【高考调研】2016届高三理科数学一轮复习配套题组层级快练75

合集下载

【高考调研】2016届高三理科数学一轮复习配套题组层级快练46

【高考调研】2016届高三理科数学一轮复习配套题组层级快练46

题组层级快练(四十六)1.如图是2015年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一呈现出来的图形是()答案 A解析该五角星对角上的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A.2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a2 016=()A.3B.-3C.6 D.-6答案 B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{a n}是以6为周期的周期数列.又2 016=6×335+6,∴a2 016=a6=-3.选B.3.定义一种运算“*”:对于自然数n满足以下运算性质:①1]()A.n B.n+1C.n-1 D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2= (1)4.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”.②“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.③“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”.其中类比得到的结论正确的个数是()A.0 B.1C.2 D.3答案 C解析提示:①③正确.5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=() A.28 B.76C.123 D.199答案 C解析 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.6.(2015·济宁模拟)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18 B.19 C.164 D.127答案 D解析 正四面体的内切球与外接球的半径之比为1∶3,故体积之比为V 1V 2=127.7.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +ax n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n 答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .8.已知a n =(13)n ,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( ) A .(13)67B .(13)68C .(13)111D .(13)112答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=(13)112.9.(2015·郑州质检)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为r ,四面体ABCD 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体ABCD 的内切球的球心为O ,则球心O 到四个面的距离都是r ,所以四面体ABCD 的体积等于以O 为顶点,分别以四个面为底面的四个三棱锥的体积的和,则四面体ABCD 的体积为V =13(S 1+S 2+S 3+S 4)r ,所以r =3VS 1+S 2+S 3+S 4,故选C.10.(2015·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2 013=( ) A .501 B .502 C .503 D .504答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2 013=x 1 007=504.11.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案 1∶8解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方. 同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.∴它们的体积比为1∶8.12.设数列{a n }是以d 为公差的等差数列,数列{b n }是以q 为公比的等比数列.将数列{a n }的相关量或关系式输入“LHQ 型类比器”左端的入口处,经过“LHQ 型类比器”后从右端的出口处输出数列{b n }的相关量或关系式,则在右侧的“?”处应该是________.答案 B n =b 1×(q )n -1解析 注意类比的对应关系:+→×,÷→开方,×→乘方,0→1,所以B n =b 1×(q )n -1.13.已知数列{a n }为等差数列,则有等式a 1-2a 2+a 3=0,a 1-3a 2+3a 3-a 4=0,a 1-4a 2+6a 3-4a 4+a 5=0.(1)若数列{a n }为等比数列,通过类比,则有等式________;(2)通过归纳,试写出等差数列{a n }的前n +1项a 1,a 2,…,a n ,a n +1之间的关系为________.答案 (1)a 1a -22a 3=1,a 1a -32a 33a -14=1,a 1a -42a 63a -44a 5=1(2)C 0n a 1-C 1n a 2+C 2n a 3-…+(-1)n C n n a n +1=0解析 因等差数列与等比数列之间的区别是前者是加法运算,后者是乘法运算,所以类比规律是由第一级运算转化到高一级运算,从而解出第(1)问;通过观察发现,已知等式的系数与二项式系数相同,解出第(2)问.14.已知 2+23=223, 3+38=338, 4+415= 4415,…,若 6+a t =6a t,(a ,t 均为正实数),类比以上等式,可推测a ,t 的值,则a +t =________. 答案 41解析 根据题中所列的前几项的规律可知其通项应为n +nn 2-1=n nn 2-1,所以当n =6时a =6,t =35,a +t =41.15.如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面的结论有________.答案 S 2=S 21+S 22+S 23解析 建立从平面图形到空间图形的类比,在由平面几何的性质类比推理空间立体几何的性质时,注意平面几何中点的性质可类比推理空间几体中线的性质,平面几何中线的性质可类比推理空间几何中面的性质,平面几何中面的性质可类比推理空间几何中体的性质.所以三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.16.(2015·山东日照阶段训练)二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.答案 2πr 4解析 据归纳猜想可知(2πr 4)′=8πr 3,所以四维测度W =2πr 4. 17.(2014·陕西理)观察分析下表中的数据:答案 F +V -E =2解析 三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论. 答案 (1)34 (2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34解析 方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同解法一. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos (60°-2α)2-sin α·(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34·sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.1.分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路,按照图甲所示的分形规律可得图乙所示的一个树形图.易知第三行有白圈5个,黑圈4个,我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为(1,0),第二行记为(2,1),第三行记为(5,4).(1)第四行的白圈与黑圈的“坐标”为________;(2)照此规律,第n 行中的白圈、黑圈的“坐标”为________. 答案 (1)(14,13) (2)(3n -1+12,3n -1-12)(n ∈N *)解析 (1)从题中的条件易知白圈、黑圈的变化规律:一个白圈的下一行对应两个白圈和一个黑圈,一个黑圈的下一行对应一个白圈和两个黑圈,因此第4行的白圈个数为5×2+4×1=14,黑圈个数为5×1+4×2=13,所以第四行的白圈与黑圈的“坐标”为(14,13).(2)第n 行中的白圈和黑圈总数为3n-1个,设“坐标”为(a n,3n -1-a n ),则第n +1行中的白圈和黑圈总数为3n个,设“坐标”为(a n +1,3n-a n +1)=(a n +3n -1,2×3n -1-a n ),即a 1=1,a n +1=a n +3n -1⇒a n =3n -1+12,从而得到第n 行中的白圈、黑圈的“坐标”为(3n -1+12,3n -1-12)(n ∈N *).2.(2013·湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 答案 1 000解析 方法一:已知式了可化为: N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2+-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,由归纳推理,可得N (n ,k )=k -22n 2+4-k2n , 故N (10,24)=24-22×102+4-242×10=1 100-100=1 000.方法二:由题意,设N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列,数列{b k }是以12为首项,-12为公差的等差数列,所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练38

【高考调研】2016届高三理科数学一轮复习配套题组层级快练38

题组层级快练(三十八)1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 答案 A解析 a 1=S 1=1,a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2).a 8=2×8-1=15.故选A.2.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 013等于( )A .2 013×2 014B .2 012×2 013C .2 011×2 012D .2 013×2 013 答案 B解析 累加法易知选B.3.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n(n ≥2),则x n 等于( ) A .(23)n -1 B .(23)n C.n +12D.2n +1答案 D解析 由关系式易知⎩⎨⎧⎭⎬⎫1x n 为首项为1x 1=1,d =12的等差数列,1x n =n +12,所以x n =2n +1. 4.已知数列{a n }中a 1=1,a n =12a n -1+1(n ≥2),则a n =( ) A .2-(12)n -1 B .(12)n -1-2 C .2-2n -1 D .2n -1答案 A解析 设a n +c =12(a n -1+c ),易得c =-2,所以a n -2=(a 1-2)(12)n -1=-(12)n -1,所以选A. 5.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1)B .2·3nC .3·2nD .3n +1答案 B解析 a n =S n -S n -1,可知选B.6.(2015·衡水调研)运行如图的程序框图,则输出的结果是( )A .2 014B .2 013 C.12 014D.12 013答案 D解析 如果把第n 个a 值记作a n ,第1次运行后得到a 2=a 1a 1+1,第2次运行后得到a 3=a 2a 2+1,…,第n 次运行后得到a n +1=a n a n +1,则这个程序框图的功能是计算数列{a n }的第2 013项.将a n +1=a n a n +1变形为1a n +1=1a n +1,故数列{1a n }是首项为1,公差为1的等差数列,故1a n =n ,即a n =1n ,所以输出结果是12 013.故选D.7.在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________. 答案 4-1n解析 原递推式可化为a n +1=a n +1n -1n +1, 则a 2=a 1+11-12,a 3=a 2+12-13, a 4=a 3+13-14,…,a n =a n -1+1n -1-1n. 逐项相加,得a n =a 1+1-1n .故a n =4-1n. 8.已知数列{a n }的首项a 1=12,其前n 项和S n =n 2a n (n ≥1),则数列{a n }的通项公式为________. 答案 a n =1n (n +1)解析 由a 1=12,S n =n 2a n ,① ∴S n -1=(n -1)2a n -1.②①-②,得a n =S n -S n -1=n 2a n -(n -1)2a n -1,即a n =n 2a n -(n -1)2a n -1,亦即a n a n -1=n -1n +1(n ≥2). ∴a n a 1=a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·n -3n -1·…·24·13=2n (n +1).∴a n =1n (n +1). 9.在数列{a n }中,a 1=1,当n ≥2时,有a n =3a n -1+2,则a n =________.答案 2·3n -1-1 解析 设a n +t =3(a n -1+t ),则a n =3a n -1+2t .∴t =1,于是a n +1=3(a n -1+1).∴{a n +1}是以a 1+1=2为首项,以3为公比的等比数列. ∴a n =2·3n -1-1. 10.在数列{a n }中,a 1=2,a n =2a n -1+2n +1(n ≥2),则a n =________. 答案 (2n -1)·2n解析 ∵a 1=2,a n =2a n -1+2n +1(n ≥2), ∴a n 2n =a n -12n -1+2.令b n =a n 2n ,则b n -b n -1=2(n ≥2),b 1=1. ∴b n =1+(n -1)·2=2n -1,则a n =(2n -1)·2n .11.若数列{a n }满足a 1=1,a n +1=2n a n ,则数列{a n }的通项公式a n =________.答案 2n (n -1)2解析 由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1,将这n -1个等式叠乘,得a n a 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2. 12.已知{a n }满足a 1=1,且a n +1=a n 3a n +1(n ∈N *),则数列{a n }的通项公式为________. 答案 a n =13n -2解析 由已知,可得当n ≥1时,a n +1=a n 3a n +1. 两边取倒数,得1a n +1=3a n +1a n =1a n +3. 即1a n +1-1a n =3,所以{1a n }是一个首项为1a 1=1,公差为3的等差数列. 则其通项公式为1a n =1a 1+(n -1)×d =1+(n -1)×3=3n -2. 所以数列{a n }的通项公式为a n =13n -2. 13.如下图,它满足:①第n 行首尾两数均为n ;②表中的递推关系类似杨辉三角,则第n 行(n ≥2)第2个数是________.答案 n 2-n +22解析 设第n 行的第2个数为a n ,不难得出规律a n +1=a n +n ,累加得a n =a 2+2+3+…+(n -1)=n 2-n +22. 14.数列{a n }的前n 项和为S n ,且a 1=a ,S n +1=2S n +n +1,n ∈N *,求数列{a n }的通项公式.答案 a n =⎩⎪⎨⎪⎧ a ,(a +3)·2n -2-1, n =1,n ≥2解析 由S n +1=2S n +n +1,①得S n =2S n -1+(n -1)+1(n ≥2).②①-②,得S n +1-S n =2(S n -S n -1)+n -(n -1).故a n +1=2a n +1.(n ≥2)又a n +1+1=2(a n +1),所以a n +1+1a n +1=2(n ≥2). 故数列{a n +1}是从第2项起,以a 2+1为首项,公比为2的等比数列.又S 2=2S 1+1+1,a 1=a ,所以a 2=a +2.故a n =(a +3)·2n -2-1(n ≥2). 又a 1=a 不满足a n =(a +3)·2n -2-1, 所以a n =⎩⎪⎨⎪⎧ a ,(a +3)·2n -2-1, n =1,n ≥2.15.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列{b n }的通项公式. 答案 (1)a n =2n (2)b n =2(3n +1)解析 (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n ,知a 1=2满足该式,∴数列{a n }的通项公式为a n =2n .(2)∵a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1(n ≥1),①∴a n +1=b 13+1+b 232+1+b 333+1+…+b n 3n +1+b n +13n +1+1.② ②-①,得b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1). 故b n =2(3n +1)(n ∈N *).。

