2017-2018学年数学人教版八年级上册11.3 多边形及其内角和同步练习-

合集下载

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )A.360° B.540° C.630° D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360° 解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷

人教新版八年级上学期《11.3 多边形及其内角和》同步练习卷一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.6.一个n边形的内角和比四边形的外角和大540°,求n.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?19.已知一个多边形的内角和720°,求这个多边形的边数.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).25.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.26.(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图②,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;②如图③,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.27.在四边形ABCD中,∠A=140°,∠D=80°(1)如图1,若∠B=∠C,求∠C的度数;(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,求∠C的度数.28.如图,六边形ABCDEF的各个内角都相等,且∠DAB=60°.(1)求∠E的度数.(2)求∠ADE的度数.(3)判断AB与DE的位置关系,并说明理由.29.如图,四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.30.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.31.在各个内角都相等的多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数.32.小月和小东在一起探究有关“多边形内角和”的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角的度数之比为1:2:3:6,求各个内角的度数.小东想了想,说:“这道题目有问题”(1)请你指出问题出在哪里;(2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.33.如图1,点E在四边形ABCD的边BA的延长线上,CE与AD交于点F,∠DCE=∠AEF,∠B=∠D.(1)求证:AD∥BC;(2)如图2,若点P在线段BC上,点Q在线段BP上,且∠FQP=∠QFP,FM平分∠EFP,试探究∠MFQ与∠DFC的数量关系,并说明理由.34.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E=.35.已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.36.已知在一个十边形中,其中九个内角的和是1320°,求这个十边形另一个内角的度数.37.如图,在四边形ABCD中,∠DAB、∠CBA的平分线交于点E,试说明:∠AEB=(∠C+∠D).38.为了表示几种三角形之间的关系,画了如图结构图:请你采用适当的方式表示正方形、平行四边形、四边形、菱形、矩形之间的关系.39.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.40.李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.41.如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.42.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形,请画出示意图,并在图形下方写上剩余部分多边形的内角和.43.一个多边形的外角和是内角和的,求这个多边形的边数.44.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.45.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.46.如图,一张四边形纸片ABCD,AB∥CD,AD∥BC,把纸片的一角沿折痕CN折叠,使BC与DC边重合,B′是点B的对应点,过点C作CM⊥CN,(1)证明:AD∥NB′;(2)若∠B=64°,试求∠BCM的度数.47.两条直线相交所形成的四个角中,有一个公共顶点且有一条公共边的两个角叫做邻补角,如图所示,∠AOD与∠BOD就是一对邻补角.(1)多边形的一个外角与其相邻的内角就是一对邻补角,若某多边形的一个外角的度数为x(度),则与该外角相邻的内角度数可用x的代数式表示为;(2)如果设题(1)中的多边形的边数为x,且该外角的度数与其所有不相邻内角的度数之和为460°,则可列二元一次方程为;(3)若某多边形的一个外角的度数与其所有不相邻内角的度数之和为1900°,求这个外角的度数和此多边形的边数.48.如图,在四边形ABCD,AD∥BC,将△ADC沿对角线AC折叠,使得点D落在D′上,AD′与BC交于点E,若∠AEB=70°,求∠CAD的度数.49.解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC 与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)50.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.人教新版八年级上学期《11.3 多边形及其内角和》2019年同步练习卷参考答案与试题解析一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.【分析】图①、②的基本思路是把所求的多边形的问题转化为三角形的问题,利用三角形的内角和定理即可解决问题.【解答】解:连接五边形的一对不相邻的顶点,得到一个三角形和一个四边形,三角形的内角和是180度,四边形的内角和是360度,因而五边形的内角和是180+360=540度.【点评】正确理解图①、②的基本解题思路,把五边形内角和问题转化为熟悉的三角形的内角和的问题.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S;△ABC(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S△ABC..【分析】(2)仿照(1)的方法,只需把换为;(3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;(5)利用(4),得到更普遍的规律.【解答】解:(2)∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC.【点评】注意总结相应规律,类似问题通常采用类比的方法求解.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【分析】(1)边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.【解答】解:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得,即.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【解答】解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【点评】本题主要考查了平行线的性质和多边形的内角和,属于基础题.6.一个n边形的内角和比四边形的外角和大540°,求n.【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【解答】解:设多边形的边数为n,可得(n﹣2)•180°=360°+540°,解得n=7.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.【分析】先根据角平分线得:∠DAB=2∠EAB,∠CBA=2∠EBA,之后运用三角形内角和定理和四边形内角和定理进行变形可得结论.【解答】解:∵∠DAB,∠CBA的平分线交于点E,∴∠DAB=2∠EAB,∠CBA=2∠EBA,在△EAB中,∠EAB+∠EBA=180°﹣∠AEB=180°﹣105°=75°,∴∠DAB+∠CBA=2(∠EAB+∠EBA)=150°,∴∠C+∠D=360°﹣(∠DAB+∠CBA)=360°﹣150°=210°.【点评】本题考查了角平分线的定义、三角形内角和及四边形内角和,熟练掌握多边形内角和是关键.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°,用2750除以180,商就是n﹣2,余数就是加上的那个外角的度数,进而可以算出这个多边形的边数.【解答】解:2750÷180=15…50,则边数n=18,这个内角的度数是:180°﹣50°=130°.故这个内角的大小是130°,多边形的边数是18.【点评】本题考查多边形内角和公式的灵活运用;关键是找到相应度数的等量关系.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.【分析】连接AD,利用平行线的性质说明∠BAF与∠CDE的关系,从而求出∠CDE的度数.利用四边形的内角和是360°,求出∠ABC.【解答】解:连接AD∵AF∥CD,AB∥DE,∴∠F AD=∠ADC,∠BAD=∠ADE,∴∠BAF=∠CDE=100°∵∠ABC+∠DCB+∠BAD+∠ADC=360°,又∵∠F AB=∠F AD+∠BAD=∠ADC+∠BAD=100°,∴∠ABC=360°﹣120°﹣100°=140°.【点评】本题考查了平行线的性质,多边形的内角和定理.解决本题亦可延长AB、DC,利用平行和三角形的内角和求解.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.【分析】设这个正多边的外角为x,则内角为5x﹣60,根据内角和外角互补可得x+5x﹣60=180,解可得x的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【解答】解:设这个正多边的外角为x,则内角为5x﹣60°,由题意得:x+5x﹣60=180,解得:x=40,360°÷40°=9.(9﹣2)×180°=1260°答:这个正多边形的边数是9,内角和是1260°.【点评】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【分析】设这个多边形的边数为n,根据题意得出方程(n﹣2)×180°+360°=(12﹣2)×180°,求出方程的解即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°+360°=(12﹣2)×180°,解得:n=10,答:这个多边形的边数为10.【点评】本题考查了多边形的内角与外角,能熟记多边形的内角和公式是解此题的关键,注意:边数为n(n≥3)的多边形的内角和=(n﹣2)×180°,多边形的外角和=360°.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为36°(直接写出结果)【分析】(1)根据平行线的性质得:∠B=∠DCE,由于∠B=∠D,得∠D=∠DCE,根据平行线的判定,可得结论;(2)①如图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,根据平行线的性质列等式可得结论;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,变形后相减可得结论.【解答】解:(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,∵AD∥BC,∴∠D=∠DCE=2β,∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2α+2β=180整理得:α+β=55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F即:α+2β=∠F+β,∴∠F=α+β=55°;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.【点评】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【分析】(1)先根据三个内角度数的比设未知数,根据三角形的内角和列一元一次方程求出x的值,再求其对应的三个外角的度数并求比值即可.(2)根据多边形的内角和公式列式求解即可.【解答】解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【点评】考查了三角形的内角和定理和外角的性质,明确三角形的内角和为180°,并熟知三角形的一个内角与其相邻的外角和为180°.同时考查了多边形的内角和公式,熟记公式是解题的关键.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.【分析】由AB∥DE可得∠B=∠DEC=78°,已知∠C=60°,根据三角形内角和定理即可得∠EDC的度数.【解答】解:∵AB∥DE,∴∠B=∠DEC=78°,∵∠C=60°,∴∠EDC=180°﹣∠C﹣∠DEC=180°﹣78°﹣60°=42°.故∠EDC的度数为42°.【点评】本题主要考查了平行线的性质及三角形内角和定理,比较简单.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.19.已知一个多边形的内角和720°,求这个多边形的边数.【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=720°,n﹣2=4,n=6.答:这个多边形的边数是6.【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.【分析】根据多边形的内角和求出∠ABC+∠ADC=180°,根据角平分线定义求出∠1+∠2=90°,求出∠3+∠2=90°,推出∠1=∠3,根据平行线的判定得出即可.【解答】解:BE∥DF,理由是:∵四边形内角和等于360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE、CF分别是∠B、∠D的平分线,∴∠1=∠ABC,∠2=∠ADC,∴∠1+∠2=90°,∵在Rt△DCF中,∠3+∠2=90°,∴∠1=∠3,∴BE∥DF.【点评】本题考查了角平分线定义、多边形的内角与外角、平行线的判定等知识点,能求出∠1=∠3是解此题的关键.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.【分析】根据三角形外角的性质,可得∠1与∠A、∠B的关系,∠2与∠C、∠D的关系,∠3与∠E、∠F的关系,再根据多边形的外角和公式,可得答案.【解答】解:如图:根据三角形外角可得:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°【点评】此题考查多边形的内角与外角,掌握三角形的外角和定理是解决问题的关键.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?【分析】先根据四边形的内角和定理求出∠B+∠C+∠D,然后根据五边形的内角和定理列式计算即可得解.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n﹣2)•180°是解题的关键,整体思想的利用也很重要.23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB=∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =45°.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A 有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).。

