高考数学一轮复习第五篇数列第1节数列的概念与简单表示法训练理新人教版(1)

合集下载

高考数学一轮复习 第五章 数列 第1课时 数列的概念与简单的表示方法课时作业 理 新人教版-新人教版

高考数学一轮复习 第五章 数列 第1课时 数列的概念与简单的表示方法课时作业 理 新人教版-新人教版

第五章数列第1课时数列的概念与简单的表示方法考纲索引1.数列的概念与简单表示法.2.数列的通项公式.课标要求1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.知识梳理1.数列的定义按照排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则类型满足条件按项数分类有穷数列项数无穷数列项数按项与项间的大小关系分类递增数列a n+1a n其中n∈N*递减数列a n+1a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列a n的符号正负相间如1,-1,1,-1,…3.数列的表示法数列有三种表示法,它们分别是、和.4.数列的通项公式如果数列{a n}的第n项a n与之间的函数关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.5.S n与a n的关系基础自测2.(课本精选题)在数列{a n}中,a1=1,a n=2a n-1+1,则a5的值为().A.30B.31C.32D.333.设数列{a n}的前n项和S n=n2,则a8的值为().A.15B.16C.49D.644.(教材改编)已知数列{a n}的前4项为1,3,7,15,写出数列{a n}的一个通项公式为.5.若数列{a n}的前n项和S n=n2-10n(n=1,2,3,…),则此数列的通项公式为a n=.指点迷津◆一种特殊性数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.数列的图象是一群孤立的点.◆与集合的两个区别(1)若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列,这有别于集合中元素的无序性.(2)数列中的数可以重复出现,而集合中的元素不能重复出现.考点透析考向一由数列的前几项归纳数列的通项公式例1根据数列的前几项,写出下列各数列的一个通项公式:【审题视点】观察数列中每项的共同特征及随项数变化规律,写出通项公式.【方法总结】求数列的通项时,要抓住以下几个特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、联想.变式训练1.写出下面各数列的一个通项公式:考向二由S n求a n变式训练考向三由递推公式求前几项或通项公式【审题视点】对递推式“取倒数”转化为等差的递推关系求a n,根据b n的特点用裂项法求和.变式训练经典考题真题体验参考答案与解析知识梳理1.一定顺序2.有限无限> <3.列表法图象法通项公式法4.n f(n)5.S n-S n-1(n≥2)基础自测1.B2.B3.A4.a n=2n-15.2n-11考点透析变式训练经典考题真题体验word。