【高考调研】2016届高三理科数学一轮复习题组层级快练30含答案

【高考调研】2016届高三理科数学一轮复习题组层级快练30含答案

题组层级快练 (三十 )1.对于非零向量a,b,“a+b= 0”是“a∥b”的 ()A .充分不用要条件B.必要不充分条件C.充分必要条件D.既不充分也不用要条件答案A剖析若 a+b=0,则 a=- b,因此 a∥b;若 a∥b,则 a=λb,a+b=0不用然成立,故前者是后者的充分不用要条件.2.设a是任向来量,e是单位向量,且a∥e,则以下表示形式中正确的选项是 () aA .e=|a|B.a= |a|eC.a=- |a|e D.a=±|a|e答案D剖析对于 A ,当a= 0 时,a没有意义,错误;|a|对于 B, C, D 当a=0 时,选项 B, C,D 都对;当 a≠0时,由 a∥e 可知, a 与 e 同向或反向,选 D.→→→3.(2015 北·京东城期中 )已知 ABCD 为平行四边形,若向量AB=a, AC=b,则向量 BD 为()A .a-b B.a+bC.b- 2a D.-a-b答案C→ →→4.以下列图,在正六边形ABCDEF 中, BA+ CD + EF= ()→A . 0 B.BE→→C.ADD.CF答案D→→→→→→→→→剖析由于 BA=DE ,故 BA+ CD+ EF= CD + DE+EF =CF .5.(2015 广·东惠州二中模拟)已知点 O, A, B 不在同一条直线上,点P 为该平面上一点,→→→3OA-OB且 OP=,则()2A.点 P 在线段 AB 上B.点 P 在线段 AB 的反向延长线上C.点D.点答案剖析P 在线段 AB 的延长线上P 不在直线 AB 上B→→ →3→1→ →1→→→1→ →→→3OA- OB1 OP2=2OA-2OB = OA+2(OA- OB)= OA+2BA,即 OP- OA = AP=2=→BA,因此点P 在线段 AB 的反向延长线上,应选 B.→→6.在△ ABC 中,点 D 在边 AB 上, CD 均分∠ ACB.若CB=a,CA =b, |a|= 1, |b|= 2,则→CD= ()1221A. 3a+3bB.3a+3b3443C.5a+5bD.5a+5b答案B剖析由内角均分线定理,得|CA| |AD |→→→→2→→2→→|CB|=|DB |=2.∴CD = CA+ AD=CA+3AB=CA+3(CB- CA)=23CB→+13CA→=23a+13b.故B正确.→→7.已知向量i与j不共线,且 AB=i+ m j,AD =n i+j,若 A, B,D 三点共线,则实数m,n 应该满足的条件是 ()A . m+ n= 1B. m+n=- 1C. mn= 1D. mn=- 1答案 C→→剖析由 A, B, D 共线可设 AB=λAD ,于是有i+ m j=λ(n i+j)=λn i+λj.又i,j不共线,λn= 1,因此即有 mn=1.λ= m,→ →8.O 是平面上必然点, A,B,C 是该平面上不共线的三个点,一动点 P 满足: OP=OA +→→λ(AB+ AC),λ∈ (0,+∞ ),则直线 AP 必然经过△ ABC 的 ()A .外心B.内心C.重心D.垂心答案C剖析取BC中点M.→→→ →OP= OA+λ(AB +AC),→→→→OP- OA=λ(AB +AC),→→AP= 2λAD.∴A, P,D 三点共线,∴ AP 必然经过△ ABC 的重心, C 正确.→→→9.在四边形ABCD 中, AB=a+ 2b,BC=- 4a-b,CD =- 5a-3b,则四边形ABCD 的形状是 ()A .矩形B.平行四边形C.梯形D.以上都不对答案C→→→→→剖析由已知 AD= AB+ BC+ CD=- 8a- 2b= 2(-4a-b)= 2BC.→ →→→∴AD ∥BC.又 AB与 CD 不平行,∴四边形 ABCD 是梯形.→10.已知四边形 ABCD 是菱形,点 P 在对角线 AC 上(不包括端点 A,C)的充要条件是 AP=→ →λ(AB+ AD ),则λ的取值范围是 ()A .λ∈ (0,1)B.λ∈ (- 1,0)C.λ∈ (0,2D.λ∈ (-2, 0) 2)2答案A剖析以下列图,∵点 P 在对角线 AC 上 (不包括端点 A, C),→→→→→→→ →∴AP=λAC=λ(AB +AD).由 AP 与 AC同向知,λ>0. 又 |AP|<|AC|,→|AP|=λ<1,∴λ∈(0,1) .反之亦然.∴→|AC|→→→11.设 A1,A2,A3,A4是平面直角坐标系中两两不同样的四点,若A1 A3=λA1A2(λ∈R),A1A4→1+1= 2,则称 A3,A4调停切割 A1, A2.已知平面上的点=μA1 A2(μ∈R ),且C, D 调停切割点λ μA, B,则以下说法正确的选项是()A . C 可能是线段AB 的中点B. D可能是线段AB 的中点C. C,D可能同时在线段AB 上D.C,D不可以能同时在线段AB的延长线上答案D剖析若 A 成立,则λ= 1,而 1= 0,不可以能;同理 2 μB 也不可以能;若C 成立,则0<λ<1,且 0<μ<1,1+ 1>2,与已知矛盾;若λ μC,D同时在线段AB 的延长线上时,λ>1,且μ>1,1+1λ μ<2,与已知矛盾,故C,D 不可以能同时在线段AB 的延长线上,故 D 正确.12.以下列图,以下结论不正确的选项是________.→33①PQ =2a+2b;→3 3②P T =-2a-2b;→31③PS=2a-2b;→3④PR=a+b.2答案②④2→→33剖析由 a+b=3PQ,知PQ=2a+2b,①正确;由→33→ →PT=2a-2b,从而②错误;PS=PT+→ 3 1→ → 3 1b,故PS=2a-2b,③正确;PR=PT+2b=2a+2b,④错误.故正确的为①③.→ →13.以下列图,已知∠B= 30°,∠ AOB= 90°,点 C 在 AB 上, OC⊥AB,用 OA和 OB来表示→→向量 OC,则 OC等于 ________.答案剖析3→1→4OA+ OB4→→→→1→→1→→ 3→1→OC= OA+ AC= OA+4AB= OA+4(OB- OA)=4OA+4OB.→→→14.设a和b是两个不共线的向量,若AB= 2a+k b, CB=a+b, CD= 2a-b,且 A, B,D 三点共线,则实数 k 的值等于 ________.答案- 4→ →→→ → →剖析∵A, B,D 三点共线,∴ AB∥BD .∵AB= 2a+ k b, BD= BC+ CD =a- 2b,∴k=- 4.故填- 4.→→→15.已知 O 为△ ABC 内一点,且 OA+ OC+ 2OB= 0,则△ AOC 与△ ABC 的面积之比是________.答案1∶ 2剖析以下列图,取 AC 中点 D.→→→∴OA+OC= 2OD.→→∴OD= BO.∴O 为 BD 中点,∴面积比为高之比.16.已知向量a= 2e1- 3e2,b= 2e1+ 3e2,其中e1,e2不共线,向量c=2e1- 9e2.问可否存在这样的实数λ,μ,使向量 d=λa+μb 与 c 共线?答案当λ=- 2μ时共线剖析∵d=λ(2 e1-3e2)+μ(2e1+3e2)=(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2.要使 d 与 c 共线,则应有实数k,使d= k c.即(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2= 2k e1- 9k e2.2λ+ 2μ=2k,即得λ=- 2μ.- 3λ+ 3μ=- 9k,故存在这样的实数λ,μ,只要λ=- 2μ,就能使 d 与 c 共线.17.以下列图,已知点G 是△ ABO 的重心.→→→(1)求 GA+ GB+GO;→→→→(2)若 PQ 过△ ABO 的重心 G,且 OA=a,OB=b, OP=m a, OQ= n b,求证:m 1+1n= 3.→→→答案(1)GA+ GB+ GO= 0 (2)略剖析(1) 以下列图,延长OG 交 AB 于 M 点,则M 是AB的中点.→→→∴GA+GB= 2GM.∵G 是△ABO 的重心,→→∴GO=- 2GM .→→→∴GA+GB+ GO= 0. (2)∵M 是 AB 边的中点,→ 1 →→1∴OM =2(OA + OB)=2(a+b).→ 2→1又∵G 是△ABO 的重心,∴ OG=3OM=3(a+b).→→→111∴PG=OG- OP=3(a+b) -m a=(3- m)a+3b.→→→而PQ =OQ - OP= n b- m a,∵P, G, Q 三点共线,→→∴有且只有一个实数λ,使得PG=λPQ.∴(1-m)a+1 =λn-λm 33bba.∴(1-m+λm)a+ (1-λn)b=0.3313- m+λm= 0,1 +1= 3.∵a 与 b 不共线,∴消去λ,得1m n3-λn= 0.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练27

