =9B .2x +y =6C .1x +2=3yD .x −3=4y 22.下列变形正确的是( )A .4x -5=3x +2变形得4x -3x =-2+5B .23x -1=12x+3变形得4x -6=3x +18C .3(x -1)=2(x +3)变形得3x -1=2x +6D .6x =2变形得x =33.若{x =2y =−1是二元一次方程组的解,则这个方程组是( ) A .{x −3y =52x +y =5 B .{x =2y x =3y +1 C .{y =x −3y −2x =5 D .{2x −y =5x +y =14.如果x =y ,那么下列等式不一定成立的是( )A .x -5=y -5B .−x 3=−y 3C .x a+3=y a+3D .x a 2+1=ya 2+15.关于x 的方程kx =2x +6与2x −1=3的解相同,则k 的值为( )A .3B .4C .5D .66.若关于x ,y 的二元一次方程组{x +y =5k x −y =9k的解也是二元一次方程2x +3y=6的解,则k 的值为( ). A .−34 B .34 C .43 D . −437.方程ax −4y =x −1是关于x 、y 的二元一次方程,则a 的取值范围为( )A .a ≠0B .a ≠4C .a ≠1D .a ≠−1 8.已知式子−3x m+1y 3与52x n y m+n 是同类项,则m 、n 的值分别是( )A .{m =2n =−1B .{m =−2n =−1C .{m =2n =1D .{m =1n =29.若{x =2y =5是方程kx ﹣2y =2的一个解,则k 等于( ) A .85 B .53 C .6 D .﹣8310.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .411.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需( )A .105元B .95元C .85 元D .88元12.如果关于x 、y 的二元一次方程组{a 1x +b 1y =−2a 2x −b 2y =4 的解为{x =1y =2 ,则方程组{a 1x +b 1y =−2+a 1a 2x −b 2y =4+a 2的解为( )A .{x =2y =3B .{x =1y =3C .{x =2y =2D .{x =1y =2二、填空题(每小题4分,共6小题,共24分)13.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y =_____.14.已知方程(a −3)x |a−2|+3y =1是关于x 、y 二元一次方程,则a =________.15.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年_____岁.16.已知关于x ,y 的二元一次方程组{x +2y =m 2x +y =4的解满足x ﹣y =3,则m 的值为______ 17.定义一种运算“※”,规定x※y=ax-by ,其中a 、b 为常数,且2※3=6,3※2=8,则a+b 的值是_____.18.已知关于x ,y 的二元一次方程3x −4y +mx +2m +8=0,若无论m 取任何实数,该二元一次方程都有一个相同的解,则这个相同的解为_______.三、解答题(共3小题,共40分)19.(本题6分)解方程:0.2−0.3x 0.1+0.05x−0.070.02=120.(本题12分)解下列方程组(1){2x −3y =−44x +y =6 (2){x:y =3:55x −2y =−121.(本题10分)为净化空气,美化环境,我市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗甫负责种活以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?22.(本题12分)小丽妈妈在网上做淘宝生意,专门销售女式布鞋,一次,小丽发现一个进货单上的一个信息是:A款鞋的进价比B款鞋进价多20元,花500元进A款鞋的数量和花400元进B款鞋的数量相同.(1)问A、B款鞋的进价分别是多少元?(2)小丽在销售单上记录了两天的数据如下表:请问两种鞋的销售价分别是多少?附加题(以下三题不计入总分,供学有余力的同学选用)23.某机械厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少名工人生产螺母,恰好能是每天生产出来的产品配成一套?24.已知关于x,y的方程(m2-4)x2+(m+2)x+(m+1)y=m+5.(1)当m为何值时,它是一元一次方程?(2)当m为何值时.它是二元一次方程?25.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?。