高考数学一轮复习 5.1数列的概念及简单表示法讲解与练

高考数学一轮复习 5.1数列的概念及简单表示法讲解与练

第一节数列的概念与简单表示法[备考方向要明了]考什么怎么考1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.数列的概念在高考试题中常与其他知识综合进行考查,主要有:(1)以考查通项公式为主,同时考查S n与a n的关系,如2012年江西T16等.(2)以递推关系为载体,考查数列的各项的求法,如2012年新课标全国T16等.[归纳·知识整合]1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的分类分类原则类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n摆动数列从第2项起有些项大于它的前一项,有些项小于它的前一项.3.数列的表示法数列的表示方法有列表法、图象法、公式法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[探究] 1.数列的通项公式唯一吗?是否每个数列都有通项公式?提示:不唯一,如数列-1,1,-1,1,…的通项公式可以为a n =(-1)n或a n =⎩⎪⎨⎪⎧-1,n 为奇数,1,n 为偶数.有的数列没有通项公式.5.数列的递推公式若一个数列{a n }的首项a 1确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.[探究] 2.通项公式和递推公式有何异同点? 提示:不同点相同点通项公式法可根据某项的序号,直接用代入法求出该项都可确定一个数列,都可求出数列的任何一项递推公式法 可根据第1项或前几项的值,通过一次或多次赋值,逐项求出数列的项,直至求出所需的项[自测·牛刀小试]1.(教材习题改编)已知数列{a n }的前4项分别为2,0,2,0,…,则下列各式不可以作为数列{a n }的通项公式的一项是( )A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n πD .a =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数解析:选B 若a n =2sinn π2,则a 1=2sin π2=2,a 2=2sin π=0,a 3=2sin 3π2=-2,a 4=2sin 2π=0.2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.3.(教材习题改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 5=( )A.32 B.53 C.74D.85解析:选D 由题意知,a 1=1,a 2=2,a 3=32,a 4=53,a 5=85.4.(教材改编题)已知数列2,5,22,…,根据数列的规律,25应该是该数列的第________项.解析:由于2=3×1-1,5=3×2-1,8=3×3-1,… 故可知该数列的通项公式为a n =3n -1 由25=3n -1,得n =7. 答案:75.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________;数列{na n }中数值最小的项是第________项.解析:∵当n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11; 当n =1时,a 1=S 1=-9也满足a n =2n -11, ∴a n =2n -11.∴na n =2n 2-11n =2⎝ ⎛⎭⎪⎫n 2-112n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -1142-12116=2⎝⎛⎭⎪⎫n -1142-1218.又∵n ∈N *,∴当n =3时,na n 取最小值. 答案:2n -11 3已知数列的前几项求通项公式[例1] 根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)12,34,78,1516,3132,…; (3)12,14,-58,1316,-2932,6164,…. [自主解答] (1)各数都是偶数,且最小为4,所以通项a n =2(n +1)(n ∈N *). (2)注意到分母分别是21,22,23,24,25,…,而分子比分母少1, 所以其通项a n =2n-12n (n ∈N *).(3)分母规律明显,而第2,3,4项的绝对值的分子比分母少3,因此可考虑把第1项变为-2-32,这样原数列可化为-21-321,22-322,-23-323,24-324,-25-325,26-326,…所以其通项a n =(-1)n 2n-32n (n ∈N *).———————————————————用观察法求数列的通项公式的技巧用观察归纳法求数列的通项公式,关键是找出各项的共同规律及项与项数n 的关系.当项与项之间的关系不明显时,可采用适当变形或分解,以凸显规律,便于归纳.当各项是分数时,可分别考虑分子、分母的变化规律及联系,正负相间出现时,可用(-1)n或(-1)n +1调节.1.写出下列数列的一个通项公式,使它的前几项分别是下列各数: (1)23,415,635,863,1099,…; (2)-1,13,-935,1763,-3399,…;(3)9,99,999,9 999,….解:(1)分子是连续的偶数,且第1个数是2,所以用2n 表示;分母是22-1,42-1,62-1,82-1,102-1,所以用(2n )2-1表示.所以a n =2n 2n2-1=2n 4n 2-1(n ∈N *). (2)正负交替出现,且奇数项为负,偶数项为正,所以用(-1)n表示; 1, 13, 935, 1763, 3399,…↕ ↕ ↕ ↕ ↕31×3, 53×5, 95×7, 177×9, 339×11,… 分母是连续奇数相乘的形式,观察和项数n 的关系,用(2n -1)(2n +1)表示; 分子是21+1,22+1,23+1,24+1,用2n+1表示.所以 a n =(-1)n·2n+12n -12n +1=(-1)n ·2n+14n 2-1(n ∈N *).(3) 9, 99, 999, 9 999,… ↕ ↕ ↕ ↕101-1, 102-1, 103-1, 104-1,… 所以a n =10n-1(n ∈N *).由a n 与S n 的关系求通项公式[例2] 已知数列{a n }的前n 项和为S n =3n-1,求它的通项公式a n . [自主解答] 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2也满足a n =2×3n -1.故数列{a n }的通项公式为a n =2×3n -1.若将“S n =3n -1”改为“S n =n 2-n +1”,如何求解? 解:∵a 1=S 1=12-1+1=1, 当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2.∴a n =⎩⎪⎨⎪⎧1n =1,2n -2n ≥2.———————————————————已知S n 求a n 时应注意的问题数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.2.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求数列{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2.由已知a 1=S 1>1,因此a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0,即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.由递推关系式求数列的通项公式[例3] 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1na n -1(n ≥2); (3)a 1=2,a n +1=a n +3n +2. [自主解答] (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),即a n +1+1a n +1=3. ∴数列{a n +1}为等比数列,公比q =3. 又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(2)∵a n =n -1na n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1×12×23×…×n -1n =a 1n =1n .(3)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.———————————————————由递推公式求通项公式的常用方法已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+fn 时,用累加法求解;当出现a na n -1时,用累乘法求解.3.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,…a n -1=n n -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理得a n =n n +12.综上可知,数列{a n }的通项公式a n =n n +12.数列函数性质的应用[例4] 已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [自主解答] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.———————————————————函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.4.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________. 解析:法一:由题意知,⎩⎪⎨⎪⎧k k +4⎝ ⎛⎭⎪⎫23k ≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1,解得10≤k ≤1+10. ∵k ∈N *,∴k =4.法二:设a n =n (n +4)⎝ ⎛⎭⎪⎫23n ,则 a n +1-a n =(n +1)(n +5)⎝ ⎛⎭⎪⎫23n +1-n (n +4)⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n +1n +5-n n +4=⎝ ⎛⎭⎪⎫23n 10-n 23. 当n ≤3时,a n +1-a n >0,即a n +1>a n , 当n ≥4时,a n +1-a n <0,即a n +1<a n , 故a 1<a 2<a 3<a 4,且a 4>a 5>a 6>…. 所以数列中最大项是第4项. 答案:41个关系——数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.3类问题——数列通项公式的求法及最大(小)项问题 (1)由递推关系求数列的通项公式常用的方法有: ①求出数列的前几项,再归纳出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用叠加法、累乘法、迭代法. (2)由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式; ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . (3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.创新交汇——数列与函数的交汇问题1.数列的概念常与函数、方程、解析几何、不等式等相结合命题.2.正确理解、掌握函数的性质(如单调性、周期性等)是解决此类问题的关键. [典例] (2012·上海高考)已知f (x )=11+x .各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.[解析] ∵a n +2=11+a n ,又a 2 010=a 2 012=11+a 2 010,∴a 22 010+a 2 010=1. 又a n >0,∴a 2 010=5-12. 又a 2 010=11+a 2 008=5-12,∴a 2 008=5-12,同理可得a 2 006=…=a 20=5-12.又a 1=1,∴a 3=12,a 5=11+a 3=23,a 7=11+a 5=35,a 9=11+a 7=58,a 11=11+a 9=813. ∴a 20+a 11=5-12+813=135+326. [答案]135+326[名师点评]1.本题具有以下创新点(1)数列{a n }的递推关系式,以函数f (x )=11+x为载体间接给出;(2)给出的递推关系式不是相邻两项,即a n 与a n -1(n ≥2)之间的关系,而是给出a n 与a n+2之间的关系式,即奇数项与奇数项、偶数项与偶数项之间的递推关系. 2.解决本题的关键有以下两点 (1)正确求出数列{a n }的递推关系式; (2)正确利用递推公式a n +2=11+a n,分别从首项a 1推出a 11和从a 2 010推出a 20. [变式训练]1.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为( ) A.172B.212C .10D .21解析:选B 由已知条件可知:当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33适合, 故a n =n 2-n +33.又a n n=n +33n-1, 令f (n )=n +33n-1,f (n )在[1,5]上为减函数,f (n )在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 所以f (5)>f (6).故f (n )=a n n 的最小值为212.2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,f x -1+1x >0,把函数g (x )=f (x )-x 的零点按从小到大的顺序排成一个数列,则该数列的通项公式为( )A .a n =n n -12(n ∈N *)B .a n =n (n -1)(n ∈N *) C .a n =n -1(n ∈N *)D .a n =2n-2(n ∈N *)解析:选C 据已知函数关系式可得f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,2x -10<x ≤1,2x -2+11<x ≤2,…,此时易知函数g (x )=f (x )-x 的前几个零点依次为0,1,2,…,代入验证只有C 符合.一、选择题(本大题共6小题,每小题5分,共30分) 1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n2n +1 B.n 2n -1 C.n2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,即λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.3.数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C 因为a n =1n +90n,运用基本不等式得1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.4.(2013·银川模拟)设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T r ,则T 2 013的值为( )A .-12B .-1 C.12D .2解析:选B 由a 2=12,a 3=-1,a 4=2可知,数列{a n }是周期为3的周期数列,从而T 2013=(-1)671=-1.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7D .6解析:选B 由a n =⎩⎪⎨⎪⎧S nn =1S n -S n -1n ≥2=⎩⎪⎨⎪⎧-8n =1,2n -10n ≥2,得a n =2n -10.由5<2k -10<8得7.5<k <9,由于k ∈N *,所以k =8. 6.(2012·福建高考)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .0解析:选A 由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 012=503×2=1 006.二、填空题(本大题共3小题,每小题5分,共15分)7.根据下图5个图形及相应点的个数的变化规律,猜测第n 个图中有________个点.解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n -1)×n +1=n 2-n +1. 答案:n 2-n +18.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n⎝ ⎛⎭⎪⎫0≤a n<12,2a n-1⎝ ⎛⎭⎪⎫12≤a n<1,若a 1=67,则a 2 013=________.解析:因为a 1=67∈⎣⎢⎡⎭⎪⎫12,1,所以a 2=2a 1-1=2×67-1=57.因为a 2=57∈⎣⎢⎡⎭⎪⎫12,1,所以a 3=2a 2-1=2×57-1=37.因为a 3=37∈⎣⎢⎡⎭⎪⎫0,12,所以a 4=2a 3=2×37=67.显然a 4=a 1,根据递推关系,逐步代入,得a 5=a 2,a 6=a 3,…故该数列的项呈周期性出现,其周期为3,根据上述求解结果,可得a 3k +1=67,a 3k +2=57,a 3k +3=37(k ∈N ).所以a 2 013=a 3×671=a 3=37.答案:379.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.解析:∵a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1,∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2, ∴a 2n =2n,a 2n -1=2n -1(n ∈N *),∴b 10=a 10+a 11=64. 答案:64三、解答题(本大题共3小题,每小题12分,共36分)10.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3…·a n =n 2,求a 3+a 5的值.解:∵a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,解得a 3=94.同理a 5=2516.∴a 3+a 5=6116.11.已知数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2+3n ; (2)S n =2n+1.解:(1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5,当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1.当n =1时,21-1=1≠a 1,故a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.12.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2), 故b n=⎩⎪⎨⎪⎧1n n ≥2,23n =1.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=-n -12n +22n +3n +1<0.∴{c n }是递减数列.1.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (1)0.8,0.88,0.888,…; (3)32,1,710,917,…; (4)0,1,0,1,….解:(1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…故a n =89⎝⎛⎭⎪⎫1-110n .(3)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,故可得它的一个通项公式为a n =2n +1n 2+1.(4)a n =⎩⎪⎨⎪⎧n 为奇数,1 n 为偶数或a n =1+-1n2或a n =1+cos n π2.2.已知数列{a n }的通项公式a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问数列{a n }有没有最大项?若有,求最大项和最小项的项数;若没有,说明理由.解:∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n·9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ; 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…∴数列中有最大项,最大项为第9、10项, 即a 9=a 10=1010119.3.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n(n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5.所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑i =1nbi=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1.因此,使得12⎝ ⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.4.(2012·浙江高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,易知当n =1时也满足通式a n =4n -1, 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *,所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,2T n -T n =(4n -1)2n-[3+4(2+22+…+2n -1)]=(4n -5)2n+5.故T n =(4n -5)2n+5,n ∈N *.。

