新北师大版第三章教案3.3中心对称

合集下载

新北师大版八年级数学下册第3章教案

新北师大版八年级数学下册第3章教案

第三章图形的平移与旋转单元教学目标1、知识与技能:通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转、画图;在直角坐标系中,探索并了解将一个多边形沿两个坐标轴平移后所得到的图形与原图形平移关系,体会图形顶点的变化;了解中心对称、图形的概念,探索其基本性质。

2、过程与方法:经历有关平移与旋转的观察、操作,欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。

3、情感态度与价值观:敢于发表自己的想法,提出质疑,养成独立思考、合作交流等习惯。

单元教学重点:通过具体实例认识平移与旋转,探索平移、旋转的基本性质。

单元教学难点:按照要求作出简单的平面图形经过平移或旋转后的图形。

单元课时安排:1、图形的平移 3 课时2、图形的旋转 2 课时3、中心对称 1 课时4、简单的图案设计 1 课时回顾与思考 1 课时§ 3.1.1图形的平移第一课时知识与技能目标认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

过程与方法目标通过探究式的学习,养成归纳总结与猜想的数学能力,逆向思维能力。

情感态度与价值观目标通过收集身边的“平移”实例,感受生活处处有数学,激发学生的学习兴趣。

教学重点掌握平移的概念。

教学难点理解平移的性质。

教法与学法自主探究与合作交流相结合。

教学过程一、学习准备1、全等三角形的对应边______,对应____相等。

2、阅读教材:P65—P67第1节《图形的平移》二、教材精读3、平移的定义:在平面内,将一个图形沿着移动的距离,这样的图形运动叫平移。

平移不改变图形的和,改变的是位置。

实践练习:下列现象中,属于平移的是:(1)火车在笔直的铁轨上行驶(2)冷水受热过程中小气泡上升变成大气泡(3)人随电梯上升(4)钟摆的摆动(5)飞机起飞前在直线跑道上滑动4、如图所示,△ABE沿射线XY方向平移一定距离后成为△CDF。

北师大版数学八年级下册3.3《中心对称》教学设计

北师大版数学八年级下册3.3《中心对称》教学设计

北师大版数学八年级下册3.3《中心对称》教学设计一. 教材分析北师大版数学八年级下册3.3《中心对称》是学生在学习了平面几何的基本概念和性质之后的内容。

本节课主要介绍中心对称的概念,性质及其在实际问题中的应用。

通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决一些几何问题。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维和解决问题的能力。

但是,对于中心对称这一概念,学生可能比较陌生,需要通过实例和练习来理解和掌握。

同时,学生可能对于如何运用中心对称解决实际问题存在一定的困难。

三. 教学目标1.知识与技能:理解中心对称的定义,掌握中心对称的性质,能够运用中心对称解决一些几何问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。

四. 教学重难点1.重点:中心对称的定义和性质。

2.难点:如何运用中心对称解决实际问题。

五. 教学方法1.讲授法:通过讲解中心对称的定义和性质,引导学生理解和掌握。

2.案例分析法:通过分析实际问题,引导学生运用中心对称解决几何问题。

3.小组讨论法:通过小组讨论,引导学生交流思想,共同解决问题。

六. 教学准备1.教具:多媒体课件、几何图形、黑板。

2.学具:学生手册、练习册。

七. 教学过程1.导入(5分钟)通过多媒体课件,展示一些生活中的中心对称现象,如旋转门、时钟等,引导学生观察和思考,引出中心对称的概念。

2.呈现(10分钟)讲解中心对称的定义和性质,引导学生理解和掌握。

3.操练(10分钟)通过一些练习题,让学生运用中心对称解决几何问题,巩固所学知识。

4.巩固(10分钟)让学生分组讨论,分析实际问题,运用中心对称解决。

引导学生交流思想,共同解决问题。

5.拓展(10分钟)通过一些综合性的练习题,提高学生的解题能力,拓展学生的思维。

北师大版八年级下册数学《3.3 中心对称》教案

北师大版八年级下册数学《3.3 中心对称》教案

北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。

本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。

但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。

三. 教学目标1.了解中心对称的概念,理解中心对称的性质。

2.能运用中心对称解决一些简单的问题。

3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。

四. 教学重难点1.中心对称的概念和性质。

2.如何运用中心对称解决实际问题。

五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。

通过实例,让学生了解如何运用中心对称解决实际问题。

六. 教学准备1.教学PPT。

2.中心对称的图片和实例。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。

2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。

通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。

3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。

然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。

4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。

通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。

这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。

本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。

二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。

但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。

三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。

四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。

2.难点:如何运用坐标来表示图形的轴对称变换。

五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。

六. 教学准备1.教师准备:教材、课件、教学素材等。

2.学生准备:课本、练习本、文具等。

七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。

3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。

4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。

5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。

八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案

八年级数学北师大版上册 第3章《3.3  轴对称与坐标变化》教学设计 教案

课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。

1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。

三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。

② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。

反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。

北师大版数学八年级上册3.3轴对称与坐标变换(教案)