【高考调研】2016届高三理科数学一轮复习配套题组层级快练27

题组层级快练(二十七)1.函数y =cos(x +π6),x ∈[0,π2]的值域是( ) A .(-32,12] B .[-12,32] C .[12,32] D .[-32,-12] 答案 B解析 x ∈[0,π2],x +π6∈[π6,23π],∴y ∈[-12,32]. 2.如果|x |≤π4,那么函数f (x )=cos 2x +sin x 的最小值是( ) A.2-12 B .-2+12C .-1 D.1-22答案 D 解析 f (x )=-sin 2x +sin x +1=-(sin x -12)2+54,当sin x =-22时,有最小值,y min =24-22=1-22. 3.函数f (x )=sin x -cos(x +π6)的值域为( ) A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] 答案 B解析 ∵f (x )=sin x -cos(x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin(x -π6),∴f (x )的值域为[-3,3].4.函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3B .0C .-1D .-1- 3 答案 A解析 当0≤x ≤9时,-π3≤πx 6-π3≤7π6,-32≤sin(πx 6-π3)≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.5.函数y =sin x +sin|x |的值域是( )A .[-1,1]B .[-2,2]C .[0,2]D .[0,1]答案 B解析 当x >0时,y =2sin x ,y ∈[-2,2],x ≤0时,y =0.6.函数y =12sin(2x +π6)+5sin(π3-2x )的最大值是( ) A .6+532B .17C .13D .12答案 C解析 y =12sin(2x +π6)+5cos[π2-(π3-2x )] =12sin(2x +π6)+5cos(2x +π6) =13sin(2x +π6+φ),故选C. 7.当0<x <π4时,函数f (x )=cos 2x cos x sin x -sin 2x的最小值是( ) A.14B.12 C .2D .4 答案 D解析 f (x )=1-tan 2x +tan x =1-(tan x -12)2+14, 当tan x =12时,f (x )的最小值为4,故选D. 8.已知f (x )=sin x +1sin x,x ∈(0,π).下列结论正确的是( ) A .有最大值无最小值B .有最小值无最大值C .有最大值且有最小值D .既无最大值又无最小值答案 B解析 令t =sin x ,t ∈(0,1],则y =1+1t,t ∈(0,1]是一个减函数,则f (x )只有最小值而无最大值.另外还可通过y =1+1sin x ,得出sin x =1y -1,由sin x ∈(0,1]也可求出,故选B. 9.若函数y =sin 2x +2cos x 在区间[-23π,α]上最小值为-14,则α的取值范围是________. 答案 (-2π3,2π3] 解析 y =2-(cos x -1)2,当x =-23π时,y =-14,根据函数的对称性x ∈(-2π3,2π3]. 10.(2014·新课标全国Ⅱ理)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin(x +φ-φ)=sin x ,因为x ∈R ,所以f (x )的最大值为1.11.若函数f (x )=(sin x +cos x )2-2cos 2x -m 在[0,π2]上有零点,则实数m 的取值范围是________. 答案 [-1,2]解析 f (x )=1+2sin x cos x -2cos 2x -m =0有解,x ∈[0,π2].即sin2x -cos2x =m 有解. 2sin(2x -π4)=m 有解. ∵x ∈[0,π2],∴2x -π4∈[-π4,3π4]. ∴2sin(2x -π4)∈[-1,2]. 12.函数y =1sin 2x +2cos 2x的最小值是________. 答案 3+2 2解析 y =1sin 2x +2cos 2x =sin 2x +cos 2x sin 2x +2sin 2x +2cos 2x cos 2x =3+cos 2x sin 2x +2sin 2x cos 2x≥3+22, ∴y min =3+2 2.13.(2015·湖北武汉调研)已知函数f (x )=3sin2x +2cos 2x +m 在区间[0,π2]上的最大值为3,则: (1)m =________;(2)对任意a ∈R ,f (x )在[a ,a +20π]上的零点个数为________.答案 (1)0 (2)40或41解析 (1)f (x )=3sin2x +2cos 2x +m =3sin2x +1+cos2x +m =2sin(2x +π6)+m +1, 因为0≤x ≤π2,所以π6≤2x +π6≤7π6. 所以-12≤sin(2x +π6)≤1,f (x )max =2+m +1=3+m =3,所以m =0. (2)由(1)f (x )=2sin(2x +π6)+1,T =2π2=π, 在区间[a ,a +20π]上有20个周期,故零点个数为40或41.14.已知函数f (x )=cos(π3+x )cos(π3-x ), g (x )=12sin2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合.答案 (1)π (2)22 {x |x =k π-π8,k ∈Z }解析 (1)f (x )=cos(π3+x )cos(π3-x )=(12cos x -32sin x )(12cos x +32sin x )=14cos 2x -34sin 2x =1+cos2x 8-3-3cos2x 8=12cos2x -14, ∴f (x )的最小正周期为2π2=π. (2)h (x )=f (x )-g (x )=12cos2x -12sin2x =22cos(2x +π4), 当2x +π4=2k π(k ∈Z )时,h (x )取得最大值22. h (x )取得最大值时,对应的x 的集合为{x |x =k π-π8,k ∈Z }. 15.(2015·江西百强中学月考)设函数f (x )=3sin x cos x +cos 2x +a .(1)求函数f (x )的最小正周期及单调递增区间;(2)当x ∈[-π6,π3]时,函数f (x )的最大值与最小值的和为32,求实数a 的值. 答案 (1)T =π,[-π3+k π,π6+k π](k ∈Z ) (2)a =0解析 (1)∵f (x )=3sin x cos x +cos 2x +a =32sin2x +12(1+cos2x )+a =32sin2x +12cos2x +a +12=sin(2x +π6)+a +12, ∴函数f (x )的最小正周期T =2π2=π. 令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ), 解得-π3+k π≤x ≤π6+k π(k ∈Z ). 故函数f (x )的单调递增区间为[-π3+k π,π6+k π](k ∈Z ). (2)∵-π6≤x ≤π3,∴-π6≤2x +π6≤5π6. 当2x +π6=-π6时,函数f (x )取最小值,即f (x )min =-12+a +12=a ; 当2x +π6=π2时,函数f (x )取最大值,即f (x )max =1+a +12=a +32. ∴a +a +32=32,∴a =0. 16.(2014·江西理)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值.答案 (1)最大值为22,最小值为-1 (2)a =-1,θ=-π6解析 (1)f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2 =22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝⎛⎭⎫π4-x . 因为x ∈[0,π],所以π4-x ∈⎣⎡⎦⎤-3π4,π4. 故f (x )在[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 由θ∈⎝⎛⎭⎫-π2,π2知cos θ≠0,解得⎩⎪⎨⎪⎧ a =-1,θ=-π6.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练28

【高考调研】2016届高三理科数学一轮复习配套题组层级快练28

题组层级快练(二十八)1.已知△ABC ,a =5,b =15,∠A =30°,则c =( ) A .25 B. 5 C .25或 5 D .均不正确答案 C解析 ∵a sin A =b sin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,C =90°,∴c =a 2+b 2=2 5. 若B =120°,C =30°,∴a =c = 5.2.(2014·江西文)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A 的值为( )A .-19B.13 C .1 D.72 答案 D解析 由正弦定理可得2sin 2B -sin 2A sin 2A =2(sinB sin A )2-1=2(b a )2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×(32)2-1=72. 3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332C.3+62D.3+394 答案 B解析 由余弦定理,得(7)2=22+AB 2-2×2AB cos60°,即AB 2-2AB -3=0,得AB =3.故BC 边上的高是AB sin60°=332.选B. 4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .5.(2015·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2)答案 A解析 由a sin A =b sin B =b sin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3.又2A <π2, 所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.6.(2015·江西七校一联)在△ABC 中,若sin(A -B )=1+2cos(B +C )sin(A +C ),则△ABC 的形状一定是( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形 答案 D解析 sin(A -B )=1+2cos(B +C )sin(A +C )=1-2cos A sin B ,∴sin A cos B -cos A sin B =1-2cos A sin B ,∴sin A cos B +cos A sin B =1,即sin(A +B )=1,则有A +B =π2,故三角形为直角三角形.7.(2015·东北三校联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B ,则B =( )A.π6B.π4 C.π3 D.3π4答案 C解析 由sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,代入整理得c -b c -a =ac +b ⇒c 2-b 2=ac -a 2,所以a 2+c 2-b 2=ac ,即cos B =12,所以B =π3,故答案为C.8.(2015·济宁一模)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C. 3 D .3 答案 C解析 ∵c sin A =3a cos C , ∴sin C sin A =3sin A cos C .即sin C =3cos C .∴tan C =3,C =π3,A =2π3-B .∴sin A +sin B =sin(2π3-B )+sin B=3sin(B +π6).∵0<B <2π3,∴π6<B +π6<5π6.∴当B +π6=π2,即B =π3时,sin A +sin B 的最大值为 3.故选C.9.(2014·新课标全国Ⅱ理)已知钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1答案 B解析 由题意可得12AB ·BC ·sin B =12,又AB =1,BC =2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.故选B.10.在△ABC 中,若AB =3,AC =1,B =30°,则△ABC 的面积为________. 答案34或32解析 如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°. ∴A =90°或A =30°. ∴S △ABC =12bc sin A =32或34.11.(2014·广东理)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则ab=________. 答案 2解析 方法一:因为b cos C +c cos B =2b , 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2b .化简可得ab=2.方法二:因为b cos C +c cos B =2b , 所以sin B cos C +sin C cos B =2sin B . 故sin(B +C )=2sin B .故sin A =2sin B ,则a =2b ,即ab=2.12.(2014·天津理)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.答案 -14解析 由已知及正弦定理,得2b =3c .因为b -c =14a ,不妨设b =3,c =2,所以a =4,所以cos A =b 2+c 2-a 22bc =-14. 13.(2015·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B 2,代入①式中,2sin B =2sin(90°-B 2).∴2sin B =2cos B2.∴4sin B 2cos B 2=2cos B 2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34.14.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 答案 27解析 由正弦定理可得AB sin C =BC sin A =3sin60°=2,∴AB =2sin C ,BC =2sin A ,AB +2BC =2(sin C +2sin A )=2[sin C +2sin(120°-C )]=2(3cos C +2sin C )=27sin(C +φ)(其中cos φ=27,sin φ=37).∴当C +φ=90°,即C =90°-φ时,AB +2BC =27sin(C +φ)取得最大值27.15.对于△ABC ,有如下命题:①若sin2A =sin2B ,则△ABC 为等腰三角形;②若sin A =cos B ,则△ABC 为直角三角形;③若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形.其中正确命题的序号是________.(把你认为所有正确的都填上)答案 ③解析 ①sin2A =sin2B ,∴A =B ⇒△ABC 是等腰三角形,或2A +2B =π⇒A +B =π2,即△ABC 是直角三角形.故①不对.②sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形. ③sin 2A +sin 2B <1-cos 2C =sin 2C , ∴a 2+b 2<c 2.∴△ABC 为钝角三角形.16.(2014·安徽文)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,求cos A 与a 的值.答案 cos A =13,a =22或cos A =-13,a =2 3解析 由三角形面积公式,得12×3×1·sin A = 2.故sin A =223.因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8.所以a =2 2.②当cos A =-13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12.所以a =2 3. 17.(2015·湖北黄冈中学、黄石二中、鄂州高中三校联考)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(sin B,1-cos B )与向量n =(2,0)的夹角θ的余弦值为12.(1)求角B 的大小;(2)若b =3,求a +c 的取值范围. 答案 (1)23π (2)(3,2]解析 (1)∵m =(sin B,1-cos B ),n =(2,0), ∴m ·n =2sin B ,|m |=sin 2B +(1-cos B )2=2-2cos B =2|sin B 2|.∵0<B <π,∴0<B 2<π2.∴sin B2>0.∴|m |=2sin B2.又∵|n |=2,∴cos θ=m ·n |m |·|n |=2sin B 4sinB 2=cos B 2=12. ∴B 2=π3,∴B =23π. (2)由余弦定理,得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-(a +c 2)2=34(a +c )2,当且仅当a =c 时,取等号.∴(a +c )2≤4,即a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].1.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 答案 1∶1∶ 3解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C , ∴a ∶b ∶c =sin30°∶sin30°∶sin120°. ∴a ∶b ∶c =1∶1∶ 3.2.在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 由cos C =13,得sin C =223.∴S △ABC =12ab sin C =12×32×b ×223=4 3.∴b =2 3.3.(2013·山东理)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值. 答案 (1)a =c =3 (2)10227解析 (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ). 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理,得sin A =a sin B b =223.因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.4.(2012·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sin B cos A =sin A cos C +cos A sin C . (1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 答案 (1)π3 (2)72解析 (1)方法一:由题设知,2sin B cos A =sin(A +C )=sin B ,因为sin B ≠0,所以cos A =12.由于0<A <π,故A =π3.方法二:由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12. 由于0<A <π,故A =π3.(2)方法一:因为AD →2=(AB →+AC →2)2=14(AB →2+AC →2+2AB →·AC →)=14(1+4+2×1×2×cos π3)=74,所以|AD →|=72,从而AD =72.方法二:因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×12=3,所以a 2+c 2=b 2,B =π2.因为BD =32,AB =1,所以AD =1+34=72. 5.(2013·新课标全国Ⅰ理)如图所示,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA . 答案 (1)72 (2)34解析 (1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理,得P A 2=3+14-2×3×12cos30°=74,故P A =72.(2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理,得3sin150°=sin αsin (30°-α).化简得3cos α=4sin α,所以tan α=34,即tan ∠PBA =34. 6.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? 解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =513×35+1213×45=6365. 由AB sin C =ACsin B,得 AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t ) m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50).因为0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.。