高三一轮复习第五章 第一节数列的概念与简单表示法

高三一轮复习第五章 第一节数列的概念与简单表示法

课时作业1.在数列{a n }中,a n =n 2-9n -100,则最小的项是( ) A .第4项 B .第5项C .第6项D .第4项或第5项【解析】 ∵a n =(n -92)2-814-100,∴n =4或5时,a n 最小.【答案】 D2.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n (n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +)【解析】 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D .【答案】 D3.(2022·福建福州质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 019=( )A .1B .0C .2 019D .-2 019【解析】 ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 019=a 1=1.【答案】 A4.(2022·大庆二模)已知数列{a n }满足:a n ={(3-a )n -3,n ≤7a n -6,n >7(n ∈N *),且数列{a n }是递增数列,则实数a 的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3)【解析】 根据题意,a n=f(n)={(3-a)n-3,n≤7a n-6,n>7,n∈N*,要使{a n}是递增数列,必有{3-a>0a>1(3-a)×7-3<a8-6,据此有:{a<3a>1a>2或a<-9,综上可得2<a<3.【答案】 D5.(2022·黄冈模拟)已知数列{a n}的前n项和为S n=n2-2n+2,则数列{a n}的通项公式为( )A.a n=2n-3 B.a n=2n+3C.a n={1,n=12n-3,n≥2D.a n={1,n=12n+3,n≥2【解析】 当n=1时,a1=S1=1,当n≥2时,a n=S n-S n-1=2n-3,由于a1的值不适合上式,故选C.【答案】 C6.(多选)(2022·常州期末)已知数列{a n}中,a1=2,a n+1=1+a n1-a n,使a n=-12的n可以是( )A.2 019 B.2 021C.2 022 D.2 023【解析】 由题意可知,a1=2,a2=-3,a3=-12,a4=13,a5=2,a6=-3,a7=-12,a8=13,可得数列{a n}的周期为4,所以a2 019=a3=-12,a2 021=a1=2,a2 022=a2=-3,a2 023=a3=-12,所以使a n=-12的n可以是2 019,2 023,故答案选AD.【答案】 AD7.(2022·石家庄二模)在数列{a n}中,已知a1=2,a2=7,a n+2等于a n a n+1(n∈N*)的个位数,则a2 015=( )A.8 B.6C.4 D.2【解析】 由题意得a3=4,a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 015=a335×6+5=a5=2.【答案】 D8.(多选)已知数列{a n}满足a1=-12,a n+1=11-a n,则下列各数是{a n}的项的有( )A.-2 B.2 3C.32D.3【解析】 ∵数列{a n}满足a1=-12,a n+1=11-a n,∴a2=11-(-12)=23,a3=11-a2=3,a4=11-a3=-12=a1,∴数列{a n}是周期为3的数列,且前3项为-12,23,3,故选BD.【答案】 BD9.(多选)下列四个命题中,正确的有( )A.数列{n+1n}的第k项为1+1kB.已知数列{a n}的通项公式为a n=n2-n-50,n∈N*,则-8是该数列的第7项C.数列3,5,9,17,33,…的一个通项公式为a n=2n-1D.数列{a n}的通项公式为a n=nn+1,n∈N*,则数列{a n}是递增数列【解析】 对于A,数列{n+1n}的第k项为1+1k,A正确;对于B,令n2-n-50=-8,得n=7或n=-6(舍去),B正确;对于C,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n},则其通项公式为b n=2n(n∈N*),因此数列3,5,9,17,33,…的一个通项公式为a n=b n+1=2n+1(n∈N*),C错误;对于D,a n=nn+1=1-1n+1,则a n+1-a n=1n+1-1n+2=1(n+1)(n+2)>0,因此数列{a n}是递增数列,D正确.故选ABD.【答案】 ABD10.(2022·太原二模)已知数列{a n}满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n=________.【解析】 由已知得1a n+1-1a n=n,∴1a n-1a n-1=n-1,1a n-1-1a n-2=n-2,…,1a2-1a1=1,∴1a n -1a1=n (n -1)2,∴1an =n 2-n +22,∴a n =2n 2-n +2.【答案】 2n 2-n +211.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.【解析】 由题意知a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 【答案】 611612.数列{a n }满足12a 1+122a 2+…+12n a n =2n +5,n ∈N *,则a n =________.【解析】 在12a 1+122a 2+…+12n a n =2n +5中,用n -1代换n 得12a 1+122a 2+…+12n -1a n -1=2(n -1)+5 (n ≥2),两式相减得12n a n =2,a n =2n +1,又12a 1=7,即a 1=14,故a n={14,n =1,2n +1,n ≥2.【答案】 {14,n =1,2n +1,n ≥213.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n +1=(n +1)a n ; (3)a 1=2,a n +1=a n +ln (1+1n).【解】 (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n +1=(n +1)a n ,∴a n +1an =n +1.∴a nan -1=n ,a n -1a n -2=n -1,…a 3a 2=3,a 2a1=2,a 1=1. 累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n! 故a n =n!(3)∵a n +1=a n +ln (1+1n ),∴a n +1-a n =ln (1+1n )=ln n +1n.∴a n -a n -1=ln nn -1,a n -1-a n -2=ln n -1n -2,…a 2-a 1=ln 21,∴a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln n .又a 1=2,∴a n =ln n +2.14.设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2[12·(32)n -2+a -3],当n≥2时,a n+1≥a n 12·(32)n-2+a-3≥0 a≥-9.又a2=a1+3>a1.综上,所求a的取值范围是[-9,3)∪(3,+∞).。

高考数学一轮复习第五章数列5.1数列的概念与简单表示法课件理

高考数学一轮复习第五章数列5.1数列的概念与简单表示法课件理
第五章 数 列 第一节 数列的概念与简单表示法
【知识梳理】 1.数列的有关概念
概念
含义
数列 数列的项 数列的通项
按照_一__定__顺__序__排列的一列数
数列中的_________ 每一个数
数列{an}的第n项an
概念 通项公式 前n项和
含义
数列{an}的第n项an与n之间的关系能用 公式_a_n=_f_(_n_)_表示,这个公式叫做数列 的通项公式
将第一项看成 这样,先不考虑符号,则分母为3,5, 7,9,…可归纳为 233 n, +1,分子为3,8,15,24,…将其每一项
加1后变成4,9,16,25,…可归纳为(n+1)2,综上,数列的
通项公式an= 1nn1211nn22n.
2n1
2n1
③把数列改写成 1, 0, 1, 0, 1, 0分, 1母, 0依, 次为 12345678
答案:(1)5 030 (2)
5k 5k 1
2
【加固训练】
1.数列
则 是该数列的 ( )
2,5, 2 2, 2 5