华师大版数学七年级下册第8章—元—次不等式 达标测试卷

华师大版数学七年级下册第8章—元—次不等式 达标测试卷

第8章—元—次不等式 达标测试卷一、选择题(本大题共8小题,每小题3分,共24分)1.给出下列数学表达式:①-3<0;②4x +3y >0;③x =5;④x 2-xy +y 2;⑤x +2>y -7.其中不等式的个数是( )A .5个B .4个C .3个D .2个2.a 、b 都是实数,且a <b ,则下列不等式正确的是( )A .a +x >b +xB .1-a <1-bC .5a <5b D.a 2>b 23.“x 的5倍与6的差不大于-3”列出的不等式是( )A .5x -6≤-3B .5x -6≥-3C .5x -6<-3D .5x -6>-34.不等式x -2<3x -5的解集是( )A .x <32B .x >32C .x <23D .x >235.不等式组⎩⎨⎧x +1>0,2x -6≥0的解集在数轴上表示正确的是( )6.已知关于x 的不等式组⎩⎨⎧x -m ≤0,2x +3≥5的整数解共有3个,则m 的取值范围是( ) A .3<m <4 B .3≤m <4C .3≤m ≤4D .3<m ≤47.某社区超市以4元一瓶从厂家购进一批饮料,以6元一瓶销售,近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打( )A .六折B .七折C .七五折D .八折8.如图,是测量一物体体积的过程:(1)将300 mL 的水装进一个容量为500 mL 的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再将一颗完全相同的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的( )A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下二、填空题(本大题共6小题,每小题3分,共18分)9.某地今年3月某天的最高气温为12 ℃,最低气温为-1 ℃,则这天气温t (℃)的变化范围是________.10.当k =______时,不等式(k -2)x |k |-2+2>0是一元一次不等式.11.如果a >b ,那么2-a ________2-b (填“<”“>”或“=”).12.满足不等式4x -9<0的正整数解为__________.13.不等式组⎩⎨⎧x ≥m -2,x ≤3m +4有解,则m 的取值范围是________. 14.某商家需要更换店面的地砖,商家打算用1 500元购买彩色和单色两种地砖进行搭配,并且把1 500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的购买方案有________种.三、解答题(本大题共10个小题,共78分)15.(16分)解下列不等式(组),并把它们的解集分别表示在数轴上.(1)-2x -23<4;3 (2)⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.16.(6分)解不等式组⎩⎪⎨⎪⎧3x >2(x -1)+3,x +42≥x ,并列出不等式组的整数解.17.(6分)当k 为何值时,方程x +2k 4=1-2x -k 3的解不小于1?18.(6分)若不等式x -32<2x -53+1的最小整数解是关于x 的方程2x -ax =4的解,求a 的值.19.(6分)已知不等式5(x-3)-2(x-1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m的值相等,求代数式m-1m+1的值.20.(6分)某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱比各自买普通门票平均每人会便宜至少10元,这批游客至少有多少人?21.(6分)为了丰富学生的大课间活动,振海中学到体育用品商店购买篮球和足球,若购买2个篮球和3个足球共需600元,购买3个篮球和1个足球共需550元.(1)1个篮球______元,1个足球______元.(2)振海中学决定购买篮球和足球共20个,经商议,体育用品商店决定篮球单价打八折,足球单价不变,若总费用不超过2 200元,那么该校最多可以购买多少个篮球?5 22.(7分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0;②23x +1=0;③x -(3x +1)=-5中,不等式组⎩⎨⎧-x +2>x -5,3x -1>-x +2的关联方程是______;(填序号) (2)若不等式组⎩⎪⎨⎪⎧13(x -2)<2x +1,x -12<1-2x 3的一个关联方程的解是整数,则这个关联方程可以是________(写出一个即可);(3)若方程1-x =-7+3x ,6⎝ ⎛⎭⎪⎫12x -13=10-x 都是关于x 的不等式组⎩⎪⎨⎪⎧3x -m ≥x +3m ,12x -m <-12x +3的关联方程,请求出m 的取值范围.23.