高考调研数学答案2016

高考调研数学答案2016

高考调研数学答案2016【篇一:【高考调研】2016届高三理科数学一轮复习配套题组层级快练82】>(第二次作业)3273a.0 c.2 答案 c111263111111532333692.抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次实验成功,则在30次实验中成功次数x的均值是( )55a. 650 3答案 c114555解析至少有一枚5点或一枚6点的概率为1-(1-)(1-)=1.∴x~b(30),∴e(x)=30339999=5033.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为( )1a.481 12答案d解析设投篮得分为随机变量x,则x的分布列为6当且仅当3a=2b时,等号成立.4.设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=________.12416403d.10 b.1 d.31答案 2解析 a1,a2,a3,a4,a5,a6,a7的均值为 a1+a2+a3+a4+a5+a6+a7a4,则7?a1-a4?2+?a2-a4?2+?+?a7-a4?2711=4d2=1,d=225.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.1答案 252p+1-p22126.某校举行一次以“我为教育发展做什么”为主题的演讲比赛,比赛分为初赛、复赛、决赛三个阶211段,已知某选手通过初赛、复赛、决赛的概率分别为,334(1)求该选手在复赛阶段被淘汰的概率;答案 (1) (2)99解析(1)记“该选手通过初赛”为事件a,“该选手通过复赛”为事件b,“该选手通过决赛”为事211件c,则p(a)p(b)=,p(c)=.33421433214339212399953111211212.1515515338.根据以往的经验,某工程施工期间的降水量x(单位:mm)对工期的影响如下表:求: (1)工期延误天数y的均值与方差;(2)在降水量x至少是300的条件下,工期延误不超过6天的概率. 6答案 (1)均值为3,方差为9.8 7解析 (1)由已知条件和概率的加法公式有:p(x300)=0.3,p(300≤x700)=p(x700)-p(x300)=0.7-0.3=0.4,p(700≤x900)=p(x900)-p(x700)=0.9-0.7=0.2,p(x≥900)=1-p(x900)=1-0.9=0.1. 所以y的分布列为(2)由概率的加法公式,得p(x≥300)=1-p(x300)=0.7. 又p(300≤x900)=p(x900)-p(x300)=0.9-0.3=0.6,由条件概率,得p(y≤6|x≥300)=p(x900|x≥300)=p?300≤x900?0.66=. 0.77p?x≥300?6故在降水量x至少是300的条件下,工期延误不超过6天的概率是. 79.为提高学生学习语文的兴趣,某地区举办了中学生“汉语听写比赛”.比赛成绩只有90分,70分,60分,40分,30分五种,将本次比赛的成绩分为a,b,c,d,e五个等级.从参加比赛的学生中随机抽取了30名,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:(1)1人,其成绩等级为“a或b”的概率;(2)根据(1)的结论,若从该地区参加“汉语听写比赛”的学生(参赛人数很多)中任选3人,记x表示抽到成绩等级为“a或b”的学生人数,求x的分布列及数学期望e(x).1答案 (1) (2)1346解析 (1)根据统计数据可知,从这30名学生中任选1人,其成绩等级为“a或b”的频率为=3030101. 3031故从该地区参加“汉语听写比赛”的学生中任意抽取1人,其成绩等级为“a或b”的概率约为3(2)由已知得,随机变量x的可能取值为0,1,2,3, 10238故随机变量x的分布列为279927讲评新课标高考的数学试题对概率与统计内容的考查已经悄然发生了变化,其侧重点由以往的概率及概率分布列的问题,变为统计与概率及分布列知识的综合,包括统计案例分析.书.现某人参加这个选修课的考试,他a级考试成绩合格的概率为,b级考试合格的概率为.假设各级考32试成绩合格与否均互不影响.(1)求他不需要补考就可获得该选修课的合格证书的概率;答案 (1)33解析设“a级第一次考试合格”为事件a1,“a级补考合格”为事件a2;“b级第一次考试合格”为事件b1,“b级补考合格”为事件b2.(1)不需要补考就获得合格证书的事件为a1b1,注意到a1与b1相互独立, 2113231故该考生不需要补考就获得该选修课的合格证书的概率为3即该考生参加考试的次数的期望为3【篇二:2016届浙江省高三调研考试数学(理)试题】>数学(理科)姓名______________ 准考证号______________ 本试题卷分选择题和非选择题两部分。

【高考调研】2016届高三理科数学一轮温习题组层级快练15含答案

【高考调研】2016届高三理科数学一轮温习题组层级快练15含答案

题组层级快练(十五)1.y =ln(-x )的导函数为( ) A .y ′=-1xB .y ′=1xC .y ′=ln(x )D .y ′=-ln(-x )答案 B2.若曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ) A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1)答案 C解析 y ′=3x 2,∴3x 2=3.∴x =±1. 当x =1时,y =1,当x =-1时,y =-1.3.已知函数y =x ln x ,则那个函数在点x =1处的切线方程是( ) A .y =2x -2 B .y =2x +2 C .y =x -1 D .y =x +1 答案 C解析 ∵y ′=ln x +1,∴x =1时,y ′|x =1=1. ∵x =1时,y =0,∴切线方程为y =x -1.4.(2015·济宁模拟)已知f (x )=x (2 014+ln x ),f ′(x 0)=2 015,则x 0=( ) A .e 2 B .1 C .ln2 D .e 答案 B解析 由题意可知f ′(x )=2 014+ln x +x ·1x =2 015+ln x .由f ′(x 0)=2 015,得ln x 0=0,解得x 0=1.5.若函数f (x )=ax 4+bx 2+c 知足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0 答案 B解析 f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.6.若函数f (x )=x 2+bx +c 的图像的极点在第四象限,则函数f ′(x )的图像是( )答案 A解析 由题意知⎩⎪⎨⎪⎧-b2>0,4c -b24<0,即⎩⎪⎨⎪⎧b <0,b 2>4c .又f ′(x )=2x +b ,∴f ′(x )的图像为A.7.f (x )与g (x )是概念在R 上的两个可导函数,若f (x ),g (x )知足f ′(x )=g ′(x ),则f (x )与g (x )知足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数 答案 C8.若P 为曲线y =ln x 上一动点,Q 为直线y =x +1上一动点,则|PQ |min =( ) A .0 B.22C. 2 D .2答案 C解析 如图所示,直线l 与y =ln x 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ |即为所求最小值.(ln x )′=1x ,令1x =1,得x =1.故P (1,0).故|PQ |min =22= 2.故选C.9.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12 B.12C .-22 D.22答案 B解析 ∵y ′=1(sin x +cos x )2·[cos x (sin x +cos x )-sin x ·(cos x -sin x )]=1(sin x +cos x )2,∴y ′|x =π4=12,∴k =y ′|x =π4=12. 10.(2015·山东烟台期末)若点P 是函数y =e x -e -x -3x (-12≤x ≤12)图像上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是( )A.5π6 B.3π4 C.π4 D.π6答案 B解析 由导数的几何意义,k =y ′=e x +e -x -3≥2e x ·e -x -3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π),又∵tan α<0,所以α的最小值为3π4,故选B.11.已知y =13x 3-x -1+1,则其导函数的值域为________.答案 [2,+∞)12.已知函数f (x )=f ′(π4)cos x +sin x ,所以f (π4)的值为________.答案 1解析 因为f ′(x )=-f ′(π4)sin x +cos x ,所以f ′(π4)=-f ′(π4)sin π4+cos π4,所以f ′(π4)=2-1.故f (π4)=f ′(π4)cos π4+sin π4=1.13.(2013·江西文)若曲线y =x α+1(α∈R )在点(1,2)处的切线通过坐标原点,则α=________.答案 2解析 由题意y ′=αx α-1,在点(1,2)处的切线的斜率为k =α,又切线过坐标原点,所以α=2-01-0=2. 14.(2015·广东肇庆一模)曲线f (x )=e xx -1在x =0处的切线方程为________.答案 2x +y +1=0解析 按照题意可知切点坐标为(0,-1),f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率为k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=(-2)(x -0)⇒2x +y +1=0,故填2x +y +1=0.15.(2015·河北邯郸二模)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.答案 12log 2e解析 ∵y ′=1x ln2,∴k =1ln2.∴切线方程为y =1ln2(x -1).∴三角形面积为S △=12×1×1ln2=12ln2=12log 2e.16.若抛物线y =x 2-x +c 上的一点P 的横坐标是-2,抛物线过点P 的切线恰好于坐标原点,则实数c 的值为________.答案 4解析 ∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4.17.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线方程;(2)若是曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.答案 (1)y =13x -32 (2)切点坐标为(1,-14)或(-1,-18),切线方程为y =4x -18或y =4x -14解析 (1)可判定点(2,-6)在曲线y =f (x )上. ∵f ′(x )=(x 3+x -16)′=3x 2+1,∴在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32. (2)∵切线与直线y =-14x +3垂直,∴切线的斜率为k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4.∴x 0=±1.∴⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.∴切点坐标为(1,-14)或(-1,-18). 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.18.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.答案 (1)f (x )=x -3x(2)定值为6解析 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0),即y -(x 0-3x 0)=(1+3x 20)(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0).切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.1.若曲线y =ln x (x >0)的一条切线是直线y =12x +b ,则实数b 的值为( )A .2B .ln2+1C .ln2-1D .ln2答案 C解析 ∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2.∴切点为(2,ln2).将其代入直线y=12x +b ,得b =ln2-1. 2.下列图像中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图像,则f (-1)=( )A.13 B .-13C.73 D .-13或53答案 B解析 f ′(x )=x 2+2ax +a 2-1=(x +a )2-1,∴y =f ′(x )是开口向上,以x =-a 为对称轴,(-a ,-1)为极点的抛物线. ∴(3)是对应y =f ′(x )的图像.∵由图像知f ′(0)=0,对称轴x =-a >0, ∴a 2-1=0,a <0,∴a =-1. ∴y =f (x )=13x 3-x 2+1.∴f (-1)=-13,选B.3.y =x 2sin x 2cos x2的导数为________.答案 y ′=x sin x +12x 2cos x .。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练20