A.第6项
B.第7项
C.第10项
D.第11项
【解析】选B.原数列可写成
因为
所以20=2+(n-1)×3,所以n=27, . 5,8, 2 5 20,
2.根据下图5个图形及相应点的个数的变化规律,猜测 第n个图中有________个点.
1,2,3,…,而分子1,0,1,0,…周期性出现,因此数列 的通项可表示为
an
12[11n1]11n1.
n
2n
④将数列统一为 3,5,7,对9 ,于分子3,5,7,9,…, 2 5 10 17

【精选】最新高考数学一轮复习第五章数列第一节数列的概念与简单表示法课时作业

【精选】最新高考数学一轮复习第五章数列第一节数列的概念与简单表示法课时作业

教学资料参考范本【精选】最新高考数学一轮复习第五章数列第一节数列的概念与简单表示法课时作业撰写人:__________________部门:__________________时间:__________________课时作业A组——基础对点练1.设数列{an}的前n项和Sn=n2+n,则a4的值为( )A.4 B.6C.8 D.10解析:a4=S4-S3=20-12=8.答案:C2.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )A.2n-1 B.n-1C.n-1 D.12n-1解析:由已知Sn=2an+1得Sn=2(Sn+1-Sn),即2Sn+1=3Sn,=,而S1=a1=1,所以Sn=n-1,故选B.答案:B3.已知数列{an}的前n项和为Sn,若Sn=2an-4,n∈N*,则an=( )A.2n+1 B.2nC.2n-1 D.2n-2解析:∵an+1=Sn+1-Sn=2an+1-4-(2an-4),∴an+1=2an,∵a1=2a1-4,∴a1=4,∴数列{an}是以4为首项,2为公比的等比数列,∴an=4·2n-1=2n+1,故选A.答案:A4.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则的值是( )A. B.158C. D.38解析:由已知得a2=1+(-1)2=2,∴2a3=2+(-1)3,a3=,∴a4=+(-1)4,a4=3,∴3a5=3+(-1)5,∴a5=,∴=×=.答案:C5.设数列{an}的前n项和为Sn,且Sn=,若a4=32,则a1=__________.解析:∵Sn=,a4=32,∴-=32,∴a1=.答案:126.已知数列{an}的前n项和Sn=2n,则a3+a4=________.解析:当n≥2时,an=2n-2n-1=2n-1,所以a3+a4=22+23=12.答案:127.已知数列{an}中,a1=1,前n项和Sn=an.(1)求a2,a3;(2)求{an}的通项公式.解析:(1)由S2=a2得3(a1+a2)=4a2,解得a2=3a1=3.由S3=a3得3(a1+a2+a3)=5a3,解得a3=(a1+a2)=6.。

高考数学大一轮复习配套课时训练:第五篇 数列 第1节 数列的概念与简单表示法(含答案)

高考数学大一轮复习配套课时训练:第五篇 数列 第1节 数列的概念与简单表示法(含答案)

第五篇数列(必修5)第1节数列的概念与简单表示法课时训练练题感提知能【选题明细表】A组一、选择题1.设数列{a n}的前n项和S n=n2,则a8的值为( A )(A)15 (B)16 (C)49 (D)64解析:由a8=S8-S7=64-49=15,故选A.2.(2013华师大附中高三模拟)数列{a n}中,a1=1,a n=+1,则a4等于( A )(A)(B)(C)1 (D)解析:由a1=1,a n=+1得,a2=+1=2,a3=+1=+1=,a4=+1=+1=.故选A.3.下列数列中,既是递增数列又是无穷数列的是( C )(A)1,,,,…(B)-1,-2,-3,-4,…(C)-1,-,-,-,…(D)1,,,…,解析:根据定义,属于无穷数列的是选项A、B、C(用省略号),属于递增数列的是选项C、D,故满足要求的是选项C.故选C.4.下列关于星星的图案中,星星的个数依次构成一个数列,该数列的一个通项公式是( C )(A)a n=n2-n+1 (B)a n=(C)a n=(D)a n=解析:从题图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;…∴a n=1+2+3+4+…+n=,故选C.5.下面五个结论:①数列若用图象表示,从图象上看都是一群孤立的点;②数列的项数是无限的;③数列的通项公式是唯一的;④数列不一定有通项公式;⑤将数列看做函数,其定义域是N*(或它的有限子集{1,2,…,n}).其中正确的是( B )(A)①②④⑤ (B)①④⑤(C)①③④(D)②⑤解析:②中数列的项数也可以是有限的,③中数列的通项公式不唯一,故选B.6.(2013东莞模拟)数列{a n}满足:a1+3a2+5a3+…+(2n-1)·a n=(n-1)·3n+1+3,则数列{a n}的通项公式a n=( C ) (A)3n-1(B)(2n-1)·3n(C)3n(D)(2n-1)·3n-1解析:当n≥2时,有a1+3a2+5a3+…+(2n-3)·a n-1=(n-2)·3n+3,两式相减得(2n-1)a n=(n-1)3n+1-(n-2)3n,即(2n-1)a n=(2n-1)·3n,故a n=3n.又a1=3满足a n=3n,故选C.7.(2013太原一模)已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( C ) (A)[,3) (B)(,3)(C)(2,3) (D)(1,3)解析:由题意,a n=f(n)=要使{a n}是递增数列,必有解得,2<a<3.故选C.二、填空题8.数列-,,-,,…的一个通项公式为.解析:观察各项知,其通项公式可以为a n=.答案:a n=9.(2013广西一模)数列{a n}中,已知a1=1,a2=2,a n+1=a n+a n+2(n∈N*),则a7= .解析:由a n+1=a n+a n+2,得a n+2=a n+1-a n.所以a3=a2-a1=1,a4=a3-a2=-1,a5=a4-a3=-1-1=-2.a6=a5-a4=-2-(-1)=-1,a7=a6 -a5=-1-(-2)=1.答案:110.(2013清远调研)已知数列{a n}的前n项和S n=n2+2n-1,则a1+a25= .解析:∵S n=n2+2n-1,∴a1=S1=2.当n≥2时,a n=S n-S n-1=n2+2n-1-[(n-1)2+2(n-1)-1]=2n+1.∴a n=∴a1+a25=2+51=53.答案:5311.(2013东莞市高三模拟)已知数列{a n}的前n项和S n=n2-3n,若它的第k项满足2<a k<5,则k= .解析:a1=S1=1-3=-2,当n≥2时a n=S n-S n-1=n2-3n-(n-1)2+3(n-1),∴a n=2n-4,由2<a k<5得2<2k-4<5,则3<k<,所以k=4.答案:4三、解答题12.数列{a n}的通项公式是a n=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解:(1)当n=4时,a4=42-4×7+6=-6.(2)是.令a n=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是这个数列的第16项.(3)令a n=n2-7n+6>0,解得n>6或n<1(舍).故数列从第7项起各项都是正数.13.(2013潮州期末质检)数列{a n}的前n项和S n=,若a1=,a2=.(1)求数列{a n}的前n项和S n;(2)求数列{a n}的通项公式;(3)设b n=,求数列{b n}的前n项和T n.解:(1)由S1=a1=,得=;由S2=a1+a2=,得=.∴解得故S n=.(2)当n≥2时,a n=S n-S n-1=-==由于a1=也适合a n=.∴a n=.(3)b n===-.∴数列{b n}的前n项和T n=b1+b2+…+b n-1+b n=1-+-+…+-+-=1-=.B组14.对于数列{a n},a1=4,a n+1=f(a n),依照下表则a2015=( D )(A)2 (B)3 (C)4 (D)5解析:由题意a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)= 4,a6=f(a5)=f(4)=1.则数列{a n}的项周期性出现,其周期为4,a2015=a4×503+3=a3=5.故选D.15.已知数列{a n}的通项a n=n2(7-n)(n∈N*),则a n的最大值是.解析:设f(x)=x2(7-x)=-x3+7x2,当x>0时,由f′(x)=-3x2+14x=0得,x=.当0<x<时,f′(x)>0,则f(x)在上单调递增,当x>时,f′(x)<0,f(x)在上单调递减,所以当x>0时,f(x)max=f.又n∈N*,4<<5,a4=48,a5=50,所以a n的最大值为50.答案:5016.已知数列{a n}的通项公式为a n=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,a n=0,a n>0,a n<0?(3)该数列前n项和S n是否存在最值?说明理由. 解:(1)由a n=n2-n-30,得a1=12-1-30=-30,a2=22-2-30=-28,a3=32-3-30=-24.设a n=60,则60=n2-n-30.解之得n=10或n=-9(舍去).∴60是此数列的第10项.(2)令a n=n2-n-30=0,解得n=6或n=-5(舍去).∴a6=0.令n2-n-30>0,解得n>6或n<-5(舍去).∴当n>6(n∈N*)时,a n>0.令n2-n-30<0,解得0<n<6.∴当0<n<6(n∈N*)时,a n<0.(3)S n存在最小值,不存在最大值.由a n=n2-n-30=-30,(n∈N*)知{a n}是递增数列,且a1<a2<…<a5<a6=0<a7<a8<a9<…,故S n存在最小值S5=S6,不存在最大值.。