北师大版数学八年级上册3.3轴对称与坐标变换(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称与坐标变换的基本概念。轴对称是指一个图形可以沿着某条直线对折,对折后的两部分完全重合。它是几何学中的一种重要变换,广泛应用于艺术、建筑和工程设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过坐标变换找到轴对称图形的对称点,以及它在解决实际问题中的应用。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的概念和坐标变换的方法这两个重点。对于难点部分,比如对称点的坐标求解,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称与坐标变换相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过坐标变换找到图形的轴对称点。
北师大版数学八年级上册3.3轴对称与坐标变换(教案)
一、教学内容
本节课选自北师大版数学八年级上册第三章第三节“轴对称与坐标变换”。教学内容主要包括以下两点:
1.轴对称:掌握轴对称的概念,了解轴对称的性质,能够判断一个图形是否为轴对称图形,并找出对称轴;能够利用轴对称设计简单的图案。
2.坐标变换:掌握平移、旋转等坐标变换的方法,了解坐标变换对图形的影响;能够运用坐标变换解决实际问题,如求解对称点的坐标。
结合本节课内容,通过实际操作、探索与思考,使学生更好地理解轴对称与坐标变换的概念,提高空间想象能力和解决问题的能力。
二、核心素养目标
1.培养学生的几何直观与空间想象能力:通过轴对称与坐标变换的学习,使学生能够观察、分析并描述几何图形及其运动,提高对图形的感知和认识,发展空间想象力。
2.提升学生的逻辑推理与问题解决能力:引导学生运用轴对称性质和坐标变换方法,进行严密的逻辑推理,解决实际问题,培养分析问题和解决问题的能力。

八年级数学北师大版下册 第3章《中心对称》教学设计 教案

八年级数学北师大版下册 第3章《中心对称》教学设计 教案

教学设计中心对称一、教学目标1.通过观察、探索等过程,使学生更深刻地理解轴对称、平移、旋转及组合等几何变换的规律和特征,并体会图形之间的变换关系。

2.运用讨论交流等方式,让学生自己探索出图形变化的过程,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力。

二、课时安排一课时三、教学重点识别中心对称图形和成中心对称的两个图形的基本特征。

四、教学难点熟练地画出已知图形关于某一点成中心对称的图形。

五、教学过程(一)导入新课观察图3-18,图(1)经过怎样的运动变化就可以与图(2)重合?观察图3-19,再试一试,你还能举出一些类似的例子吗?与同伴交流。

活动目的:通过观察发现两幅图形的内在关系,这个活动为课堂提供了极好的素材,也将极大地激发了学生学习的积极性与主动性。

(二)讲授新课内容:通过以上观察,理解中心对称的概念如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它的对称中心,如图三角形ABC与三角形A’B’C’成中心对称,点O是它们的对称中心。

效果:通过学生找到上图的对称关系,运用讨论交流等方式,让学生自己探索出图形变化的过程,为后面寻找组合图形所运用的几何变换的规律和特征奠定了基础。

做一做自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°。

链接旋转前后一组对应点,你发现了什么,再选几组对应点试一试,并与同伴交流。

中心对称与轴对称的联系与区别(三)重难点精讲例1(1)如图,选择点O为对称中心,画出点A关于点O的对称点A′;画法:连接AO并延长到A′,使OA′=OA,得到点A的对称点A′.(2)如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.1. 连接AO并延长到A′,使OA ′=OA,得到点A的对称点A′.2. 同样画B、C的对称点B′、C′.3. 顺次连接A′、B′、C′各点.例2如图,点O事线段AE的中点,以点O为对称中心,画出与五边形ABCDE 成中心对称的图形解:连接BO并延长至B’,使得OB’=OB;连接CO并延长至B’,使得OC’=OC;连接DO并延长至B’,使得OD’=OD;顺次连接A,D’,C’,B’,E图形AD’C’B’E就是以点O为对称中心、与五边形ABCDE成中心对称的图形这些图形有什么共同特征?你还能举出一些类似的图形吗?中心对称图形的概念:中心对称与中心对称图形的联系与区别?区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.议一议(1)在你所学过的平面图形中,哪些图形是中心对称图形?(2)在上面的例题中,图形ABCDEB‘C’D’是中心对称图形吗?(四)归纳小结1、中心对称图形的定义:把一个图形绕着______旋转____度后能与自身重合的图形称为中心对称图形,这个中心点叫做___________。