【高考调研】2016届高三理科数学一轮复习配套题组层级快练20

题组层级快练(二十)1.设f (x )=x 3+x ,则f (x )d x 的值等于( )A .0B .8C .2⎠⎛02f (x )d xD.⎠⎛02f (x )d x答案 A解析2.下列值等于1的是( ) A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛011d x =x | 10=1.3.若函数f (x )=x 2+2x +m (m ,x ∈R )的最小值为-1,则⎠⎛12f (x )d x 等于( )A .2 B.163 C .6 D .7答案 B解析 f (x )=(x +1)2+m -1,∵f (x )的最小值为-1,∴m -1=-1,即m =0.∴f (x )=x 2+2x . ∴⎠⎛12f (x )d x =⎠⎛12(x 2+2x )d x =(13x 3+x 2)| 21=13×23+22-13-1=163. 4.(2015·福建莆田一中期末)曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )答案 D解析 当x ∈[0,π2]时,y =sin x 与y =cos x 的图像的交点坐标为(π4,22),作图可知曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积可分为两部分:一部分是曲线y =sin x ,y =cos x 与直线x=0,x =π4所围成的平面区域的面积;另一部分是曲线y =sin x ,y =cos x 与直线x =π4,x =π2所围成的平面区域的面积.且这两部分的面积相等,结合定积分定义可知选D.5.(2015·东北三校一联) sin 2x2d x =( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B6.若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b答案 D解析 a =⎠⎛02x 2d x =13x 3| 20=83,b =⎠⎛02x 3d x =14x 4| 20=4,c =⎠⎛02sin x d x =-cos x | 20=1-cos2<2,∴c <a <b . 7.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6答案 C解析 因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,所以⎠⎛0t(3t 2+1-10t )d t =(t 3+t -5t 2)| t 0=t 3+t -5t 2=5,所以(t -5)(t 2+1)=0,即t =5.8.(2015·山东淄博一模)如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A.⎠⎛02|x 2-1|d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02(x 2-1)d xD.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x ,选A.9.(2015·南昌一模)若⎠⎛1a (2x +1x )d x =3+ln2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 由题意可知⎠⎛1a (2x +1x )d x =(x 2+ln x )| a 1=a 2+ln a -1=3+ln2,解得a =2. 10.(2014·湖北理)若函数f (x ),g (x )满足f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3答案 C解析 对于①,sin 12x cos 12x d x =12sin x d x =0,所以①是一组正交函数;对于②, (x +1)(x -1)d x=(x 2-1)d x ≠0,所以②不是一组正交函数;对于③,x ·x 2d x =x 3d x =0,所以③是一组正交函数,选C.答案 2π+112.(2015·陕西五校二联)定积分(|x |-1)d x 的值为________.答案 -113.(2015·海淀一模)函数y =x -x 2的图像与x 轴所围成的封闭图形的面积等于________. 答案 16解析 由x -x 2=0,得x =0或x =1.因此所围成的封闭图形的面积为⎠⎛01(x -x 2)d x =(x 22-x 33)| 10=12-13=16.14.(2015·安徽六校联考)已知a =⎠⎛0πsin x d x ,则二项式(1-a x )5的展开式中x -3的系数为________.答案 -80解析 由a =⎠⎛0πsin x d x =-cos x | π0=-(cosπ-cos0)=2,则x-3的系数为C 35(-a )3=10×(-2)3=-80.15.如图,长方形的四个顶点为O (0,0),A (2,0),B (2,4),C (0,4),曲线y =ax 2经过点B ,现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是________.答案 23解析 ∵y =ax 2过点B (2,4),∴a =1.16.求由抛物线y 2=x -1与其在点(2,1),(2,-1)处的切线所围成的面积. 答案 23解析 y =±x -1,y ′x =±12x -1.∵过点(2,1)的直线斜率为y ′|x =2=12,直线方程为y -1=12(x -2),即y =12x .同理,过点(2,-1)的直线方程为y =-12x ,抛物线顶点在(1,0).如图所示.由抛物线y 2=x -1与两条切线y =12x ,y =-12x 围成的图形面积为:S =S △AOB -2⎠⎛12x -1d x =12×2×2-2×23×(x -1)32|21=2-43(1-0)=23.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练52

【高考调研】2016届高三理科数学一轮复习配套题组层级快练52

题组层级快练(五十二)1.已知两条不同直线l 1和l 2及平面α,则直线l 1∥l 2的一个充分条件是( ) A .l 1∥α且l 2∥α B .l 1⊥α且l 2⊥α C .l 1∥α且l 2⊄α D .l 1∥α且l 2⊂α答案 B解析 l 1⊥α且l 2⊥α⇒l 1∥l 2.2.(2013·浙江文)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β 答案 C解析 A 项中,直线m ,n 可能平行,也可能相交或异面,直线m ,n 的关系是任意的;B 项中,α与β也可能相交,此时直线m 平行于α,β的交线;D 项中,m 也可能平行于β.故选C 项.3.若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为( )A .10B .20C .8D .4答案 B解析 设截面四边形为EFGH ,F ,G ,H 分别是BC ,CD ,DA 的中点,∴EF =GH =4,FG =HE =6.∴周长为2×(4+6)=20.4.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,若A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a3,∴MP ∥BC ,PN ∥AD 1.∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D . ∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .5.(2015·安徽阜阳一中模拟)过平行六面体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有( )A .4条B .6条C .8条D .12条答案 D解析 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,M ,N ,P ,Q 分别为相应棱的中点,容易证明平面EFGH ,平面MNPQ 均与平面BDD 1B 1平行.平面EFGH 和平面MNPQ 中分别有6条直线(相应四边形的四条边和两条对角线)满足要求,故共有12条直线符合要求.6.如图所示,在四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________.(写出所有符合要求的图形序号)答案 ①③7.考查下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为直线,α,β为平面),则此条件为________.①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α;③⎭⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α. 答案 l ⊄α解析 ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”,它也同样适合②③,故填l ⊄α.8.在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F .由重心的性质可知,E ,F 重合为一点,且该点为CD 的中点E .由EM MA =EN NB =12,得MN ∥AB .因此MN ∥平面ABC 且MN ∥平面ABD .9.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,EF 1,EE 1,FF 1,E 1F ,E 1F 1均与平面ABB 1A 1平行,故符合题意的直线共6条.10.如图所示,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面; (2)求证:平面A 1GH ∥平面BED 1F . 答案 (1)略 (2)略 解析 (1)连接FG .∵AE =B 1G =1,∴BG =A 1E =2. ∴BG 綊A 1E ,∴A 1G ∥BE .又∵C 1F 綊B 1G ,∴四边形C 1FGB 1是平行四边形. ∴FG 綊C 1B 1綊D 1A 1.∴四边形A 1GFD 1是平行四边形. ∴A 1G 綊D 1F ,∴D 1F 綊EB . 故E ,B ,F ,D 1四点共面. (2)∵H 是B 1C 1的中点, ∴B 1H =32.又B 1G =1,∴B 1G B 1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF .∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知,A 1G ∥BE ,且A 1G ⊂平面A 1GH ,HG ⊂平面A 1GH ,BF ⊄平面A 1GH ,BE ⊄平面A 1GH , ∴BF ∥平面A 1GH ,BE ∥平面A 1GH .又∵BF ∩BE =B ,∴平面A 1GH ∥平面BED 1F .11.(2013·福建文)如图所示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D -PBC 的体积. 答案 (1)略 (2)略 (3)8 3 解析 方法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3.在Rt △BEC 中,由BC =5,CE =4,依勾股定理,得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD .从而在Rt △PDA 中,由AD =4,∠P AD =60°, 得PD =4 3.正视图如图所示.(2)取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点, ∴MN ∥AB ,MN =12AB =3.又CD ∥AB ,CD =3, ∴MN ∥CD ,MN =CD .∴四边形MNCD为平行四边形.∴DM∥CN.又DM⊄平面PBC,CN⊂平面PBC,∴DM∥平面PBC.(3)V D-PBC=V P-DBC=13S△DBC·PD,又S△DBC=6,PD=43,所以V D-PBC=8 3.方法二:(1)同方法一.(2)取AB的中点E,连接ME,DE.在梯形ABCD中,BE∥CD,且BE=CD,∴四边形BCDE为平行四边形.∴DE∥BC.又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同方法一.12.如图所示,三棱柱ABC-A1B1C1,底面为正三角形,侧棱A1A⊥底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB.当点M在何位置时,BM∥平面AEF?答案当M为AC中点时,BM∥平面AEF.解析方法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC于点M.∵侧棱A 1A ⊥底面ABC , ∴侧面A 1ACC 1⊥底面ABC . ∴OM ⊥底面ABC . 又∵EC =2FB , ∴OM ∥FB 綊12EC .∴四边形OMBF 为矩形. ∴BM ∥OF .又∵OF ⊂面AEF ,BM ⊄面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ . ∴PQ ∥AE .∵EC =2FB , ∴PE 綊BF ,PB ∥EF .∴PQ ∥平面AEF ,PB ∥平面AEF . 又PQ ∩PB =P , ∴平面PBQ ∥平面AEF .又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.13.(2015·邯郸上学期二模)如图所示,四边形ABCD 是矩形,DA ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE ,AC 和BD 交于点G .(1)求证:AE ∥平面BFD ; (2)求三棱锥C -BFG 的体积. 答案 (1)略 (2)13解析 (1)证明:由题意可知G 是AC 的中点,连接FG . ∵BF ⊥平面ACE ,∴CE ⊥BF . ∵EB =BC ,∴F 是EC 的中点.在△AEC 中,FG ∥AE ,又∵AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵BC ⊥平面ABE ,AE ⊂平面ABE ,∴AE ⊥BC . 又∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF . 又∵BC ∩BF =B ,∴AE ⊥平面BCE . ∵AE ∥FG ,∴FG ⊥平面BCF . ∵G 是AC 的中点,F 是CE 的中点, ∴FG =12AE =1.∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE . ∴∠CBE =90°.∴在Rt △BCE 中,BF =12CE =CF = 2.∴S △CFB =12×2×2=1.∴V C -BGF =V G -BCF =13S △CFB ·FG =13×1×1=13.14.(2014·安徽文)如图所示,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. 答案 (1)略 (2)18解析 (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC . 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD . 从而GK ⊥EF .所以GK 是梯形GEFH 的高. 由AB =8,EB =2,得EB ∶AB =KB ∶DB =1∶4. 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK ,得GK =12PO .即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK =4+82×3=18.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练76