一轮复习理科数学第五篇 数列(必修5) 第1节 数列的概念与简单表示法

一轮复习理科数学第五篇 数列(必修5) 第1节 数列的概念与简单表示法

如果数列{an}的第n项与 序号n
之间的关系可以用一个式子来表示,那
么这个公式叫做这个数列的通项公式.
6.数列的递推公式
如果已知数列{an}的首项(或前几项),且从第二项开始的任何一项an与它的前
一项an-1(或前几项)间的关系可以用一个式子来表示,即an=f(an-1)或an=f(an-1,
an-2),那么这个式子叫做数列{an}的递推公式.
21
22
23
24

an=(-1)n
2n 2n
3
.
反思归纳
根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征; (4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.
【跟踪训练 1】 (1)数列 1,3,6,10,…的一个通项公式是( ) (A)an=n2-(n-1) (B)an=n2-1
an 1
(A) 3 2
(B) 5 3
(C) 8 5
(D) 2 3
解析:a2=1+ 1 ,a3=1+ 1 = 1 ,a4=1+ 1 =3,a5=1+ 1 = 2 .故选 D.
a1
a2 2
a3
a4 3
4.已知an=n2+λ n,且对于任意的n∈N*,数列{an}是递增数列,则实数λ 的取值
范围是
解:(1)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比 它的前一项的绝对值大6,故通项公式为an=(-1)n(6n-5).
(2)0.8,0.88,0.888,…;
解:(2)数列变为 8 (1- 1 ), 8 (1- 1 ), 8 (1- 1 ),…