(9分)某校为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1 900本,人文类书籍不超过1 620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元.24.(10分)阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如:[3.2]=3,[5]=5,[-2.1]=-3.那么x=[x]+a,其中0≤a<1.例如:3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=______,[-6.5]=______;(2)如果[x]=3,那么x的取值范围是________;(3)如果[5x-2]=3x+1,那么x的值是________;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.7 答案一、1.C 2.C 3.A 4.B5.A6.B7.D8.D二、9.-1≤t ≤12 10.±3 11.< 12.1,213.m ≥-3 14.2三、15.解:(1)原不等式可化为-(2x -2)<12,所以2x -2>-12,所以x >-5,在数轴上表示为(2)原不等式组转化为⎩⎨⎧4x -2≤3+3x ,①2(x +1)<6x -3(x -1),② 解①,得x ≤5,解②,得x >-1.所以不等式组的解集为-1<x ≤5.在数轴上表示为16.解:⎩⎪⎨⎪⎧3x >2(x -1)+3,①x +42≥x ,②由①,得x >1,由②,得x ≤4, 所以不等式组的解集为1<x ≤4.所以不等式组的整数解是2,3,4.17.解:由原方程得3(x +2k )=12-4(2x -k ),所以3x +6k =12-8x +4k ,所以11x =12-2k ,所以x =12-2k 11.因为方程的解不小于1,所以12-2k 11≥1.解得k ≤12.即当k ≤12时,方程的解不小于1.18.解:解不等式x -32<2x -53+1,得x >-5,故最小整数解为x =-4.将x =-4代入2x -ax =4,得-8+4a =4,解得a =3.19.解:(1)5(x -3)-2(x -1)>2,5x -15-2x +2>2,5x -2x >2+15-2,3x >15,x >5.所以不等式的解集为x >5.(2)因为不等式的最小整数解与m 的值相等,所以m =6,所以m -1m +1=57. 20.解:设这批游客有x 人.由题意得20×50×0.6≤(50-10)x ,解得x ≥15.故这批游客至少有15人.21.解:(1)150;100(2)设振海中学购买m 个篮球,则购买(20-m )个足球,根据题意,得150×0.8m +100×(20-m )≤2 200,解得m ≤10.答:该校最多可以购买10个篮球.22.解:(1)③(2)3x -3=-3(答案不唯一)(3)解方程1-x =-7+3x ,得x =2,解方程6⎝ ⎛⎭⎪⎫12x -13=10-x ,得x =3, 解不等式3x -m ≥x +3m ,得x ≥2m ,解不等式12x -m <-12x +3,得x <m +3,则不等式组的解集为2m ≤x <m +3,根据题意知2m ≤2且m +3>3,解得0<m ≤1.23.解:(1)设组建中型图书角x 个,则组建小型图书角(30-x )个,依题意得⎩⎨⎧80x +30(30-x )≤1 900,50x +60(30-x )≤1 620, 解得18≤x ≤20,因为x 为整数,所以x 可以取18,19,20,所以共有3种组建方案.方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)选择方案1的费用为860×18+570×12=22 320(元);选择方案2的费用为860×19+570×11=22 610(元);选择方案3的费用为860×20+570×10=22 900(元).因为22 320<22 610<22 900,所以方案1费用最低,最低费用是22 320元.24.解:(1)4;-7(2)3≤x<4(3)5 3(4)因为x=[x]+a,其中0≤a<1,所以[x]=x-a.因为4a=[x]+1,所以a=[x]+14.因为0≤a<1,所以0≤[x]+14<1,所以-1≤[x]<3,所以[x]=-1,0,1,2.当[x]=-1时,a=0,x=-1,当[x]=0时,a=14,x=14,当[x]=1时,a=12,x=112,当[x]=2时,a=34,x=234,所以x=-1或14或112或234.9。