【高考调研】2016届高三理科数学一轮复习配套题组层级快练76

题组层级快练(七十六)1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”中的哪几个( )A .①②B .①③C .②③D .①②③ 答案 A解析 从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.2.某人将一枚硬币连掷了10次,正面朝上的次数为6,若用A 表示正面朝上这一事件,则A 的( )A .概率为23B .频率为35C .频率为6D .概率为35 答案 B解析 注意频率与概率的区别.3.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34 答案 C解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P =23. 4.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316. 5.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310B.15C.110D.112答案 A 解析 从分别标注数字1,2,3,4,5的五个小球中随机取出2个小球的基本事件数分别为:1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9共10种不同情形;而其和为3或6的共3种情形,故取出的小球标注的数字之和为3或6的概率是310. 6.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A.1936B.12C.59D.1736答案 A解析 若方程有实根,则Δ=b 2-4c ≥0,当有序实数对(b ,c )的取值为(6,6),(6,5),…,(6,1),(5,6),(5,5),…,(5,1),(4,4),…,(4,1),(3,2),(3,1),(2,1)时方程有实根,共19种情况,而(b ,c )等可能的取值共有36种情况,所以,方程有实根的概率为P =1936. 7.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118 答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112. 8.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,则这班参加聚会的同学的人数为( ) A .12B .18C .24D .32 答案 B解析 设女同学有x 人,则该班到会的共有(2x -6)人,所以x 2x -6=23,得x =12,故该班参加聚会的同学有18人.故选B.9.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率是________.(2)至少8环的概率为0.72,不够9环的概率为0.52解析 (1)记中靶为事件A ,不中靶为事件A ,根据对立事件的概率性质,有P (A )=1-P (A )=1-0.95=0.05.∴不中靶的概率为0.05.(2)记命中10环为事件B ,命中9环为事件C ,命中8环为事件D ,至少8环为事件E ,不够9环为事件F .由B ,C ,D 互斥,E =B ∪C ∪D ,F =B ∪C ,根据概率的基本性质,有P (E )=P (B ∪C ∪D )=P (B )+P (C )+P (D )=0.27+0.21+0.24=0.72;P (F )=P (B ∪C )=1-P (B ∪C )=1-(0.27+0.21)=0.52.∴至少8环的概率为0.72,不够9环的概率为0.52.15.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.答案 (1)P (A )=11 000,P (B )=1100,P (C )=120(2)611 000 (3)9891 000解析 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000. 故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-(11 000+1100)=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.16.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x ,y 分别表示英语成绩和数学成绩.(1)x =4(2)x =2的概率是多少?a +b 的值是多少?答案 (1)725,750,710 (2)15,3 解析 (1)P (x =4)=1+0+7+5+150=725; P (x =4且y =3)=750, P (x ≥3)=P (x =3)+P (x =4)+P (x =5)=2+1+0+9+350+725+1+3+1+0+150=710. (2)P (x =2)=1-P (x =1)-P (x ≥3)=1-110-710=15. 又∵P (x =2)=1+b +6+0+a 50=15,∴a +b =3.。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练26

【高考调研】2016届高三理科数学一轮复习配套题组层级快练26

题组层级快练(二十六)1.函数f (x )=(1+3tan x )cos x 的最小正周期为( ) A .2π B.3π2 C .π D.π2答案 A解析 f (x )=(1+3tan x )cos x =cos x +3sin x cos x ·cos x =2cos(x -π3),则T =2π.2.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 对于选项A ,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选A.3.函数y =sin(π4-x )的一个单调递增区间为( )A .(3π4,7π4)B .(-π4,3π4)C .(-π2,π2)D .(-3π4,π4)答案 A解析 y =sin(π4-x )=-sin(x -π4),故由2k π+π2≤x -π4≤2k π+3π2,解得2k π+34π≤x ≤2k π+74π(k ∈Z ).因此,函数y =sin(π4-x )的单调增区间为[2k π+34π,2k π+74π](k ∈Z ).4.(2015·湖南洛阳模拟)若函数y =sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.23π C.32π D.53π 答案 C解析 sin(-x 3+φ3)=sin(x 3+φ3)观察选项.当φ=32π时,等式恒成立.5.函数f (x )=(1+cos2x )sin 2x 是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数答案 D解析 f (x )=(1+cos2x )sin 2x =2cos 2x sin 2x =12sin 22x =1-cos4x 4,则T =2π4=π2且为偶函数.6.函数g (x )=sin 22x 的单调递增区间是( ) A .[k π2,k π2+π4](k ∈Z )B .[k π,k π+π4](k ∈Z )C .[k π2+π4,k π2+π2](k ∈Z )D .[k π+π4,k π+π2](k ∈Z )答案 A7.如果函数y =3cos(2x +φ)的图像关于点(4π3,0)成中心对称,那么|φ|的最小值为( )A.π6B.π4 C.π3 D.π2答案 A解析 依题意得3cos(8π3+φ)=0,8π3+φ=k π+π2,φ=k π-136π(k ∈Z ),因此|φ|的最小值是π6.8.已知函数y =sin ωx 在[-π3,π3]上是增函数,则实数ω的取值范围是( )A .[-32,0)B .[-3,0)C .(0,32]D .(0,3] 答案 C解析 由于y =sin x 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32.9.下列函数中,对于任意x ∈R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( ) A .f (x )=sin x B .f (x )=sin x cos x C .f (x )=cos x D .f (x )=cos 2x -sin 2x 答案 D解析 因为对任意x ∈R 有f (x )=f (-x )且f (x -π)=f (x ),所以f (x )为偶函数且f (x )的最小正周期为π.故A ,C 错.B 项中,f (x )=sin x cos x =12sin2x 为奇函数,故B 错,D 项中,f (x )=cos 2x -sin 2x =cos2x ,满足条件,故选D.10.将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( ) A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 B解析 y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+π3=3sin ⎝⎛⎭⎫2x -23π. 令2k π-π2≤2x -23π≤2k π+π2,得k π+π12≤x ≤k π+712π,k ∈Z .则y =3sin ⎝⎛⎭⎫2x -23π的增区间为⎣⎡⎦⎤k π+π12,k π+712π,k ∈Z . 令k =0得其中一个增区间为⎣⎡⎦⎤π12,712π,故B 正确.画出y =3sin ⎝⎛⎭⎫2x -23π在⎣⎡⎦⎤-π6,π3上的简图,如图,可知y =3sin ⎝⎛⎭⎫2x -23π在⎣⎡⎦⎤-π6,π3上不具有单调性,故C ,D 错误.11.(2015·南昌大学附中)设f (x )=sin(ωx +φ),其中ω>0,则f (x )是偶函数的充要条件是( ) A .f (0)=1 B .f (0)=0 C .f ′(0)=1 D .f ′(0)=0答案 D解析 f (x )=sin(ωx +φ)是偶函数,有φ=k π+π2,k ∈Z .∴f (x )=±cos ωx .而f ′(x )=±ωsin ωx ,∴f ′(0)=0,故选D.12.(2015·北京顺义一模)已知函数f (x )=cos(2x +π3)-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数; ②函数f (x )图像的一条对称轴是直线x =2π3;③函数f (x )图像的一个对称中心为(5π12,0);④函数f (x )的单调递增区间为[k π+π6,k π+2π3],k ∈Z .其中正确的结论的个数是( )A .1B .2C .3D .4答案 C解析 由已知得,f (x )=cos(2x +π3)-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin(2x +π6),不是奇函数,故①错.当x =2π3时,f (2π3)=-sin(4π3+π6)=1,故②正确;当x =5π12时,f (5π12)=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.13.(2013·江西理)函数y =sin2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin2x +23sin 2x =sin2x -3cos2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.14.将函数y =sin(ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的对称轴之间距离是函数周期的一半,即有T 2=4π3-(-2π3)=2π,T =4π,即2πω=4π,ω=12.15.设函数f (x )=sin(3x +φ)(0<φ<π),若函数f (x )+f ′(x )是奇函数,则φ=________. 答案2π3解析 由题意得f ′(x )=3cos(3x +φ),f (x )+f ′(x )=2sin(3x +φ+π3)是奇函数,因此φ+π3=k π(其中k ∈Z ),φ=k π-π3.又0<φ<π,所以φ=2π3.16.已知函数f (x )=sin x +a cos x 的图像的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的初相是________.答案 23π解析 f ′(x )=cos x -a sin x ,∵x =5π3为函数f (x )=sin x +a cos x 的一条对称轴,∴f ′(5π3)=cos 5π3-a sin 5π3=0,解得a =-33.∴g (x )=-33sin x +cos x =233(-12sin x +32cos x ) =233sin(x +2π3). 17.(2013·安徽理)已知函数f (x )=4cos ωx ·sin(ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间[0,π2]上的单调性.答案 (1)1 (2)单调递增区间为[0,π8],单调递减区间为[π8,π2]解析 (1)f (x )=4cos ωx ·sin(ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+ 2 =2sin(2ωx +π4)+ 2.因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时f (x )单调递减. 综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.18.已知函数f (x )=(sin x -cos x )sin2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.答案 (1){x ∈R |x ≠k π,k ∈Z } T =π (2)[k π+3π8,k π+7π8](k ∈Z )解析 (1)由sin x ≠0,得x ≠k π(k ∈Z ). 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=(sin x -cos x )sin2xsin x=2cos x (sin x -cos x ) =sin2x -cos2x -1 =2sin(2x -π4)-1,所以f (x )的最小正周期为T =2π2=π. (2)函数y =sin x 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f (x )的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).1.(2013·浙江理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 f (x )是奇函数时,φ=π2+k π(k ∈Z );φ=π2时,f (x )=A cos(ωx +π2)=-A sin ωx 为奇函数.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件,选B.2.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )答案 C解析 由题意知,f (x )在π6处取得最大值或最小值,∴x =π6是函数f (x )的对称轴.∴2×π6+φ=π2+k π,φ=π6+k π,k ∈Z .又由f (π2)>f (π),得sin φ<0.∴φ=-56π+2k π(k ∈Z ),不妨取φ=-56π.∴f (x )=sin(2x -5π6).由2k π-π2≤2x -56π≤2k π+π2,得f (x )的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).3.若函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M 答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g (x )=M cos(w x +φ)=M sin(w x +φ+π2)=M sin[w (x +π2w )+φ],∴g (x )的图像是由f (x )的图像向左平移π2w (即T4)得到的.由b -a =T2,可知,g (x )的图像由f (x )的图像向左平移b -a 2得到的.∴得到g (x )图像如图所示.选C.4.已知函数f (x )=2cos 2x +23sin x cos x -1(x ∈R ). (1)求函数f (x )的周期、对称轴方程; (2)求函数f (x )的单调增区间.答案 (1)T =π,对称轴方程为x =k π2+π6(k ∈Z )(2)[k π-π3,k π+π6](k ∈Z )解析 f (x )=2cos 2x +23sin x cos x -1=3sin2x +cos2x =2sin(2x +π6).(1)f (x )的周期T =π,函数f (x )的对称轴方程为x =k π2+π6(k ∈Z ).(2)由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得kx -π3≤x ≤k π+π6(k ∈Z ).∴函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).5.已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间. 答案 (1)12 (2)T =π,⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z 思路 (1)由sin α=22与α的取值范围,求出cos α或α的值;再代入函数f (x ),即可求出f (α)的值.(2)利用二倍角公式与辅助角公式,化简函数f (x ),再利用周期公式,即可求出函数f (x )的最小正周期;利用正弦函数的单调性,即可求出函数f (x )的单调递增区间.解析 方法一:(1)因为0<α<π2,sin α=22,∴cos α=22.∴f (α)=22⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 方法二:f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4.从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .。