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

《轴对称与坐标变化》说课稿我说课的内容是北师大版八年级上册第三章第三节《轴对称与坐标变化》。

教材分析:教材的地位与作用:这节课的内容体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。

教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。

二、学法指导1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,这节课我主要采用了自主探究,发现式教学方法,体现教学方法的科学性和时效性.2、学法:根据学法指导自主性和差异性原则,让学生在“观察-—操作——概括——检验—-应用”的学习过程中,使学生掌握知识。

在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识。

(2)注重学生动手能力的培养,在动手的过程中体会轴对称变换,并且对上一节课的知识作进一步理解.结合教材及学生的情况,我制订了如下的教学目标:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称",让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

根据对教材内容的分析,根据八年级学生的认知规律和心理特点,我设计如下的教学过程。

1。

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例

北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例
在教学过程中,教师将结合教材内容,以生活实例引出轴对称的概念,引导学生通过观察、分析、归纳,发现轴对称图形在坐标平面内的变化规律。本案例注重培养学生的动手操作能力和合作交流意识,鼓励他们在探索中提出问题、解决问题,从而更好地理解数学知识在实际生活中的应用。
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的基本性质,如对称轴、对称点等。
(二)问题导向
在教学过程中,教师将采用问题导向法,引导学生提出问题、分析问题、解决问题。例如,在学习轴对称图形的坐标变化规律时,教师可以提出以下问题:“轴对称图形的坐标是如何变化的?”“你能找出轴对称变换中坐标的规律吗?”通过这些问题,激发学生的思考,促使他们在探究中掌握知识。
(三)小组合作
小组合作是本章节教学的重要环节。教师将根据学生的实际情况,合理分组,确保每个学生都能在小组中发挥自己的优势。在合作学习过程中,教师引导学生相互讨论、交流,共同完成学习任务。例如,在学习轴对称图形的坐标变化规律时,小组成员可以共同分析、总结规律,然后向全班同学分享他们的发现。
2.学生分小组讨论,共同探讨解决问题的方法。
3.各小组分享讨论成果,教师进行点评和指导。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结轴对称与坐标变化的知识点。
2.学生用自己的话复述轴对称图形的坐标变化规律,加深对知识的理解。
3.教师强调本节课的重点和难点,提醒学生注意在实际应用中灵活运用。
三、教学策略
(一)情景创设
为了让学生更好地理解轴对称与坐标变化的概念,教师将从生活实际出发,创设丰富多样的教学情景。例如,引入一些具有轴对称特点的建筑物、图案等,让学生在观察中感知轴对称的美。同时,通过多媒体展示一些动态的轴对称变换过程,激发学生的学习兴趣。此外,还可以设计一些实际操作活动,如让学生制作轴对称的剪纸作品,使他们在动手操作中加深对轴对称的理解。