初中数学人教版八年级上《11.3多边形及其内角和》同步练习组卷1(10)

初中数学人教版八年级上《11.3多边形及其内角和》同步练习组卷1(10)

人教新版八年级上学期《11.3 多边形及其内角和》2018年同步练习组卷一.选择题(共22小题)1.在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个 B.3个 C.4个 D.5个2.如图,五边形公园中,∠1=90°,张老师沿公园边由A点经B→C→D→E→F散步,则张老师共转了()A.440°B.360°C.260° D.270°3.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.74.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°5.正十边形的每一个内角的度数为()A.120°B.135°C.140° D.144°6.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.77.一个五边形的内角和为()A.540°B.450°C.360° D.180°8.一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.109.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形10.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.911.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.612.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.1113.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°14.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°15.如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A.B.C.D.16.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变17.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.618.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.1019.一个多边形的内角和是外角和的2倍,则它是()A.四边形B.五边形C.六边形D.八边形20.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.1021.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°22.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12人教新版八年级上学期《11.3 多边形及其内角和》2018年同步练习组卷参考答案与试题解析一.选择题(共22小题)1.在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个 B.3个 C.4个 D.5个【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.2.如图,五边形公园中,∠1=90°,张老师沿公园边由A点经B→C→D→E→F散步,则张老师共转了()A.440°B.360°C.260° D.270°【分析】张老师沿公园散步的时候转的是外角,五边形外角和360度,减去没有转的90度,等于270度.【解答】解:360゜﹣90°=270゜.故张老师共转了270゜.故选:D.【点评】本题考查了多边形的外角和定理,理解定理是关键.3.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.4.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.5.正十边形的每一个内角的度数为()A.120°B.135°C.140° D.144°【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.6.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.7.一个五边形的内角和为()A.540°B.450°C.360° D.180°【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.8.一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10【分析】由多边形的外角和为360°结合每个外角的度数,即可求出n值,此题得解.【解答】解:∵一个正n边形的每一个外角都是36°,∴n=360°÷36°=10.故选:D.【点评】本题考查了多边形内角与外角,牢记多边形的外角和为360°是解题的关键.9.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.10.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.11.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.12.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.【解答】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n﹣2)•180 (n≥3且n为整数).14.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°【分析】根据正多边形的内角和定义(n﹣2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【解答】解:(n﹣2)×180°=720°,∴n﹣2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.【点评】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n ﹣2)×180°.15.如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A.B.C.D.【分析】根据正方形、平行四边形、菱形和矩形的定义进行解答即可.【解答】解:∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,∴正方形应是N的一部分,也是P的一部分,∵矩形形、正方形、菱形都属于平行四边形,∴它们之间的关系是:.故选:A.【点评】本题考查的是正方形、平行四边形、菱形和矩形的定义,熟练掌握这些多边形的定义与性质是解答此题的关键.16.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变【分析】利用多边形的外角和特征即可解决问题.【解答】解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.【点评】本题考查了多边形的外角和,熟记多边形的外角和等于360°,与边数无关是解题的关键.17.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和的3倍可得方程180°(n﹣2)=360°×3,再解方程即可.【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).18.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.19.一个多边形的内角和是外角和的2倍,则它是()A.四边形B.五边形C.六边形D.八边形【分析】多边形的外角和是360°,则内角和是2×360°=720°.设这个多边形是n 边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360°,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.20.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.21.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【分析】根据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【解答】解:正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故选:B.【点评】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.22.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12【分析】根据正多边形的每个内角的度数都等于相邻外角的度数,可得外角,再根据外角公式,可得答案.【解答】解:由题意,得外角+相邻的内角=180°且外角=相邻的内角,∴外角=90°,360÷90=4,正多边形是正方形,故选:B.【点评】本题考查了多边形的内角与外角,利用正多边形的每个内角的度数都等于相邻外角的度数得出一个外角的度数是解题关键.。