高考数学大一轮复习第五章数列第1节数列的概念及简单表示法讲义理含解析新人教A版0425236.doc

高考数学大一轮复习第五章数列第1节数列的概念及简单表示法讲义理含解析新人教A版0425236.doc

第1节 数列的概念及简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式); 2.了解数列是自变量为正整数的一类特殊函数.知 识 梳 理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. [微点提醒]1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.(必修5P33A4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.答案 D3.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2019·山东省实验中学摸底)已知数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),S n 为其前n项和,则S 5的值为( ) A.57B.61C.62D.63解析 由条件可得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,a 5=2a 4+1=31,所以S 5=a 1+a 2+a 3+a 4+a 5=1+3+7+15+31=57.答案 A5.(2018·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n+12 B.cos n π2C.cosn +12π D.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D6.(2019·天津河东区一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 ∵S n =a 1(4n -1)3,a 4=32,则a 4=S 4-S 3=32.∴255a 13-63a 13=32,∴a 1=12.答案 12考点一 由数列的前几项求数列的通项【例1】 (1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C.a n =2sinn π2D.a n =cos(n -1)π+1(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析 (1)对n =1,2,3,4进行验证,a n =2sinn π2不合题意.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…,故其通项公式可以为a n =(-1)n·2n-32n .答案 (1)C (2)a n =(-1)n·2n-32n规律方法 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k或(-1)k +1,k ∈N*处理.【训练1】 写出下列各数列的一个通项公式: (1)-11×2,12×3,-13×4,14×5,…;(2)12,2,92,8,252,…; (3)5,55,555,5 555,….解 (1)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n =(-1)n×1n (n +1),n ∈N *.(2)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22. (3)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).考点二 由an 与S n 的关系求通项易错警示【例2】 (1)(2019·广州质检)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________________.(2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列.∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2 (2)-63规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.例如例2第(1)题易错误求出a n =2n (n ∈N *).【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. (2)已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2. 答案 (1)4n -5 (2)⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项 易错警示【例3】 (1)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n(2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________. 解析 (1)因为a n +1-a n =ln n +1n=ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1,a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3,a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n ,且a 1=2也适合, 因此a n =2+ln n (n ∈N *). (2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1=2n +1, 又a 1也满足上式,所以a n =2n +1. (3)由a n +1=2a n +3,得a n +1+3=2(a n +3). 令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.(4)因为a n +1=2a na n +2,a 1=1,所以a n ≠0, 所以1a n +1=1a n +12,即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12=n +12.所以a n =2n +1. 答案 (1)A (2)2n +1 (3)2n +1-3 (4)2n +1规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列. (4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.易错警示 本例(1),(2)中常见的错误是忽视验证a 1是否适合所求式.【训练3】 (1)(2019·山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________. 解析 (1)a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1, 则a n =2n -2+2n -3+…+2+1+n -1+a 1=1-2n -11-2+n -1+2=2n -1+n .(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.答案 (1)2n -1+n (2)2n (n -1)2考点四 数列的性质【例4】 (1)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A.310B.19C.119D.1060(2)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n -1,12<a n<1,a 1=35,则数列的第2 019项为________.解析 (1)令f (x )=x +90x(x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大. (2)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 019=a 504×4+3=a 3=25.答案 (1)C (2)25规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断.【训练4】 (1)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020=________. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是________. 解析 (1)∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 020=a 2=0.(2)由a n +1>a n 知该数列是一个递增数列,又通项公式a n =n 2+kn +4,所以(n +1)2+k (n +1)+4>n 2+kn +4,即k >-1-2n . 又n ∈N *,所以k >-3. 答案 (1)0 (2)(-3,+∞)[思维升华]1.数列是特殊的函数,要利用函数的观点认识数列.2.已知递推关系求通项公式的三种常见方法: (1)算出前几项,再归纳、猜想.(2)形如“a n +1=pa n +q ”这种形式通常转化为a n +1+λ=p (a n +λ),由待定系数法求出λ,再化为等比数列.(3)递推公式化简整理后,若为a n +1-a n =f (n )型,则采用累加法;若为a n +1a n=f (n )型,则采用累乘法. [易错防范]1.解决数列问题应注意三点(1)在利用函数观点研究数列时,一定要注意自变量的取值是正整数. (2)数列的通项公式不一定唯一. (3)注意a n =S n -S n -1中需n ≥2.2.数列{a n }中,若a n 最大,则a n ≥a n -1且a n ≥a n +1;若a n 最小,则a n ≤a n -1且a n ≤a n +1.基础巩固题组 (建议用时:40分钟)一、选择题1.数列1,3,6,10,15,…的一个通项公式是( ) A.a n =n 2-(n -1) B.a n =n 2-1 C.a n =n (n +1)2D.a n =n (n -1)2解析 观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, …所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.答案 C2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132.答案 A3.(2019·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( )A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2 019=a 673×3=a 3=45. 答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2019·成都诊断)已知f (x )=⎩⎪⎨⎪⎧(2a -1)x +4(x ≤1),a x (x >1),数列{a n }(n ∈N *)满足a n =f (n ),且{a n }是递增数列,则a 的取值范围是( ) A.(1,+∞) B.⎝ ⎛⎭⎪⎫12,+∞C.(1,3)D.(3,+∞)解析 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a >1,a 2>2a -1+4,解得a >3,则a 的取值范围是(3,+∞).答案 D二、填空题6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项. 解析 令n -2n 2=0.08,得2n 2-25n +50=0, 则(2n -5)(n -10)=0,解得n =10或n =52(舍去). 所以a 10=0.08.答案 107.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2. 答案 ⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 8.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =________. 解析 由题意得a n +1n +1-a n n =ln(n +1)-ln n ,a n n -a n -1n -1=ln n -ln(n -1)(n ≥2). ∴a 22-a 11=ln 2-ln 1,a 33-a 22=ln 3-ln 2,…, a n n -a n -1n -1=ln n -ln(n -1)(n ≥2). 累加得a n n -a 11=ln n ,∴a n n=2+ln n (n ≥2), 又a 1=2适合,故a n =2n +n ln n .答案 2n +n ln n三、解答题9.(2016·全国Ⅲ卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1. 10.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1,S 2=a 1+a 2=12a 22+12a 2,解得a 2=2,同理,a 3=3,a 4=4.(2)S n =12a 2n +a n 2,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n .能力提升题组(建议用时:20分钟)11.(2019·山东新高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 018这2 018个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( )A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 018得1≤n ≤97,又n ∈N *,故此数列共有97项.答案 B 12.已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n =________. 解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, 即⎩⎪⎨⎪⎧(n +2)·⎝ ⎛⎭⎪⎫67n ≥(n +1)·⎝ ⎛⎭⎪⎫67n -1,(n +2)·⎝ ⎛⎭⎪⎫67n ≥(n +3)·⎝ ⎛⎭⎪⎫67n +1, 解得⎩⎪⎨⎪⎧n ≤5,n ≥4,即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 答案 4或513.(2019·菏泽模拟)已知数列{a n }的前n 项和为S n ,且满足S n =(-1)n ·a n -12n ,记b n =8a 2·2n -1,若对任意的n ∈N *,总有λb n -1>0成立,则实数λ的取值范围为________. 解析 令n =1,得a 1=-14; 令n =3,可得a 2+2a 3=18; 令n =4,可得a 2+a 3=316, 故a 2=14,即b n =8a 2·2n -1=2n . 由λb n -1>0对任意的n ∈N *恒成立, 得λ>⎝ ⎛⎭⎪⎫12n对任意的n ∈N *恒成立, 又⎝ ⎛⎭⎪⎫12n ≤12, 所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎫12,+∞ 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).新高考创新预测15.(数学文化)著名的斐波那契数列{a n }:1,1,2,3,5,8,…,满足a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,那么1+a 3+a 5+a 7+a 9+…+a 2 017是斐波那契数列的第________项. 解析 1+a 3+a 5+a 7+a 9+…+a 2 017=a 2+a 3+a 5+a 7+a 9+…+a 2 017=a 4+a 5+a 7+a 9+…+a 2 017=a 6+a 7+a 9+…+a 2 017=a 8+a 9+…+a 2 017=…=a 2 016+a 2 017=a 2 018,即为第2 018项. 答案 2 018精美句子1、善思则能“从无字句处读书”。

高考数学一轮总复习 5.1 数列的概念与简单表示法课件(含高考真题)文 新人教版

高考数学一轮总复习 5.1 数列的概念与简单表示法课件(含高考真题)文 新人教版

考点(kǎo
diǎn)三
第十九页,共28页。
探究
(tànjiūБайду номын сангаас突

-1
(1)∵an=

-2
an-1(n≥2),∴an-1=
-1
1
2
-1
2
3

an=a1· · ·…·
=
1

1
an-2,…,a2= a1.以上(n-1)个式子相乘得
2
1
= .

(2)∵an+1-an=3n+2,
∴an-an-1=3n-1(n≥2),
第二十一页,共28页。
探究(tànjiū)
突破
考点三
已知数列(shùliè)的前n项和求通项公式
【例 3】 已知数列{an}的前 n 项和为 Sn,求下列条件下数列的通项公式 an.
(1)Sn=2·
5n-2;
(2)S1=1,Sn+1=3Sn+2.
(1)当 n=1 时,a1=S1=2×5-2=8.
当 n≥2 时,an=Sn-Sn-1=2·5n-2-2·5n-1+2=8·5n-1.
(1)求数列{an}的通项公式;
1
(2)这个数列从第几项开始各项均小于
?
1
000
-1