《中心对称》教案

《中心对称》教案

《中心对称》教案一、教学目标1.知识目标:o学生能够准确理解中心对称的概念,知道中心对称图形的特征。

o学生能够识别并绘制中心对称图形。

2.技能目标:o培养学生运用中心对称原理进行图形设计和创作的能力。

o提高学生的空间想象能力和图形变换能力。

3.情感、态度与价值观目标:o激发学生学习数学的兴趣,培养探索精神和合作精神。

o通过图形美感的体验,提高学生的审美能力和创新意识。

二、教学重点和难点重点:●中心对称的定义和性质。

●中心对称图形的识别和绘制。

难点:●理解中心对称图形在实际生活中的应用。

●运用中心对称原理进行图形的变换和设计。

三、教学过程1.导入新课:o通过展示一些生活中的中心对称图形(如雪花、某些建筑物等),引发学生的好奇心,让学生感受到中心对称的美感和实用性。

o提问学生是否见过类似图形,并让他们简单描述这些图形的特点。

2.讲解中心对称的概念:o清晰阐述中心对称的定义,说明中心对称与轴对称的区别和联系。

o通过具体的图形例子,展示中心对称图形的特征,如对称中心、对称点的连线等。

3.实践操作:o指导学生利用几何工具(如圆规、直尺等)绘制中心对称图形,让学生在操作中感受对称点的连线经过对称中心的特点。

o组织学生进行小组活动,每组设计一个中心对称图案,并展示交流,培养学生的合作精神和创造力。

4.深入探讨:o通过问题引导,让学生探讨中心对称图形在实际生活中的应用,如自然界中的对称现象、建筑设计中的对称美等。

o鼓励学生提出自己的见解和疑问,教师进行解答和补充,促进知识的深入理解和应用。

5.总结提升:o引导学生总结中心对称图形的特点和识别方法,强化学生的记忆和理解。

o提出一些具有挑战性的问题或任务,如利用中心对称原理进行图案设计,以激发学生的求知欲和探索精神。

四、教学方法和手段●教学方法:讲授法、实践操作法、小组合作法、问题引导法。

●教学手段:多媒体教学(展示对称图形)、几何工具(用于绘制图形)、教学PPT(辅助教学讲解)。

中心对称课件数学北师大版八年级下册

中心对称课件数学北师大版八年级下册

感悟新知
解题秘方:紧扣中心对称与相关定义判断 .
知1-练
解:从图中易看出旋转中心为点 A,故点 A 为对称中 心;点A, B, C, D 绕点 A 旋转 180°后的位置分别 在点 A, G,H, E 处,故点 A, B, C, D 关于点 A 的对称点分别是点 A, G,H, E.
感悟新知
知1-练
能在每个图形的内部或边上.
▲▲
▲▲
感悟新知
2. 中心对称与轴对称的关系
知1-讲
项目
中心对称
轴对称
有一个对称中心
有一条对称轴
区分
图形绕对称中心旋转 180°
图形沿对称轴折叠
旋转后与另一个图形 折叠后与另一个图形
重合
重合
相同点
都是两个图形之间的关系,并且变换前后的 两个图形全等
感悟新知
知1-练
例1 如图 3-3-1,两个五角星关于某一点成中心对称,指出 哪一点是对称中心,并指出图中点 A, B, C, D 的 对称点 .
感悟新知
知3-练
解:A 是轴对称图形,不是中心对称图形,故本 选项不合题意; B 既是轴对称图形,又是中心对 称图形 , 故本选项符合题意; C 不是轴对称图形 , 是中心对称图形,故本选项不合题意; D 不是轴 对称图形,是中心对称图形 , 故本选项不合题意 . 答案:B
感悟新知
3-1. [中考·黑龙江龙东地区] 下列新能源汽车标志知3-练 图案中,既是轴对称图形,又是中心对称图形的 是( A )
知3-讲
项目 区分
中心对称
(1)是针对两个图形而言 的; (2)是指两个图形的 (位 置)关系; (3)对称点在两个图形上
中心对称图形

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。

这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。

教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。

同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。

二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。

同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。

但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。

三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。

2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。

2.教学难点:如何用坐标来表示轴对称的变换。

五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。

2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。

六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。

2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。

3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。

4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。

5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。

北师大版八年级数学下册第三章图形的平移和旋转---中心对称课件

北师大版八年级数学下册第三章图形的平移和旋转---中心对称课件

三、知识探究二
视察下图,这些图形有什么共同特征?你还能举出 一些类似的图形吗?
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形 把一个图形绕某个点旋转180°,如果旋转后
的图形能与本来的图形重合,那么这个图形叫做中 心对称图形,这个点叫做它的对称中心.
注意:任意经过对称中心的直线把 原图形分成全等的两部分
北师大版 八年级下册
3.3 中心对称
一、预习检测 1. 下面哪些图形是中心对称图形?
(1) 、(2) 、(3)
2.下面扑克牌中,哪些牌的牌面是中心对称图形?
(1) 、(3)
一、复习导入
在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称旋转.这个定点称为旋转 中心,转动的角称为旋转角。
中心对称与中心对称图形的联系
中心对称
中心对称图形
区分
联系
两个全等图形的相 互位置关系
一个图形本身成 中心对称
成中心对称的两个图形看成一个整体,则
它们是中心对称图形.
中心对称图形对称的部分看成两个图形,
则它们成中心对称.
想一想
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
怎样的多边形是中心对称图形?
画的图形绕旋转中心旋转180º.连接旋转前后一
组对应点,你发现了什么?再选几组对应点试一
试,并与同伴交流.