人教版八年级上册11.3多边形及其内角和同步练习

人教版八年级上册11.3多边形及其内角和同步练习

11.3多边形及其内角和1 .以下图形中具有稳定性的是〔C.等腰三角形D.平行四边形2 .以下多边形中,对角线是 5条的多边形是〔3 .以线段a=7, b=8, c=9, d= 10为边作四边形,可以作〔5 .设四边形的内角和等于 a,五边形的内角和等于 b,那么a 与b 的关系是6 .假设正多边形的一个外角是 60.,那么这个正多边形的边数是〔A. 360° B, 290° C. 270° D. 250 9 .如图,小明从点 A 出发沿直线前进10米到达点B,向左转45.后又沿直线前进 10米到 达点C,再向左转45°后沿直线前进10米到达点D ・•照这样走下去,小明第一次回到出 发点A 时所走的路程为〔 〕A.正方形B.长方形 A.四边形B.五边形C.六边形D.七边形A. 1个B. 2个C. 3个D.无数个4.如果一个正多边形的内角和是外角和的3倍,那么这个正多边形的边数为〔 A. 5B. 6C. 7D. 8 A. a> bB. a= bC. a=b +180°D. b= a +180°A. 4B. 5C. 6D. 7. 一个多边形所有内角与外角的和为 12600 ,那么这个多边形的边数是〔 A. 5 B. 7 C. 8 D. 8.如图,五边形 ABCDE 勺一个内角/ A= 110° ,贝 U/ 1 + /2+/3+/4 等于〔C. 60 米D. 40 米10 .在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形〔A. 5个B. 6个C. 7个D. 8个11.如图,过正六边形ABCDE的顶点B作一条射线与其内角/ BAF的角平分线相交于点P,且/APB= 40.,那么/ CBP勺度数为〔60° C. 40° D. 30°12 .将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,那么原多边形纸片的边数不可能是〔A. 5B. 6C. 7D. 8二.填空题13 .正多边形的一个外角等于40°,那么这个正多边形的内角和的度数为14 .如图,在五边形ABCDEK / A+/B+/E= 320° , DP CP分别平分/ EDC / BCD 那么/ CP曲度数是15 .如图,把^ ABCM片沿DE折叠,使点A落在四边形BCDE勺外部./ A= 30° , / 1= 100°,那么/ 2的度数是度.16 .如图,一把三角尺的两条直角边分别经过正八边形的两个顶点,那么/ 1与/ 2的度数和三.解做题18 .如图,正五边形ABCD的每一个角都相等.(1)求/ B;(2)连AC 假设/ BAG= / BCA 求/ ACD19 .如图,四边形ABC加,/ BAD= 106° , / BCD= 64°,点M N分别在AB, BC上,将△ BM的MN1 折彳FMN 假设MF// AD FNI// DC求(1) / F的度数;(2) / D的度数.20 .如图,在四边形ABCDK 点E在AB上,CBL AB CE平分/ BCD DE¥分/ CDA / 1 +/ 2= 90.,试说明:DAL AB21 .小李同学在计算一个n边形的内角和时不小心多加了一个内角,度,那么这个多边形的边数n的值是多少?多加的这个内角度数是多少?参考答案得到的内角之和是1380D一.选择题1. C.2. B .3. D.4. D.5. D.6. C.7. B .8. B .9. B .10. D.11. C.12. D.二.填空题13. 1260 :14. 70° .15. 40 .16. 180 ° .17. 210 .三.解做题18. (1)正五边形ABCDE勺内角和是(5— 2) X 180=540° , 那么/ B=&^= 108° .5(2)在^ ABC中, BA= BC••.Z BCA=——^^=36° .2/ ACD= / BCD- / BCA= 108 - 36= 72° .19. (1)「MF// AD FN// DC / BAD= 106 , Z BCD= 64・♦/ BM曰106° , / FNB= 64••・将△ BMN& MN®!折,得^ FMN••.Z FMN= / BMN= 53 , / FNM= / MNB 32 ,,/ F=Z B= 180°— 53°— 32 = 95° ;(2) / F= / B= 95 ,/D= 360° - 106° - 64° - 95° = 95° .20. ••• CE平分/ BCD DE平分/ CDA. ./ 1=* ADC / 2得/BCD1 + /2 =工AD(+1/ BC注工(/ ADC/ BCD = 90 2 2 2・♦/ ADC/ BCD- 180° ,. AD// BCA+/B= 180° ,. CBL AB・./ B= 90° ,・./ A= 90°・.DAL AB21 .设多边形的边数为n,多加的外角度数为“,那么(n- 2)7180° = 1380° - a ,.「1380° =7X180° +120°,内角和应是180°的倍数,,同学多加的一个外角为120° ,・•.这是7+2= 9边形的内角和,答:这个多边形的边数n的值是9,多加的这个内角度数是120°。

人教版数学八年级上册 《11.3 多边形及其内角和》 同步训练题 (1)

人教版数学八年级上册 《11.3 多边形及其内角和》 同步训练题 (1)