【高考调研】2016届高三理科数学一轮复习配套题组层级快练9

【高考调研】2016届高三理科数学一轮复习配套题组层级快练9

题组层级快练(九)1.下列函数中值域为正实数的是( ) A .y =-5x B .y =(13)1-xC .y =(12)x -1 D .y =3|x |答案 B解析 ∵1-x ∈R ,y =(13)x 的值域是正实数,∴y =(13)1-x 的值域是正实数.2.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .11答案 B解析 ∵f (x )=2x +2-x ,f (a )=3,∴2a +2-a =3.∴f (2a )=22a +2-2a=(2a +2-a )2-2=9-2=7.3.当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则实数a 的取值范围是( ) A .1<|a |<2 B .|a |<1 C .|a |> 2 D .|a |< 2答案 C4.(2015·成都二诊)若函数f (x )=(a +1e x -1)cos x 是奇函数,则常数a 的值等于( )A .-1B .1C .-12D.12 答案 D5.(2015·唐山一中模拟)函数y =(12)x +1的图像关于直线y =x 对称的图像大致是( )答案 A解析 函数y =(12)x +1的图像如图所示,关于y =x 对称的图像大致为A 选项对应图像.6.若函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定答案 A解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 7.函数f (x )=3·4x -2x 在x ∈[0,+∞)上的最小值是( ) A .-112B .0C .2D .10答案 C解析 设t =2x ,∵x ∈[0,+∞),∴t ≥1. ∵y =3t 2-t (t ≥1)的最小值为2, ∴函数f (x )的最小值为2.8.(2015·山东师大附中)集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R 答案 B9.在同一个坐标系中画出函数y =a x ,y =sin ax 的部分图像,其中a >0且a ≠1,则下列所给图像中可能正确的是( )答案 D解析 若a >1,则y =a x 是增函数,且y =sin ax 的周期T =2πa <2π;若0<a <1,则y =a x 是减函数,且y=sin ax 的周期T =2πa>2π.10.(2015·四川绵阳一诊)计算:23×31.5×612=________. 答案 6解析 原式=2×312×(32)13×1216=2×312×313×2-13×316×213=2×312+13+16×2-13+13=6.11.若指数函数f (x )=a x 在[1,2]上的最大值与最小值的差为a2,则a =________.答案 12或32解析 当a >1时,y =a x 是增函数,∴a 2-a =a 2,∴a =32.当0<a <1时,y =a x 是减函数,∴a -a 2=a 2,∴a =12.12.已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 答案 m <n解析 由于0<a <1,所以f (x )是减函数,再由f (m )>f (n )知m <n . 13.若函数y =2-x +1+m 的图像不经过第一象限,则实数m 的取值范围是________.答案 m ≤-214.若0<a <1,0<b <1,且a log b (x -3)<1,则实数x 的取值范围是________. 答案 (3,4)解析 ∵log b (x -3)>0,∴0<x -3<1,∴3<x <4.15.(2015·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析 f (1)=a 2=19,a =13,f (x )=⎩⎨⎧(13)2x -4, x ≥2,(13)4-2x, x <2.∴单调递减区间为[2,+∞).16.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14? 答案 a =3或a =13解析 令t =a x ,则y =t 2+2t -1. (1)当a >1时,∵x ∈[-1,1], ∴a x ∈[1a ,a ],即t ∈[1a,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a).∴当t =a 时,y max =(a +1)2-2=14. ∴a =3或a =-5.∵a >1,∴a =3. (2)当0<a <1时,t ∈[a ,1a].∵y =(t +1)2-2在[a ,1a ]上是增函数,∴y max =(1a+1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13.综上,a =3或a =13.17.(2015·山东济南期末)已知函数f (x )=4x +m2x 是奇函数.(1)求实数m 的值;(2)设g (x )=2x +1-a ,若函数f (x )与g (x )的图像至少有一个公共点,求实数a 的取值范围.答案 (1)m =-1 (2)[2,+∞)解析 (1)由函数f (x )是奇函数可知f (0)=1+m =0,解得m =-1.(2)函数f (x )与g (x )的图像至少有一个公共点,即方程4x -12x =2x +1-a 至少有一个实根,即方程4x -a ·2x +1=0至少有一个实根.令t =2x >0,则方程t 2-at +1=0至少有一个正根. 方法一:由于a =t +1t ≥2,∴a 的取值范围为[2,+∞).方法二:令h (t )=t 2-at +1,由于h (0)=1>0, ∴只需⎩⎪⎨⎪⎧Δ≥0,a 2>0,解得a ≥2.∴a 的取值范围为[2,+∞).18.(2015·烟台上学期期末)已知函数f (x )=2x +k ·2-x ,k ∈R .(1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围.答案 (1)k =-1 (2)(0,+∞) 解析 (1)∵f (x )=2x +k ·2-x是奇函数,∴f (-x )=-f (x ),x ∈R ,即2-x +k ·2x =-(2x +k ·2-x ).∴(1+k )+(k +1)·22x =0对一切x ∈R 恒成立,∴k =-1.(2)∵x ∈[0,+∞),均有f (x )>2-x ,即2x +k ·2-x >2-x 成立,∴1-k <22x 对x ≥0恒成立,∴1-k <(22x )min .∵y =22x 在[0,+∞)上单调递增,∴(22x )min =1,∴k >0.∴实数k 的取值范围是(0,+∞).1.在如图中曲线是指数函数y =a x ,已知a 的取值为2,43,310,15,则相应于C 1,C 2,C 3,C 4的a依次为( )A.43,2,15,310 B.2,43,310,15C.310,15,2,43D.15,310,43, 2 答案 A2.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞)答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可.。