华师大版七年级下册数学第8章 一元一次不等式含答案(易错题)

华师大版七年级下册数学第8章 一元一次不等式含答案(易错题)

华师大版七年级下册数学第8章一元一次不等式含答案一、单选题(共15题,共计45分)1、不等式组的解集是()A.x≤2B.x≥-2C.-2<x≤2D.-2≤x<22、不等式组的解集为()A.x≤2B.x<4C.2≤x<4D.x≥23、一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.4、若a<b,则下列不等式成立的是()A.a 2<b 2B. <1C. >D. -3a>-3b5、不等式组的解集是()A.x<3B.3<x<5C.x>5D.无解6、若关于x的不等式ax+3>0的解集为x<3,则关于m的不等式m+2a<1的解为()A.m<3B.m<﹣3C.m>﹣3D.m>﹣27、不等式组的解集在数轴上表示正确的是()A. B. C.D.8、解不等式,其中所有整数解的和是()A.2B.-2C.0D.-19、不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个10、不等式组的解集为()A.x>2B.x<3C.x>2或x<-3D.2<x<311、若,则下列不等式不成立的是()A. B. C. D.12、已知()A.-15B.15C.-D.13、不等式3(x﹣1)+4≥2x的解集在数轴上表示为()A. B. C.D.14、不等式组的整数解的个数是()A.3B.5C.7D.无数个15、已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B. C.D.二、填空题(共10题,共计30分)16、一元一次不等式3x﹣2<0的解集为________17、若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为________。

18、小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是________。

19、解不等式组:,并把它的解集在数轴上表示出来.20、如果不等式组有解,那么m的范围是________.21、不等式组的解集是________。

周末练习(华师大七年级下期末精选)

周末练习(华师大七年级下期末精选)

周末练习121.下列变形正确的是( )A. 若2x = 2y ,则x=y B. 若xa = ya ,则x=yC. 若x(x −2) = 5(2−x),则x = −5D. 若(m+n)x=(m+n)y ,则x = y2.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集是3≤x <5,则ba 的值是( )A .-2B .-12C .-4D .-143.若不等式组841x x x m +<-⎧⎨≥⎩的解是x>3,则m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <4. 如图AD 是△ABC 的中线,DE 是△ADC 的高线,AB =3,AC =5,DE =2,点D 到AB 的距离是( )5.如图,在△ABC 中,点D 为AC 上一点,点E 为AB 上一点,若AB=4, AD:DC=1:2,且S △DEC=12S △ABC,则EB 的长为()D. 2(4题) (5题)6、已知方程组⎩⎨⎧+-=+-=+12232k y x k y x 的解满足5≥-y x ,则K 可取的值为( )A 、—2B 、0C 、1D 、37. 为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人。

结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人。

如果设这1000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A.2210002.5%0.5%x y x y ⎧-=⎪⎨+=⎪⎩B. 1000222.5%0.5%x y x y⎧+=⎪⎨-=⎪⎩ C. 10002.5%0.5%22x y x y ⎧-=⎨⨯+⨯=⎩ D. 10002.5%0.5%22x y x y ⎧+=⎨⨯-⨯=⎩二. 填空题8.已知在△ABC 中,∠A =60°,∠B -∠C =40°,则∠B = .9. 如图所示,把一个三角形纸片ABC 的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )10. 如图,△ODC 是由△OAB 绕点O 顺时针旋转30后得到的图形,若点D 恰好落在AB 上,则∠BDC 的度数是( )(9题) (10题)11. x 与y 的平方和一定是非负数,用不等式表示为_______________________.12. 等腰三角形的两边长为3和6,则这个三角形的周长为 .13.一艘轮船由甲码头到乙码头,顺水而行,用了2 h ;由乙码头返回甲码头逆流而行,用了2.5 h ;已知船在静水中的速度为27 km /h ,则水流的速度为_____________14. 已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm,则AB 与AC 的差为________ 三.解答题15. 解方程组23032512247x y z x y z x y z -+=⎧⎪++=⎨⎪--=-⎩16.若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x-12-1≤x 的解,求m 的取值范围.17.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.18如图,∠AOB=90∘,点C. D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50∘(图1),试求∠F.(2)当C.D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.19. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周末强化训练试题(8)
一、选择题(每题3分,共24分) 1、 不等式组 ⎩⎨
⎧≥-<-0
302x x 的整数解有
( )
A 、 1个
B 、2个
C 、3个
D 、4个
2、 如果m 2、m 、m -1这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是 ( )
A 、0>m
B 、 2
1>m
C 、0<m
D 、 2
10<
<m 3、 要使代数式1-x 与2-x 的符号相同,那么x 的取值范围是
( ) A 、2<x B 、1<x C 、1<x 或2>x
D 、
21<<x 4、若0<a ,则不等式组⎩⎨
⎧>>a
x a x 32 的解集是
( )
A 、2
a x
>
B 、3
a x >
C 、2a x ->
D 、3
a x ->
5、已知23+=
x a ,3
2
+=x b ,且b a >>2,那么x 的取值范围是 ( ) A 、1>x B 、4<x C 、41<<x D 、1>x 或4<x
组 的解集是1<x ,则
6、若不等式 ( )
A 、1<a
B 、1>a
C 、1=a
D 、1≥a 7. 如果
11+=+x x ,2323--=+x x ,那么x 的取值范围是
( )
A 、3
21-
≤≤
-x B 、1-≥x
C 、3
2-
≤x D 、13
2-≤≤-x
8、若不等式02<-m x 的正整数解是1,2,3,那么m 的取值范围是
( )
A 、86<≤m
B 、86≤<m
C 、8<m
D 、6≥m 二、填空题(每题3分,共24 分) 9、已知23=+y x ,23-≤≤-x ,则y 的取值范围是
10、同时满足不等式22
1
->-x 和x x ≥--311的自然数x 的值为 11、不等式22
1
33<-<
-x 的整数解为
9514
x
x a
-⎧>⎪⎨⎪<⎩
12、不等式组⎩⎨⎧+<->2
1b x a x 的解集为
42<<x ,则a=
,b=
.
13、若不等式组⎩⎨