《11.3 多边形及其内角和》同步训练题基础题训练(一):限时30分钟1.如图,AC,BD为四边形ABCD的对角线,∠ABC=90°,∠ABD+∠ADB=∠ACB,∠ADC=∠BCD.(1)求证:AD⊥AC;(2)探求∠BAC与∠ACD之间的数量关系,并说明理由.2.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.3.【知识回顾】:如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.【初步运用】:如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)【拓展延伸】:如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.4.如图,已知四边形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.试判断∠AEF与∠CFE是否相等?并证明你的结论.5.如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.基础题训练(二):限时30分钟6.如图,在四边形ABCD中,∠A=∠C=90°,BE∥DF,∠1=∠2.求证:∠3=∠4.7.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)8.(1)如图1,在△ADC中,∠ADC的平分线和∠ACD的外角平分线交于点P,若∠ADC=70°,∠ACD=50°,求∠P的度数.(2)如图2,在四边形ABCD中,∠ADC的平分线和∠BCD的外角平分线交于点P,∠A=90°,∠B=150°,求∠P的度数.(3)如图3,若将(2)中“∠A=90°,∠B=150°”改为“∠A=α,∠B=β”,其余条件不变,直接写出∠P与α+β之间的数量关系.9.三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为10.如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:①求证:∠P=∠1+∠A+∠2;②如图2,利用上面的结论,在五角星中,∠A+∠B+∠C+∠D+∠E=;③如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,直接写出结论即可.基础题训练(三):限时30分钟11.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3 4 5 6 …∠a的度数…10°(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.12.阅读材料:如图1,点A是直线MN上一点,MN上方的四边形ABCD中,∠ABC=140°,延长BC,2∠DCE=∠MAD+∠ADC,探究∠DCE与∠MAB的数量关系,并证明.小白的想法是:“作∠ECF=∠ECD(如图2),通过推理可以得到CF∥MN,从而得出结论”请按照小白的想法完成解答:拓展延伸保留原题条件不变,CG平分∠ECD,反向延长CG,交∠MAB的平分线于点H(如图3),设∠MAB=α,请直接写出∠H的度数(用含α的式子表示).13.(1)思考探究:如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P 点,请探究∠P与∠A的关系是.(2)类比探究:如图②,四边形ABCD中,设∠A=α,∠D=β,α+β>180°,四边形ABCD的内角∠ABC与外角∠DCE的平分线相交于点P.求∠P的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中α+β>180°改为α+β<180°,其它条件不变,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)14.如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至点E,连接CE,且CE交AD 于点F,∠EAD和∠ECD的角平分线相交于点P.(1)求证:①AB∥CD;②∠EAD+∠ECD=2∠APC;(2)若∠B=70°,∠E=60°,求∠APC的度数;(3)若∠APC=m°,∠EFD=n°,请你探究m和n之间的数量关系.15.如图1,在四边形ABCD中,∠A=∠C,点E在AB边上,DE平分∠ADC,且∠ADE=∠DEA.(1)求证:AD∥BC;(2)如图2,已知DF⊥BC交BC边于点G,交AB边的延长线于点F,且DB平分∠EDF.若∠BDC<45°,试比较∠F与∠EDF的大小,并说明理由.参考答案1.解:(1)∵在△ABC中,∠ABC=90°,∴∠ACB+∠BAC=90°,在△ABD中,∠ABD+∠ADB+∠BAD=180°,∵∠ABD+∠ADB=∠ACB,∴∠ACB+∠BAD=180°,即∠ACB+∠BAC+∠CAD=180°,∴∠CAD=90°,∴AD⊥AC.(2)∠BAC=2∠ACD;∵∠ABC=90°,∴∠BAC=90°﹣∠ACB=90°﹣(∠BCD﹣∠ACD),∵∠DAC=90°,∴∠ADC=90°﹣∠ACD,∵∠ADC=∠BCD,∴∠BCD=90°﹣∠ACD,∴∠BAC=90°﹣(90°﹣∠ACD﹣∠ACD)=2∠ACD.2.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.3.解:【知识回顾】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;【初步运用】(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.4.解:∠AEF=∠CFE.证明:∵∠D=∠B=90°,∴∠DAB+∠DCB=180°,又∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠DCF=∠DCB,∴∠DAE+∠DCF=(∠DAB+∠DCB)=90°,∵∠D=90°,∴∠DAE+∠DEA=90°,∴∠DEA=∠DCF,∴AE∥CF,∴∠AEF=∠CFE.5.解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=∠DAB,∠EBA=∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°﹣(∠DAB+∠CBA)=180°﹣(360°﹣∠C﹣∠D)=(∠C+∠D),∵∠C+∠D=210°,∴∠E=(∠C+∠D)=105°.6.证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE∥DF,∴∠2=∠5,∠AEB=∠3,∵∠1=∠2,∴∠1=∠5,∴∠AEB=∠4,∴∠3=∠4.7.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.8.解:(1)如图1,在射线DC上取一点E,∵∠ADC的平分线和∠ACD的平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC=30°;(2)如图2,在射线DC上取一点E,∵∠ADC的平分线和∠BCD的外角平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC======30°;(3).9.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°10.解:①连接AP并延长,则∠3=∠2+∠BAP,∠4=∠1+∠PAC,故∠BPC=∠1+∠A+∠2;②利用①中的结论,可得∠1=∠A+∠C+∠D,∵∠2=∠B+∠E,∵∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.③连接AP、AD、AG并延长,同①由三角形内角与外角的性质可求出∠4+∠5=∠1+∠2+∠3+∠BAC.故答案为:180°.11.解:(1)填表如下:正多边形的边数 3 4 5 6 (18)∠α的度数60°45°36°30°…10°故答案为:60°,45°,36°,30°,18;(2)不存在,理由如下:假设存在正n边形使得∠α=21°,得∠α=()°=21°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.12.解:阅读材料:延长CB交MN于点T,∵∠ECF=∠ECD,2∠DCE=∠MAD+∠ADC,∴2∠ECD=∠MAD+∠ADC=360°﹣∠CTA﹣∠DCT=360°﹣(180°﹣∠MTC)﹣(180°﹣∠ECD)=∠MTC+∠ECD,∴∠ECD=∠MTC,∴∠ECF=∠MTC,∴CF∥MN,∵∠ABC=140°,∴∠ABT=40°,∴∠MTC=∠MAB+40°,即∠DCE=∠MAB+40°;拓展延伸:∠H=360°﹣∠CDA﹣∠MAB﹣∠DAB﹣∠HCD=180°﹣[360°﹣(180°﹣∠ECD)﹣∠MAB﹣(180°﹣∠ECD)]=180°﹣(∠ECD﹣∠MAB),∵∠DCE=∠MAB+40°,∴∠H=180°﹣(∠MAB+60°),∵∠MAB=α,∴∠H=120°﹣α.13.解:(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)如图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β.故答案为:2∠P=∠A;90°﹣α﹣β.14.解:(1)证明:①∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴AB∥CD;②过点P作PQ∥AB,则∠EAP=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵∠EAP=∠EAD,∠DCP=,∴;(2)由(1)知AD∥BC,AB∥CD,∴∠EAD=∠B=70°,∠ECD=∠E=60°,由(1)知∠EAD+∠ECD=2∠APC,∴∠APC=;(3)过点F作FH∥AB,则∠EAD=∠AFH,∵AB∥CD,∴FH∥CD,∴∠ECD=∠CFH,∴∠EAD+∠ECD=∠AFH+∠CFH=∠AFC=∠EFD,由(1)知∠EAD+∠ECD=2∠APC,∴∠EFD=2∠APC,∵∠APC=m°,∠EFD=n°,∴.15.解:(1)证明:∵DE平分∠ADC,∴∠CDE=∠ADE,又∵∠ADE=∠DEA,∴∠CDE=∠DEA,∴CD∥AB,∴∠B+∠C=180°,又∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC;(2)∵DF⊥BC,∴∠BGF=90°,又∵AD∥BC,∴∠ADF=∠BGF=90°,∵CD∥AB,∴∠CDF=∠F.设∠EDB=∠BDF=x°,∠CDF=∠F=y°,则∠EDF=2x°,∠ADE=∠EDC=(2x+y)°,由∠ADF=∠ADE+∠EDF,得2x+y+2x=90,∴y=90﹣4x,∴∠F﹣∠EDF=y°﹣2x°=90°﹣4x°﹣2x°=90°﹣6x,∵∠BDC<45°,∴x+y<45°,x+90﹣4x<45,解得x>15,∴6x>90.∴∠F﹣∠EDF=90°﹣6x°<0,∴∠F<∠EDF.。