(1)an=

-1
1 1+2+…+(-1)
2
·
=
-1
-2
2
(-1)
(-1)
时,
2
≥10,an=
1
2
2
1
2
1
2
·…· · ·a1=

高考数学一轮复习第五篇数列第1节数列的概念与简单表示法训练理新人教版

高考数学一轮复习第五篇数列第1节数列的概念与简单表示法训练理新人教版

第1节数列的概念与简单表示法基础巩固(时间:30分钟)1.(2017·山西二模)现在有这么一列数:2, , , , ,,,…,按照规律,横线中的数应为( B )(A)(B)(C) (D)解析:由题意可得,分子为连续的质数,分母依次为2n-1,故横线上的数应该为.故选B.2.在数列{a n}中,a1=,a n+1=1-,则a5等于( C )(A)2 (B)3 (C)-1 (D)解析:由题意可得a2=1-2=-1,a3=1+1=2,a4=1-=,a5=1-2=-1,故选C.3.(2017·湖南永州三模)已知数列{a n}满足a1=1,a n+1a n+S n=5,则a2等于( C )(A)2 (B)3 (C)4 (D)5解析:因为a1=1,a n+1a n+S n=5,所以a2·a1+a1=5,即a2+1=5,解得a2=4.故选C.4.设a n=-3n2+15n-18,则数列{a n}中的最大项的值是( D )(A)(B)(C)4 (D)0解析:因为a n=-3(n-)2+,由二次函数性质得,当n=2或3时,a n最大,此时a n=0.故选D.5.(2017·湖南岳阳一模)已知数列{a n}的前n项和为S n,且a1=1,S n=,则a2 017等于( B )(A)2 016 (B)2 017 (C)4 032 (D)4 034解析:因为a1=1,S n=,所以n≥2时,a n=S n-S n-1=-,可化为=,所以==…==1,所以a n=n,则a2 017=2 017.故选B.6.在数列{a n}中,已知a1=2,a2=7,a n+2等于a n a n+1(n∈N*)的个位数,则a2 017等于( D )(A)8 (B)6 (C)4 (D)2解析:由题意得a3=4,a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 017=a335×6+7=a7=2.故选D.7.已知数列{a n}:2,-6,12,-20,30,-42,….写出该数列的一个通项公式: .解析:根据题意,a1=(-1)2×1×2=2,a2=(-1)3×2×3=-6,a3=(-1)4×3×4=12,…归纳可得a n=(-1)n+1×n×(n+1)=(-1)n+1×n·(n+1).答案:a n=(-1)n+1×n·(n+1)8.(2017·渭南一模)如果数列{a n}的前n项和S n=2a n-1,则此数列的通项公式a n= . 解析:当n≥2时a n=S n-S n-1=(2a n-1)-(2a n-1-1)=2a n-2a n-1,整理得a n=2a n-1,又因为当n=1时,a1=S1=2a1-1,即a1=1,所以数列{a n}构成以1为首项,2为公比的等比数列,所以a n=1·2n-1=2n-1.答案:2n-1能力提升(时间:15分钟)9.(2017·河北保定二模)已知数列{a n}中,前n项和为S n,且S n=a n,则的最大值为( C )(A)-3 (B)-1 (C)3 (D)1解析:因为S n=a n,所以n≥2时,a n=S n-S n-1=a n-a n-1,化为==1+,由于数列()单调递减,可得n=2时,取得最大值2.所以的最大值为3.故选C.10.若数列{a n}满足a1=2,a n+1=(n∈N*),则该数列的前2 017项的乘积是( C )(A)-2 (B)-3 (C)2 (D)-解析:因为数列{a n}满足a1=2,a n+1=(n∈N*),所以a2==-3,同理可得a3=-,a4=,a5=2,….所以a n+4=a n且a1a2a3a4=1.所以该数列的前2 017项的乘积为1504×a1=2.故选C.11.(2017·湖南永州二模)已知数列{a n}的前n项和S n=3n(λ-n)-6,若数列{a n}单调递减,则λ的取值范围是( A )(A)(-∞,2) (B)(-∞,3)(C)(-∞,4) (D)(-∞,5)解析:因为S n=3n(λ-n)-6,①所以S n-1=3n-1(λ-n+1)-6,n>1,②①-②得数列{a n}:a n=3n-1(2λ-2n-1)(n>1,n∈N*)为单调递减数列,所以a n>a n+1,且a1>a2,又a1=S1=3(λ-1)-6=3λ-9,a2=6λ-15,所以3n-1(2λ-2n-1)>3n(2λ-2n-3),且λ<2,化为λ<n+2(n>1),且λ<2,所以λ<2,所以λ的取值范围是(-∞,2).故选A.12.(2017·江西鹰潭二模)数列{a n}的前n项和是S n,a1=1,2S n=a n+1(n∈N+),则a n= .解析:因为a1=1,2S n=a n+1(n∈N+),①所以当n≥2时,2S n-1=a n,②①-②得2a n=a n+1-a n,所以=3(n≥2),又a2=2S1=2a1=2,所以数列{a n}从第二项起,是以2为首项,3为公比的等比数列,即a n=2·3n-2(n≥2), 所以a n=答案:13.根据下列条件,确定数列{a n}的通项公式.(1)a1=1,a n+1=3a n+2;(2)a1=1,a n+1=(n+1)a n;(3)a1=2,a n+1=a n+ln(1+).解:(1)因为a n+1=3a n+2,所以a n+1+1=3(a n+1),所以=3,所以数列{a n+1}为等比数列,公比q=3,首项a1+1=2,所以a n+1=2·3n-1,所以a n=2·3n-1-1.(2)因为a n+1=(n+1)a n,所以=n+1,所以=n,=n-1,…=3,=2,a1=1.累乘可得a n=n×(n-1)×(n-2)×…×3×2×1=n!.故a n=n!.(3)因为a n+1=a n+ln(1+),所以a n+1-a n=ln(1+)=ln,所以a n-a n-1=ln,a n-1-a n-2=ln,…a2-a1=ln,累加可得a n-a1=ln+ln+…+ln=ln n.又a1=2,所以a n=ln n+2.14.(2017·贵州模拟)已知数列{a n}满足a1=1,且na n+1-(n+1)a n=2n2+2n.(1)求a2,a3;(2)证明数列{}是等差数列,并求{a n}的通项公式. 解:(1)由数列{a n}满足a1=1,且na n+1-(n+1)a n=2n2+2n, 所以a2-2×1=4,解得a2=6.2a3-3×6=2×22+2×2,解得a3=15.(2)因为na n+1-(n+1)a n=2n2+2n,所以-=2,又因为=1,所以数列{}是等差数列,首项为1,公差为2,所以=1+2(n-1)=2n-1,解得a n=2n2-n.。