->-+≥-a
x a x 212113无解,则a 的取值范围是 .
14、已知不等式组⎩⎨
⎧<->-1
0a x a x 的解集中任意一个x 的值均不在52≤≤x 的范围内,则a 的取值
范围是
15、如果方程x m x +=+527的解在-1和1之间,则m 的取值范围是________
16、有43本书,每人平均分8本有剩余,每人再多分一本又不够,那么人数为________ . 三、解下列不等式组(每题5分,共10分)
17、⎪⎩⎪⎨⎧<-+≤+321)2(352x x x x 18;⎪⎩⎪⎨⎧<+-+--≤-121
33
1)3(410)8(2x x x x
四、解答下列各题(第19—22题每题8分,第23题10分,共42分) 19、已知a 是非零整数,且⎩⎨
⎧+>-+>+a
a a a 12512)1(4, 20、已知方程组⎩⎨⎧-=-+=+133a y x a y x 的解是 一
对正数.
求代数式200522
++a a
的值. 求:(1)a 的取值范围;(2)化简
212--+a a
21、先阅读理解下面的例题,再完成(1)(2)题.
例 : 解不等式0)12)(23(>+-x x
解 : 根据有理数的乘法法则(同号得正),
可得①⎩⎨
⎧>+>-012023x x 或②⎩⎨
⎧<+<-0
12023x x
解不等式组①,得32>
x ;解不等式组②,得2
1
-<x
∴不等式0)12)(23(>+-x x 的解集是23x >
或1
2
x <- (1)解不等式0)13)(12(>+-x x (2)解不等式03
21>-+x x
22、某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产
速度,不能完成任务,如果每个小组每天比原先多生产一件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数)
23、某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少
购买一件,共买16件,恰好用50元.若2元的奖品购买a 件. (1) 用含a 的代数式表示另外两种奖品的件数; (2) 请你设计购买方案,并说明理由.
【同步测试20】 1、 C 2、 C 3、 C 4、 B 5、 C 6、 D 7、 A 8、 B 9、
8≤y ≤11
10、 x=0,1 11、 x= -1,0,1 12、 a=3,b=2 13、 a ≤-
5
1
14、 a 51≥≤a 或 15、 -21121<<m 16、 5 17、 -13<≤x 18、 –1<x ≤3
19 19、 2008
20、 (1) -221<<a ; (2) 3a-1 21、 (1)x>3121-<x 或; (2) x>12
3
-<x 或
22、 16件 23、(1)4元的件数为554
3
a
-
件,10元的件数为
7
3
a-
件.(2)方案一:2元10
件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.。

相关文档
最新文档