人教版 八年级上册数学 11.3 多边形及其内角和 同步训练(含答案)

人教版 八年级上册数学 11.3 多边形及其内角和 同步训练(含答案)

人教版八年级数学11.3 多边形及其内角和同步训练一、选择题(本大题共10道小题)1. 若正多边形的内角和是540°,则该正多边形的一个外角为A.45°B.60°C.72°D.90°2. 八边形的内角和等于()A.360°B.1080°C.1440°D.2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为()A.3 B.4 C.6 D.94. 如图,足球图片正中的黑色正五边形的内角和是A.180°B.360°C.540°D.720°5. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形6. 若一个多边形的一个顶点处的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3 B.4C.5 D.67. 下列哪一个度数可以作为某一个多边形的内角和()A.240°B.600°C.540°D.2180°8. 一个正多边形的每个外角不可能等于()A.30°B.50°C.40°D.60°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,已知长方形ABCD,一条直线将长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.12. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.13. 已知一个多边形的内角和是外角和的,则这个多边形的边数是.14. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A 处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题(本大题共4道小题)18. 如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?21. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选C.2. 【答案】B3. 【答案】C[解析] 从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°,故选C.5. 【答案】A [解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.6. 【答案】D[解析] 设这个多边形的边数为n ,则n -2=4,解得n =6.7. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.8. 【答案】B[解析] 设正多边形的边数为n ,则当30°n =360°时,n =12,故A可能;当50°n =360°时,n =365,不是整数,故B 不可能;当40°n =360°时,n =9,故C 可能;当60°n =360°时,n =6,故D 可能.9. 【答案】D[解析] 设内角和为1080°的多边形的边数为n ,则(n -2)×180°=1080°,解得n =8.则原多边形的边数为7或8或9.故选D.10. 【答案】D[解析] 一条直线将长方形ABCD 分割成两个多边形的情况有以下三种:(1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M+N=540°+180°=720°或M+N=360°+360°=720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M+N=180°+180°=360°.二、填空题(本大题共7道小题)11. 【答案】8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.12. 【答案】正方形13. 【答案】 514. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A 时,一共走了12×10=120(米).故答案为120.15. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8, 则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题(本大题共4道小题)18. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°. 理由:∵△ADN ,△BEF ,△CGM 都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN 的每个外角都是60°. ∴六边形DEFGMN 的每个内角都是120°. (2)六边形DEFGMN 不是正六边形.理由:∵三个小正三角形(即△ADN,△BEF,△CGM)的边长均不相等,∴DN,EF,GM均不相等.∴六边形DEFGMN不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x°,则与其相邻的外角度数是x°+12°.由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20. 【答案】解:(1)∵n边形的内角和是(n-2)×180°,∴多边形的内角和一定是180°的整倍数.∵2020÷180=11……40,∴多边形的内角和不可能为2020°.(2)设小华求的是n边形的内角和,这个内角为x°,则0<x<180.根据题意,得(n-2)×180°-x+(180°-x)=2020°,解得n=12+2x+40 180.∵n为正整数,∴2x+40必为180的整倍数.又∵0<x<180,∴40180<2x+40180<400180.∴n=13或14.∴小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED,BC相交于点G.在四边形ABGE中,∠G=360°-(∠A+∠B+∠E)=50°,∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.。

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)
∵AB∥DE,
∴∠BAG+∠AGD=90°,
则AG⊥DE.
点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.
18.如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
详解:(1)由平移的性质得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四边形ABED为平行四边形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE为△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由为:
由平移的性质得到∠EDF=∠BAC,
A. 200米B. 180米C. 160米D. 140米
【答案】B
【解析】
【分析】
多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.
【详解】∵多边形的外角和为360°,而每一个外角为20°,
∴多边形的边数为360°÷20°=18,
∴小华一共走了:18×10=180米.
故选B.
∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.
故选B.
点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.
6.如图所示,小华从A点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )

【人教版八年级数学上册同步练习试题及答案】11.3多边形及其内角和(含答案解析)

【人教版八年级数学上册同步练习试题及答案】11.3多边形及其内角和(含答案解析)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

人教版八年级上数学11.3 多边形及其内角和 同步练习及答案(含答案)

人教版八年级上数学11.3 多边形及其内角和 同步练习及答案(含答案)

第11章《三角形》同步练习(§11.3 多边形及其内角和)班级学号姓名得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350. 从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x . 从而⋅++=-18050142x n 因为边数n 为正整数,所以x =130.16.可以走回到A 点,共走100米.。