【高考调研】2016届高三理科数学一轮复习题组层级快练10含答案

【高考调研】2016届高三理科数学一轮复习题组层级快练10含答案

题组层级快练 (十 )11.(2015 四·川泸州一诊 )2lg2 - lg25的值为 ()A . 1B. 2C. 3D. 4答案B剖析2lg2 - lg 1= lg(2 2÷1)= lg100 =2,应选 B.25252.(log 29) ·(log 34)= ()11 A. 4 B.2 C. 2D. 4答案D剖析22lg3 lg2原式= (log 23 ) ·(log 32)= 4(log 23) ·(log 32)=4· ·=4.lg2 lg31 3.(2015 石·家庄一模 )已知 a=32, b= log 11, c= log 21,则 ()233A . a>b>c B. b>c>a C. c>b>a D. b>a>c答案A1111剖析因为 32>1,0<log<1, c= log2 <0,所以 a>b>c,应选 A.3234.已知函数 f(x)= 2+ log 2x, x∈ [1,2] ,则函数 y=f(x)+ f(x2)的值域为 ()11A . [4,5]B.[4,2 ]13C.[4,2 ]D. [4,7]答案B剖析y= f(x) + f(x2 )= 2+ log2x+ 2+ log 2x2= 4+ 3log 2x,注意到为使得y= f(x)+ f( x2)有意211义,必有1≤ x ≤ 2,得 1≤ x≤2,从而 4≤ y≤2 .5.(2014 四·川文 )已知 b>0, log 5b= a,lg b= c,5d= 10,则以低等式必然成立的是 ()A . d= ac B. a= cdC. c= ad D. d= a+ c答案B剖析由已知得 5a= b,10c= b,∴5a= 10c,5d= 10,∴5dc= 10c,则 5dc= 5a,∴dc=a,应选 B.-1,3 x ,则 ( )6.若 x ∈ (e 1), a = lnx , b =2ln x , c = ln A . a<b<c B . c<a<b C . b<a<c D . b<c<a答案 C剖析1,2,a<c ,因由 x ∈(e -1),得- 1<ln x<0 ,a -b =- lnx>0,a>b ,a - c = lnx(1- ln x)<0 此有 b<a<c ,选 C.7.若点 (a , b)在 y = lg x 图像上, a ≠1,则以下点也在此图像上的是 () A . (1, b)B . (10a,1- b)aC . (10, b + 1)D . (a 2,2b)a答案 D剖析当 x = a 2 时, y = lga 2= 2lga =2b ,所以点 (a 2,2b)在函数 y = lgx 图像上.8.设 log b N < log a N <0, N > 1,且 a + b = 1,则必有 ( )A . 1< a < bB . a < b <1C . 1< b < aD . b < a < 1答案 B剖析∵0> log a N > log b N? log N b > log N a ,∴a < b <1.9.若 0<a<1,则在区间 (0,1)上函数 f(x)= log a (x + 1)是 ()A .增函数且 f( x)>0B .增函数且 f( x)<0C .减函数且 f( x)>0D .减函数且 f( x)<0答案D剖析∵0<a<1 时, y = log a u 为减函数,又 u = x + 1 增函数,∴ f(x)为减函数;又 0<x<1 时,x + 1>1 ,又 0<a<1,∴f(x)<0. 选 D.|log2 x|10.函数 f(x) =2 的图像大体是 ( )答案Cx , x ≥ 1,剖析∵f( x)=2|log2 x|= 1∴选C.x , 0<x<1 ,11.设 a = log 3π, b = log 23, c = log 3 2,则 ()A . a > b > cB . a > c >bC . b > a > cD . b > c >a答案A13<log 22= 1,∴a > b.又 b=2log 2 3剖析∵a = log 3π> log 33= 1, b = log 2 =(log 23)2> 1,∴bc12log 32> c.故 a >b > c.选 A.1>1的解是()12.若 0< a < 1,则不等式 log a xA . x > aB . a < x <1C . x > 1D . 0< x <a答案 B剖析易得 0< log a x < 1,∴a < x < 1.13.若 log a (x +1)>log a (x - 1),则 x ∈ ________, a ∈ ________.答案(1,+∞ ) (1,+∞ )14.若 log a (a 2+ 1)< log a 2a < 0,则实数 a 的取值范围是 __________.答案(1, 1)2剖析∵a 2+ 1>1, log a (a 2+ 1)< 0,∴0< a < 1.1又 log a 2a < 0,∴2a >1,∴a >2.∴实数 a 的取值范围是1(2, 1).15.若函数f(x)= log a (x + 1)(a>0,且a ≠ 1)的定义域和值域都是[0,1] ,则 a = ________.答案2剖析f(x)= log a (x + 1)的定义域是 [0,1] ,∴0≤x ≤ 1,则1≤ x + 1≤ 2.当 a>1 时, 0= log a 1≤ log a (x + 1)≤ log a 2= 1,∴a = 2;当 0< a<1 时, log a 2≤ log a (x + 1)≤ log a 1= 0,与值域是 [0,1] 矛盾.综上, a = 2.log 2x , x>0, 且关于 x 的方程 f(x)+ x - a =0 有16.(2015 广·东韶关调研 )已知函数 f(x)=3x , x ≤ 0,且只有一个实根,则实数a 的取值范围是 ________.答案 a>1剖析如图,在同一坐标系中分别作出y= f(x)与 y=- x+ a 的图像,其中 a 表示直线在y 轴上的截距,由图可知,当a>1 时,直线y=- x+ a 与 y= log 2x 只有一个交点.17.设函数f(x)= |lgx|,(1)若 0<a<b 且 f(a)=f(b).证明: a·b= 1;(2)若 0< a< b 且 f(a)> f(b).证明: ab<1.答案略剖析(1) 由 |lga|= |lgb|,得- lga= lgb.∴ab=1.(2)由题设 f(a)> f(b) ,即 |lga|> |lgb|.上式等价于 (lga)2> (lg b)2,即 (lg a+ lgb)(lg a- lgb)>0, lg(ab)lg ab> 0,由已知b>a> 0,得a0<b<1.a∴lg <0,故 lg( ab)< 0.∴ab< 1.18.已知函数f(x)= log a(x+ 1)- log a (1-x) ,a>0 且 a≠ 1.(1)求 f(x)的定义域;(2)判断 f(x)的奇偶性并予以证明;(3)当 a>1 时,求使f(x)>0 的 x 的取值范围.答案(1){ x|- 1< x<1} (2)奇函数(3){ x|0<x<1}剖析(1) f(x)= log a( x+1)- log a(1- x),x+ 1>0 ,则解得- 1<x<1.1- x>0,故所求定义域为{ x|- 1< x<1} .(2)f(x)为奇函数.证明以下:由(1) 知 f(x)的定义域为 { x|- 1<x<1} ,且 f(- x)= log a(- x+ 1)- log a(1+ x)=- [log a(x+ 1)- log a (1- x)]=- f(x).故 f(x)为奇函数.(3)由 f(x)>0 ,得 log a(x+ 1)- log a(1 -x)>0.∴log a(x+ 1)>log a(1- x).又 a>1,x+ 1>0,∴ 1- x>0,解得0<x<1.x+ 1>1- x,所以使 f(x)>0 的 x 的取值范围是{ x|0<x<1} .若 a>0 且 a≠1, x>y>0,n∈N*,则以下各式:n n n1① (log a x)= nlog a x;② (log a x)= log a x;③ log a x=- log a;④xlog a nx;x- y x+ y.⑥log a=- log ax+y x- yn1log a xlog a x=n log a x;⑤n=其中正确的有 ________.答案③⑤⑥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(七十五)1.(2015·东北三校一联)在(x 2-1x )5的二项展开式中,第二项的系数为( )A .10B .-10C .5D .-5答案 D解析 展开式中的第二项为T 2=C 15(x 2)5-1(-1x )1,所以其系数为-C 15=-5.2.(2015·河北唐山一模)(3x -2x )8二项展开式中的常数项为( )A .56B .-56C .112D .-112答案 C解析 ∵T r +1=C r 8(3x )8-r (-2x )r =C r 8(-2)r x 83-43r ,∴令83-43r =0,即r =2.∴常数项为C 28(-2)2=112,选C.3.在(x 2-13x)n 的展开式中,只有第5项的二项式系数最大,则展开式中的常数项是() A .-7 B .7C .-28D .28答案 B解析 由题意知n =8,T r +1=C r 8·(x 2)8-r ·(-13x )r =(-1)r ·C r 8·x 8-r 28-r ·1x r 3=(-1)r ·C r 8·x 8-r -r 328-r ,由8-r -r 3=0,得r =6.∴T 7=C 68·122=7,即展开式中的常数项为T 7=7.4.在(x +1)(2x +1)…(nx +1)(n ∈N *)的展开式中一次项系数为( )A .C 2nB .C 2n +1C .C n -1n D.12C 3n +1答案 B解析 1+2+3+…+n =n ·(n +1)2=C 2n +1.5.若(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式的常数项为( ) A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴(2x -1x )5的通项为T r +1=C r 5·(2x )5-r ·(-1x)r =(-1)r ·25-r ·C r 5·x 5-2r . 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3·22·C 35=80-40=40. 6.(2015·人大附中期末)若(x 2-1ax )9(a ∈R )的展开式中x 9的系数是-212,则⎠⎛0a sin x d x 的值为( ) A .1-cos2B .2-cos1C .cos2-1D .1+cos2答案 A 解析 由题意得T r +1=C r 9·(x 2)9-r ·(-1)r ·(1ax )r =(-1)r ·C r 9·x 18-3r ·1a r ,令18-3r =9,得r =3,所以-C 39·1a 3=-212,解得a =2.所以⎠⎛0a sin x d x =(-cos x )| 20=-cos2+cos0=1-cos2. 7.(2015·安徽合肥二检)(x 2-x +1)10展开式中x 3项的系数为( )A .-210B .210C .30D .-30答案 A解析 由题意,得(x 2-x +1)10=[x (x -1)+1]10=C 010[x (x -1)]0·110+C 110[x (x -1)]1·19+C 210[x (x -1)]2·18+C 310[x (x -1)]3·17+…+C 1010[x (x -1)]10·10 =C 010+C 110x (x -1)+C 210x 2(x -1)2+C 310x 3(x -1)3+…+C 1010x 10(x -1)10,x 3出现在C 210x 2(x -1)2+C 310x 3(x -1)3=C 210x 2(x 2-2x +1)+C 310x 3(x 3-3x 2+3x -1)中,所以x 3前的系数为C 210(-2)+C 310(-1)=-90-120=-210,故选A. 8.(2015·天津河西二模)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( )A .-180B .180C .45D .-45答案 B解析 因为(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以a 8=C 81022(-1)8=180. 9.(2015·山东潍坊一模)设k =⎠⎛0π(sin x -cos x )d x ,若(1-kx )8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=( )A .-1B .0C .1D .256答案 B 解析 ∵k =⎠⎛0π(sin x -cos x )d x =(-cos x -sin x )|π0=2, ∴(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+a 3+…+a 8=1.∴a 1+a 2+a 3+…+a 8=0.10.(2014·浙江理)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210答案 C解析 由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.11.(2015·四川绵阳二诊)若(x -a x 2)6展开式的常数项是60,则常数a 的值为________.答案 4解析 (x -a x 2)6展开式的常数项是C 26x 4(-a x 2)2=15a =60,∴a =4. 12.(2015·上海十三校二联)-1+3C 111-9C 211+27C 311-…-310C 1011+311除以5的余数是________.答案 3解析 -1+3C 111-9C 211+27C 311-…-310C 1011+311=(-1+3)11=211=2 048=2 045+3,它除以5余数为3.13.若(x -a 2x)8的展开式中常数项为1 120,则展开式中各项系数之和为________. 答案 1解析 (x -a 2x)8的展开式的通项为T r +1=C r 8x 8-r (-a 2)r x -r =C r 8(-a 2)r x 8-2r ,令8-2r =0,解得r =4,所以C 48(-a 2)4=1 120,所以a 2=2,故(x -a 2x )8=(x -2x )8.令x =1,得展开式中各项系数之和为(1-2)8=1. 14.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.答案 0解析 T r +1=C r 21x 21-r (-1)r ,∴a 10=C 1121(-1)11,a 11=C 1021(-1)10,∴a 10+a 11=0. 15.(2014·高考调研原创题)若(cos φ+x )5的展开式中x 3的系数为2,则sin(2φ+π2)=________. 答案 -35解析 由二项式定理,得x 3的系数为C 35cos 2φ=2,得cos 2φ=15.故sin(2φ+π2)=cos2φ=2cos 2φ-1=-35.16.(2015·扬州中学月考)设函数f (x ,n )=(1+x )n (n ∈N *).(1)求f (x,6)的展开式中系数最大的项;(2)若f (i ,n )=32i(i 为虚数单位),求C 1n -C 3n +C 5n -C 7n +C 9n .答案 (1)20x 3 (2)32解析 (1)展开式中系数最大的项是第4项T 4=C 36x 3=20x 3.(2)由已知(1+i)n =32i ,两边取模,得(2)n =32,所以n =10.所以C 1n -C 3n +C 5n -C 7n +C 9n =C 110-C 310+C 510-C 710+C 910.而(1+i)10=C 010+C 110i +C 210i 2+…+C 910i 9+C 1010i 10=(C 010-C 210+C 410-C 610+C 810-C 1010)+(C 110-C 310+C 510-C 710+C 910)i =32i ,所以C 110-C 310+C 510-C 710+C 910=32.17.设f (x )=(1+x )m +(1+x )n 的展开式中x 的系数是19(m ,n ∈N *).(1)求f (x )展开式中x 2的系数的最小值;(2)对f (x )展开式中x 2的系数取最小值时m ,n ,求f (x )展开式中x 7的系数.答案 (1)81 (2)156解析 (1)由题意知C 1m +C 1n =19,∴m +n =19,∴m =19-n .x 2的系数为C 2m +C 2n =C 219-n +C 2n=12(19-n )(18-n )+12n (n -1) =n 2-19n +171=(n -192)2+3234, ∵n ∈N *,∴n =9或n =10时,x 2的系数取最小值(12)2+3234=81. (2)由(1)得当n =9,m =10时,f (x )=(1+x )10+(1+x )9;当n =10,m =9时,f (x )同上.故f (x )=(1+x )9(x +2)其中(1+x )9展开式中T r +1=C r 9x r ,所以f (x )展开式中x 7的系数为C 69+2C 79=156.。

相关文档
最新文档