2022届高考数学一轮复习第五章数列第一节数列的概念与简单表示法课时规范练理含解析新人教版20210

2022届高考数学一轮复习第五章数列第一节数列的概念与简单表示法课时规范练理含解析新人教版20210

第一节 数列的概念与简单表示法[A 组 根底对点练]1.数列{a n }的前4项分别为2,0,2,0,如此归纳该数列的通项不可能是( ) A .a n=(-1)n -1+1 B .an =⎩⎪⎨⎪⎧2,n 为奇数0,n 为偶数C .a n =2sinn π2D .a n =cos (n -1)π+1解析:对于选项C ,当n =3时,sin 3π2=-1,如此a 3=-2,与题意不符.答案:C2.(2021·某某某某模拟)数列1,3,5,7,…,2n -1,假如35是这个数列的第n 项,如此n =( )A .20B .21C .22D .23 解析:由2n -1=35=45,得2n -1=45,即2n =46,解得n =23.答案:D3.设数列{a n }的前n 项和S n =n 2+n ,如此a 4的值为( ) A .4 B .6 C .8D .10 解析:a 4=S 4-S 3=20-12=8. 答案:C4.(2020·某某四校联考)假如数列的前4项分别是12,-13,14,-15,如此此数列的一个通项公式为( )A .〔-1〕n +1n +1B .〔-1〕n n +1C .〔-1〕n nD .〔-1〕n -1n解析:由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪⎪⎪1n +1,故此数列的一个通项公式为〔-1〕n +1n +1. 答案:A5.(2020·某某某某诊断)数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),如此a 5的值为( )A .-2B .-1C .1D .2解析:由题意可得,a n +2=a n +1-a n ,如此a 3=a 2-a 1=2-1=1,a 4=a 3-a 2=1-2=-1,a 5=a 4-a 3=-1-1=-2.答案:A6.数列{a n }满足:a 1=1,且当n ≥2时,a n =n -1na n -1,如此a 5=( )A .15B .16C .5D .6解析:因为a 1=1,且当n ≥2时,a n =n -1n a n -1,如此a n a n -1=n -1n ,所以a 5=a 5a 4·a 4a 3·a 3a 2·a 2a 1·a 1=45×34×23×12×1=15. 答案:A7.数列{a n }的通项公式是a n =2n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列 解析:因为a n +1-a n =2〔n +1〕3〔n +1〕+1-2n 3n +1=2[3〔n +1〕+1]〔3n +1〕>0,所以a n +1>a n ,所以数列{a n }为递增数列.答案:A8.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),假如p -q =5,如此a p -a q =( ) A .10 B .15 C .-5 D .20解析:当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.答案:D9.(2020·某某某某模拟)设数列{a n }的前n 项和为S n ,且S n =a 1〔4n -1〕3,假如a 4=32,如此a 1=__________.解析:∵S n =a 1〔4n -1〕3,a 4=32,∴a 4=S 4-S 3=255a 13-63a 13=32,∴a 1=12.答案:1210.数列{a n }的前n 项和S n =2n ,如此a 3+a 4=________.解析:当n ≥2时,a n =2n -2n -1=2n -1,所以a 3+a 4=22+23=12.11.数列{a n }的前n 项和S n =3-3·2n ,n ∈N *,如此a n =________. 解析:①当n =1时,a 1=S 1=3-3×21=-3.②当n ≥2时,a n =S n -S n -1=(3-3·2n )-(3-3·2n -1)=-3·2n -1. 当n =1时也符合上式, 综合①②,得a n =-3·2n -1. 答案:-3·2n -112.数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),如此该数列的前2 020项的乘积a 1·a 2·a 3·…·a 2 020=________.解析:因为a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,所以数列{a n }是以4为周期的数列,而2 020=4×505,所以前2 020项的乘积为(a 1a 2a 3a 4)505=1.答案:1[B 组 素养提升练]1.数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,如此S n =( )A .2n -1B .⎝ ⎛⎭⎪⎫32n -1C .⎝ ⎛⎭⎪⎫23n -1D .12n -1解析:由S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n=32,而S 1=a 1=1,所以S n =⎝ ⎛⎭⎪⎫32n -1.2.设数列{a n }的通项公式为a n =n 2-bn .假如数列{a n }是单调递增数列,如此实数b 的取值X 围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎥⎤-∞,92解析:因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3. 答案:C3.(2021·某某某某模拟)在数列{a n }中,a 1=1,a n +1=(-1)n ·(a n +1),记S n 为{a n }的前n 项和,如此S 2 021=________.解析:因为数列{a n }满足a 1=1,a n +1=(-1)n (a n +1), 所以a 2=-(1+1)=-2,a 3=-2+1=-1,a 4=-(-1+1)=0,a 5=0+1=1,a 6=-(1+1)=-2,a 7=-2+1=-1,…,所以{a n }是以4为周期的周期数列,因为2 021=505×4+1,所以S 2 021=505×(1-2-1+0)+1=-1 009.答案:-1 0094.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如下列图的三角形数:将三角形数1,3,6,10,…,记为数列{a n },如此数列{a n }的通项公式为________________. 解析:由题图可知,a n +1-a n =n +1,a 1=1,由累加法可得a n =n 〔n +1〕2.答案:a n =n 〔n +1〕2。

高考数学一轮复习 第五章 数列 第1讲 数列的概念与简单表示法课件 文 新人教版

高考数学一轮复习 第五章 数列 第1讲 数列的概念与简单表示法课件 文 新人教版

(4)







5 9
×9

5 9
×99

5 9
×999







9,99,999,…的通项为 10n-1,故所求的数列的一个通项公式为 an= 59(10n-1).
题型二 an 与 Sn 关系的应用(重点保分题,共同探讨) 考向一 利用 an 与 Sn 的关系求 an 1.(2018·南昌月考)若数列{an}的前 n 项和 Sn=23an+13,则{an} 的通项公式 an=________.
题型三 由数列的递推关系求数列的通项公式(重点保分题,共 同探讨)
考向一 形如 an+1=an+f(n)求 an 1.在数列{an}中,a1=2,an+1=an+nn1+1,求数列{an}的通 项公式. [解] 由题意,得 an+1-an=nn1+1=1n-n+1 1, an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n-1 1-n1+n-1 2-n-1 1+…+12-31+1-12+2=3-1n.
【针对补偿】
3.已知数列{an}中,Sn 是其前 n 项和,若 Sn=3n+2n+1,则 an =________.
[解析] 因为当 n=1 时,a1=S1=6;当 n≥2 时, an=Sn-Sn-1=(3n+2n+1)-[3n-1+2(n-1)+1] =2·3n-1+2,由于 a1 不适合此式,所以 an=62·,3nn-=1+12,,n≥2.
)
3
5
A.2
B.3
8
2
C.5
D.3
[解析] a2=1+-a11 2=2,a3=1+-a213=12,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习第五篇数列第1节数列的概念与简单表示
法训练理新人教版(1)
【选题明细表】
基础巩固(时间:30分钟)
1.(2017·山西二模)现在有这么一列数:2, , , , ,,,…,按照规
律,横线中的数应为( B )
(A) (B) (C) (D)
解析:由题意可得,分子为连续的质数,分母依次为2n-1,故横线上的数应该为.
故选B.
2.在数列{an}中,a1=,an+1=1-,则a5等于( C )
(A)2 (B)3 (C)-1 (D)
解析:由题意可得a2=1-2=-1,a3=1+1=2,a4=1-=,a5=1-2=-1,
故选C.
3.(2017·湖南永州三模)已知数列{an}满足a1=1,an+1an+Sn=5,则a2
等于( C )
(A)2 (B)3 (C)4 (D)5
解析:因为a1=1,an+1an+Sn=5,所以a2·a1+a1=5,即a2+1=5,解得a2=4.故选C.
4.设an=-3n2+15n-18,则数列{an}中的最大项的值是( D )
(A) (B) (C)4 (D)0
解析:因为an=-3(n-)2+,由二次函数性质得,当n=2或3时,an最大,此时an=0.
故选D.
5.(2017·湖南岳阳一模)已知数列{an}的前n项和为Sn,且a1=1,Sn=,
则a2 017等于( B )
(A)2 016 (B)2 017 (C)4 032 (D)4 034
解析:因为a1=1,Sn=,
所以n≥2时,an=Sn-Sn-1=-,可化为=,
所以==…==1,
所以an=n,则a2 017=2 017.
故选B.
6.在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的个位数,则a2 017等于( D )
(A)8 (B)6 (C)4 (D)2。

相关文档
最新文档