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷(含答案解析

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷(含答案解析

人教新版八年级上学期《11.3 多边形及其内角和》同步练习卷一.选择题(共20小题)1.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形2.小明将四根长度相同的细木条首尾相连,用钉子钉成四边形ABCD(接口处所用木条和木条的宽度、厚度都忽略不计),根据四边形的不稳定性,可以改变四边形的形状,当∠B=90°时,如图1,测得四边形ABCD的面积是4;当∠B=60°时,如图2,此时,四边形ABCD的面积是()A.2B.2C.2D.33.下列说法正确的是()A.对角线相等且相互垂直的四边形是菱形B.四条边相等的四边形是正方形C.对角线相互垂直的四边形是平行四边形D.对角线相等且相互平分的四边形是矩形4.下列图形具有稳定性的是()A.锐角三角形B.正方形C.五边形D.六边形5.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形6.下列图形中有稳定性的是()A.平行四边形B.直角三角形C.长方形D.正方形7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角8.下列图形中不具有稳定性的是()A.锐角三角形B.长方形C.直角三角形D.等腰三角形9.下列图形具有稳定性的是()A.梯形B.长方形C.直角三角形D.平行四边形10.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门11.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1312.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.713.一个多边形内角和是900°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形14.如图,在四边形ABCD中,∠A=110°,∠B=85°将△BMN沿着MN翻折,得到△FMN,若MF∥AD,FN∥DC,则∠C的度数为()A.70°B.80°C.90°D.100°15.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()A.35°B.40°C.50°D.不存在16.如果n边形的内角和等于外角和的3倍,那么n的值是()A.5B.6C.7D.817.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°18.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变19.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°20.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.6二.填空题(共15小题)21.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.22.对正方形剪一刀能得到边形.23.根据特殊四边形的定义,在如图的括号内填写相应的内容:24.如图①,四边形ABCD中,若AB=AD,CB=CD,则四边形ABCD称为筝形,根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.25.如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”.写出一个你所学过的特殊的等对角线四边形的名称.26.如图为四边形、平行四边形、矩形、正方形菱形、梯形集合示意图,请将字母所代表的图形分别填入下表:27.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是形,阴影部分表示的是形.28.一个凸多边形的内角中,最多有个锐角.29.如图,在四边形ABCD中,∠A与∠DCB互补,E为BC延长线上的点,且∠1+∠2+∠DCE=224°,则∠A的度数是.30.若一个n边形n个内角与某一个外角的总和为1350°,则n等于.31.如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=.32.已知多边形的每个内角都等于120°,则这个多边形是边形.33.如图,在四边形ABCD中∠A+∠D=m°,∠ABC的平分线与∠BCD的平分线交于∠P,则∠P为.34.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.35.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F+∠G=度.三.解答题(共15小题)36.一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.(1)写出表示第四条边长的式子;(2)当a=7cm还能得到四边形吗?为什么?此时的图形是什么形状?37.如图为四边形、平行四边形、矩形、正方形、菱形、梯形(B)集合示意图,请将字母所代表的图形分别填入下表:38.为了说明各种三角形之间的关系,小明画了如下结构图:请你采用类似的方式说明下述几个概念之间的关系:正方形、四边形、梯形、菱形、平行四边形、矩形.39.图中字母表示为四边形、平行四边形,矩形、菱形、正方形的从属关系,则字母所代表的图形为:正方形为,菱形为,矩形为,平行四边形为,四边形为.40.图中字母表示为四边形、平行四边形,矩形、菱形、正方形、梯形、等腰梯形、直角梯形从属关系,则字母所代表的图形为:A为,B为,C为,D为,E为,F为,G为,H为.41.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.42.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC 与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC 与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC 与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC 与S△ABC和S△DBC之间的关系式为:.43.将数字1,2,3,4,5,6,7,8分别填写到八边形ABCDEFGH的8个顶点上,并且以S1,S2,…,S8分别表示(A,B,C),(B,C,D),…,(H,A,B)8组相邻的三个顶点上的数字之和.(1)试给出一个填法,使得S1,S2,…,S8都大于或等于12;(2)请证明任何填法均不可能使得S1,S2,…,S8都大于或等于13.44.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.45.如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?46.如图,在四边形ABCD,AD∥BC,将△ADC沿对角线AC折叠,使得点D落在D′上,AD′与BC交于点E,若∠AEB=70°,求∠CAD的度数.47.一个多边形的内角和比外角和的3倍多180°,则它是几边形?48.一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.49.如图,在六边形ABCDEF中,AF∥CD,∠A=130°,∠C=125°.(1)求∠B的度数;(2)当∠D=°时,AB∥DE.请说明理由.50.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.人教新版八年级上学期《11.3 多边形及其内角和》同步练习卷参考答案与试题解析一.选择题(共20小题)1.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.2.小明将四根长度相同的细木条首尾相连,用钉子钉成四边形ABCD(接口处所用木条和木条的宽度、厚度都忽略不计),根据四边形的不稳定性,可以改变四边形的形状,当∠B=90°时,如图1,测得四边形ABCD的面积是4;当∠B=60°时,如图2,此时,四边形ABCD的面积是()A.2B.2C.2D.3【分析】首先证明图1中四边形是正方形,根据面积求出边长,再证明图2中,△ABC,△ADC都是等边三角形即可解决问题;【解答】解:∵AB=BC=CD=AD,∴四边形ABCD是菱形,当∠B=90°,四边形ABCD是正方形,因为为面积为4,∴AB=BC=CD=AD=2,当∠B=60°时,连接AC,则△ABC,△ADC都是等边三角形,∴S=2•S△ABC=2××22=2,四边形ABCD故选:A.【点评】本题考查正方形的判定和性质、菱形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.下列说法正确的是()A.对角线相等且相互垂直的四边形是菱形B.四条边相等的四边形是正方形C.对角线相互垂直的四边形是平行四边形D.对角线相等且相互平分的四边形是矩形【分析】根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答【解答】解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选:D.【点评】本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.4.下列图形具有稳定性的是()A.锐角三角形B.正方形C.五边形D.六边形【分析】根据三角形具有稳定性,可得答案.【解答】解:A、锐角三角形具有稳定性,故此选项正确;B、正方形不具有稳定性,故此选项错误;C、五边形不具有稳定性,故此选项错误;D、六边形不具有稳定性,故此选项错误;故选:A.【点评】此题主要考查了三角形的性质,关键是掌握三角形具有稳定性.5.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.6.下列图形中有稳定性的是()A.平行四边形B.直角三角形C.长方形D.正方形【分析】根据三角形具有稳定性解答.【解答】解:平行四边形、长方形、正方形、直角三角形中具有稳定性的是直角三角形.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.【点评】此题主要考查了多边形,正确掌握多边形的性质是解题关键.8.下列图形中不具有稳定性的是()A.锐角三角形B.长方形C.直角三角形D.等腰三角形【分析】三角形具有稳定性,根据三角形的性质,四边形的性质可得答案.【解答】解:长方形属于四边形,不具有稳定性,而三角形具有稳定性,故B 符合题意;故选:B.【点评】本题考查了多边形和三角形的稳定性,解决问题的关键是利用了四边形的不稳定性.9.下列图形具有稳定性的是()A.梯形B.长方形C.直角三角形D.平行四边形【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:直角三角形具有稳定性.故选:C.【点评】此题考查了三角形的稳定性和四边形的不稳定性.10.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门【分析】利用三角形的稳定性进行解答.【解答】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.【点评】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.11.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.12.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.13.