C´ O .
A D
D´ A´
B
C
活动小结: 中心对称的性质:成中心对称的两个图形中,
对应点所连线段经过对称中心,且被对称中心平分.
B´ C´
A
O.
D

3.3《轴对称与坐标变化》北师大版八年级数学上册教案

3.3《轴对称与坐标变化》北师大版八年级数学上册教案

第三章位置与坐标3.3轴对称与坐标变化一、教学目标1.经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观.2.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教学重点及难点重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.三、教学用具多媒体课件,直尺,三角板.四、相关资《复习平面直角坐标系》动画五、教学过程【复习导入】在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标.我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点.如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题.【探究新知】探索两个关于坐标轴对称的图形的坐标关系1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗.两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理.答:(1)关于y轴对称.对应点A与A1的横坐标互为相反数,纵坐标相同,其它对应的点也有这个特点.(2)做出的两个点的横坐标互为相反数,纵坐标相同.【典例精讲】例1 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)你得到了一个怎样的图案?做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解析:先根据题意写出变化后的坐标,然后根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来.你们画出的图形与下面的图形相同吗?这个图形与原来的图形相比有什么变化呢?(1)所得的图案与原图案关于纵轴成轴对称.(2)所得的图案与原图案关于横轴成轴对称.议一议关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?学生思考,讨论,归纳得出结论:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.【课堂练习】1.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定2.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A’,则点A与点A’的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得A3.点(4,3)与点(4,-3)的关系是().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).6.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )A.-2 B.2 C.1 D.-17.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个8.若P(a,3-b),Q(5,2)关于x轴对称,则a= ,b= .9.点A(2,-3)关于x轴对称的点的坐标是.10.点B(-2,1)关于y轴对称的点的坐标是.答案:1.A;2.B;3.B;4.D;5.A;6.B;7.B;8.5,5;9.(2,3);10.(2,1).六、课堂小结对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称;七、板书设计3.3轴对称与坐标变化1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称。

《中心对称》说课稿

《中心对称》说课稿

《中心对称》说课稿_《中心对称》说课稿各位考官大家好,我是xx号考生。

今天我说课的内容是《中心对称》。

一、说教材《中心对称》是北师大版八年级下册第三章第三节的内容,本节课主要讲中心对称的定义以及中心对称的性质,这不仅是对前面学习四边形的一个必要的补充,更是与图形中的三中变换中的“旋转”有着不可分割的关系,学生已经掌握了轴对称的概念和性质,可以利用类比的方法让学生掌握中心对称的定义和性质。

现实生活中随处可见中心对称的应用,通过对这一课的学习可以完善初中“对称图形”的知识讲授。

二、说学情接下来,我来谈谈我班学生情况。

他们对于知识具有较好的理解能力和应用能力,喜欢合作探讨式学习,对数学学习有较浓厚的兴趣。

在以往的学习中,学生的动手能力已经得到了一定的训练,本节课将进一步培养学生这些方面的能力。

三、教学目标教学目标是教学活动实施的方向、和预期达到的结果、是一切教学活动的出发点和归宿,我精心设计了如下的教学目标:【知识与技能】能够认识中心对称图形并且了解其性质以及判断一个图形是否是中心对称图形。

【过程与方法】通过对“中心对称图形”的探究,提析问题、解决问题的能力。

【情感态度与价值观】通过一系列的探究过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

四、教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:【重点】理解中心对称的定义以及性质。

【难点】探究中心对称的性质。

五、教学方法根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。

整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

六、教学过程教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:(一)导入新课复习导入:提问:什么是旋转?旋转有哪些性质?确定一个图形旋转后的位置,需要哪些条件?学生回答、反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图形的平移与旋转
3.中心对称
教学目标:
A: 认识中心对称的概念,能综合运用变换解决有关问题。

B: 通过观察、探索等过程,使学生更深刻地理解轴对称、平移、旋转及组合等几何变换的规律和特征,并体会图形之间的变换关系。

C: 运用讨论交流等方式,让学生自己探索出图形变化的过程,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力。

教学重点:
通过经历观察、分析、操作、概括、探索、归纳等过程,进一步发展学生的空间观念,增强学生的审美意识。

教学难点:
通过图形间的变换关系,使学生认识到一切事物的变化可以通过一系列基本变化的组合得到,体会事物从量变到质变的过程。

教学过程:
第一环节游戏及图片欣赏
第二环节复习旧知,引入新课
通过以上观察,理解中心对称的概念
第三环节:合作交流,解决问题
1:中心对称与轴对称的联系与区别
2:中心对称的性质:
探究得出结论:
3:作图:
(1)选择点O 为对称中心,画出点A 关于点O 的对称点A ′;
(2)如图,选择点O 为对称中心,画出与△ABC 关于点O 对称的△A ′B ′C ′. 举例:
A B C C 1 A 1 B 1
O
4:中心对称图形的概念
5:中心对称与中心对称图形的联系与区别
区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.
联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.
第四环节:练习与提高
随堂练习
1、画一个与已知四边形ABCD成中心对称的图形.
(1)以顶点A为对称中心;
(2)以BC边的中点为对称中心.
、第五环节:课堂小结
请同学试着小结本节课。

第六环节:布置作业。

相关文档
最新文档