一个多边形内角和是900°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【分析】根据多边形的外角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:B.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.如图,在四边形ABCD中,∠A=110°,∠B=85°将△BMN沿着MN翻折,得到△FMN,若MF∥AD,FN∥DC,则∠C的度数为()A.70°B.80°C.90°D.100°【分析】首先利用平行线的性质得出∠BMF=110°,再利用翻折变换的性质得出∠BMN=55°,根据三角形内角和定理可得∠MNB=40°,进而利用翻折变换的性质得出∠BNF的度数,再利用平行线的性质得出∠C的度数即可.【解答】解:∵MF∥AD,∠A=110°,∴∠BMF=110°,∵将△BMN沿MN翻折得△FMN,∴∠BMN=55°,∵∠B=85°,∴∠MNB=40°,∴∠FNB=80°,∵FN∥DC,∴∠C=80°.故选:B.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠MNB=40°是解题关键.15.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()A.35°B.40°C.50°D.不存在【分析】根据题意可知,小林走的是正多边形,先求出边数,然后再利用外角和等于360°,除以边数即可求出α的值.【解答】解:设边数为n,根据题意,n=108÷12=9,∴α=360°÷9=40°.所以α﹣5=35°,故选:A.【点评】本题主要考查了多边形的外角和等于360°,根据题意判断出所走路线是正多边形是解题的关键.16.如果n边形的内角和等于外角和的3倍,那么n的值是()A.5B.6C.7D.8【分析】根据多边形内角和公式180°(n﹣2)和多边形外角和为360°,结合题目中的等量关系可得方程180(n﹣2)=3×360,再解即可.【解答】解:由题意得:180(n﹣2)=3×360,解得:n=8,故选:D.【点评】此题主要考查了多边形的内角和外角,关键是掌握内角和公式.17.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.18.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变【分析】利用多边形的外角和特征即可解决问题.【解答】解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.【点评】本题考查了多边形的外角和,熟记多边形的外角和等于360°,与边数无关是解题的关键.19.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°【分析】直接利用多边形的内角和与外角和定义分析得出答案.【解答】解:八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选:C.【点评】此题主要考查了多边形的内角和与外角和,正确把握相关定义是解题关键.20.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.6【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和的3倍可得方程180°(n﹣2)=360°×3,再解方程即可.【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).二.填空题(共15小题)21.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′= =,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.22.对正方形剪一刀能得到三、四、五边形.【分析】根据图形的分割,可得答案.【解答】解:沿对角线剪一刀,得两个三角形,即三角形,沿对边上的两点剪一刀,得两个梯形,或两个矩形,即四边形;沿相邻两边上的点剪一刀,得一个三角形,一个五边形即五边形.故答案为:三、四、五.【点评】本题考查了多边形,分类讨论是解题关键.23.根据特殊四边形的定义,在如图的括号内填写相应的内容:平行四边形,一组邻边相等,一个角是直角【分析】根据平行四边形、特殊平行四边形的定义,可得答案.【解答】解:由四边形的关系,得,故答案为:平行四边形,一组邻边相等,一个角是直角.【点评】本题考查了多边形,利用平行四边形与特殊平行四边形的关系是解题关键.24.如图①,四边形ABCD中,若AB=AD,CB=CD,则四边形ABCD称为筝形,根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.【分析】当AB与CD不平行时,筝形为一般的四边形;当AB∥CD时,筝形为平行四边形,且它的四边相等,可判断此时筝形为菱形,若∠BAD为直角,筝形为正方形.【解答】解:如图②,阴影表示筝形.【点评】本题考查了多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.解决本题的关键是掌握特殊平行四边形的判定方法.25.如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”.写出一个你所学过的特殊的等对角线四边形的名称矩形.【分析】我们学过的等腰梯形、矩形、正方形的对角线相等,任选一个即可.【解答】解:矩形、正方形的两条对角线相等.故答案为:矩形.【点评】本题考查了多边形,知道我们学过的等腰梯形、矩形、正方形的对角线相等是解题的关键.26.如图为四边形、平行四边形、矩形、正方形菱形、梯形集合示意图,请将字母所代表的图形分别填入下表:【分析】根据四边形、平行四边形,矩形、菱形、正方形、梯形、等腰梯形、直角梯形的从属关系进行解答.【解答】解:如图所示:.【点评】此题主要考查了四边形的从属关系,是基础题,需要熟练掌握.27.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是平行四边形,阴影部分表示的是正方形.【分析】根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.【解答】解:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即有是一个角为直角的菱形;正方形、矩形和菱形都是特殊的平行四边形,故答案为:平行四边,正方.【点评】此题主要考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解答此题的关键是熟练掌握这四种图形的性质.28.一个凸多边形的内角中,最多有3个锐角.【分析】根据任意凸多边形的外角和是360°.可知它的外角中,最多有3个钝角,则内角中,最多有3个锐角.【解答】解:一个凸多边形的内角中,最多有3个锐角.【点评】注意每个内角与其相邻的外角是邻补角,由于多边形的外角和是不变的,所以要分析内角的情况可以借助外角来分析.29.如图,在四边形ABCD中,∠A与∠DCB互补,E为BC延长线上的点,且∠1+∠2+∠DCE=224°,则∠A的度数是112°.【分析】由三角形的外角和定理得出∠1+∠2=∠DCE,从而得出∠DCE=112°,再由∠A+∠DCB=180°,∠DCE+∠DCB=180°得∠A=∠DCE=112°.【解答】解:∵∠1+∠2=∠DCE,且∠1+∠2+∠DCE=224°,∴2∠DCE=224°,∴∠DCE=112°,∵∠A+∠DCB=180°,∠DCE+∠DCB=180°,∴∠A=∠DCE=112°,故答案为:112°.【点评】本题主要考查多边形的内角与外角,解题的关键是掌握三角形的外角的性质与补角的性质.30.若一个n边形n个内角与某一个外角的总和为1350°,则n等于9.【分析】根据n边形的内角和定理可知:n边形内角和为(n﹣2)×180.设这个外角度数为x度,根据题意列出方程(n﹣2)×180+x=1350,整理得x=1710﹣180n,然后根据0<x<180,得到,解不等式组即可求解.【解答】解:设这个外角度数为x°,根据题意,得(n﹣2)×180+x=1350,180n﹣360+x=1350,x=1350+360﹣180n,即x=1710﹣180n,由于0<x<180,即0<1710﹣180n<180,可变为:,解得8.5<n<9.5,所以n=9.故答案为9.【点评】本题主要考查了多边形的内角和定理:n边形的内角和为:180°•(n﹣2).同时考查了方程的变形及不等式组的解法.31.如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=290°.【分析】根据∠D=110°,所以∠D的外角为180°﹣110°=70°,用五边形的外角和减去70°即可解答.【解答】解:∵∠D=110°,∴∠D的外角为180°﹣110°=70°,∴∠1+∠2+∠3+∠4=360°﹣70°=290°,故答案为:290°.【点评】本题考查了多边形的内角与外角,关键是得出∠D的外角度数及外角和为360°.32.已知多边形的每个内角都等于120°,则这个多边形是六边形.【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故答案为:六.【点评】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.33.如图,在四边形ABCD中∠A+∠D=m°,∠ABC的平分线与∠BCD的平分线交于∠P,则∠P为m°.【分析】先根据四边形内角和定理求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣m°.∵∠ABC的平分线与∠BCD的平分线交于∠P,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣m°)=180°﹣m°,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣m°)=m°.故答案为m°.【点评】本题考查了多边形的内角和外角以及三角形、四边形的内角和定理,属于基础题.34.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【分析】先连接BE,构造“对顶三角形”,得出∠C+∠D=∠CBE+∠DEB,再根据五边形内角和为540°,得出∠A+∠ABE+∠BEF+∠F+∠G=540°,进而得到∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.【解答】解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB,∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°,故答案为:540.【点评】本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.35.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F+∠G=540度.【分析】连接DG,根据多边形的内角和定理得出∠A+∠AGF+∠1+∠2+∠EDC+∠C+∠B=540°,根据三角形内角和定理和对顶角相等求出∠1+∠2=∠E+∠F,代入求出即可.【解答】解:连接DG,∵∠1+∠2+∠GOD=180°,∠E+∠F+∠EOF=180°,又∵∠GOD=∠EOF,∴∠1+∠2=∠E+∠F,∵∠A+∠AGF+∠1+∠2+∠EDC+∠C+∠B=(5﹣2)×180°=540°,∴∠A+∠B+∠C+∠EDC+∠E+∠F+∠AGF=540°,故答案为:540.【点评】本题考查了多边形的内角和定理,能根据定理得出∠A+∠AGF+∠1+∠2+∠EDC+∠C+∠B=540°和∠1+∠2=∠E+∠F是解此题的关键.三.解答题(共15小题)36.一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.。

2017-2018学年八年级上《11.3.1多边形》同步练习含答案

2017-2018学年八年级上《11.3.1多边形》同步练习含答案

11.3 多边形及其内角和11.3.1 多边形要点感知1 在同一平面内,由一些线段首尾顺次相接组成的封闭图形叫做_____;其中_____是最简单的多边形.如果一个多边形由n条线段组成,那么这个多边形就叫做_____.预习练习1-1 在下列多边形中,图①是_____;图②是_____;图③是_____;图④是_____.要点感知 2 多边形相邻两边组成的角叫做它的_____;多边形的边与它的邻边的延长线组成的角叫做多边形的_____.连接多边形不相邻的两个顶点的线段叫做多边形的_____.预习练习2-1 一个n边形,有_____条边;有_____个内角.在每个顶点处取一个外角时,共有_____个外角.从一个顶点出发可以画_____条对角线.要点感知3 各个角都_____,各条边都_____的多边形叫做正多边形.预习练习3-1 下列图形中,一定是正多边形的是( )A.直角三角形B.等腰三角形C.长方形D.正方形知识点1 多边形及其相关概念1.下列说法中,正确的有( )①由n条线段连接起来组成的图形叫多边形;②三角形是边数最少的多边形;③n边形有n条边、n个顶点、2n个内角和外角;④多边形分为凹多边形和凸多边形.A.1个B.2个C.3个D.4个2.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形3.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于( )A.9B.10C.11D.12知识点2正多边形4.下列说法:①等腰三角形是正多边形;②等边三角形是正多边形;③长方形是正多边形;④正方形是正多边形.其中正确的个数为( )A.1个B.2个C.3个D.4个5.一个正多边形的周长是100,边长为10,则正多边形的边数n=_____.6.若过n边形的一个顶点有2m条对角线,m边形没有对角线,k边形有k条对角线,则(n-k)m=_____.7.一个四边形截去一个角后就一定是三角形吗?画出所有可能的图形.挑战自我8.用钉子将木棒AB、BC和CD分别在端点B,C处连接起来,用橡皮筋将AD连接起来,设橡皮筋的长度为x. (1)若AB=5,BC=11,CD=3,试求x的最大值和最小值;(2)在(1)的条件下,若要围成一个四边形ABCD,求出x的取值范围.参考答案课前预习要点感知1 多边形三角形n边形预习练习1-1 三角形四边形五边形六边形要点感知2 内角外角对角线预习练习2-1 n n n (n-3)要点感知3 相等相等预习练习3-1 D当堂训练1.B2.A3.C4.B5.10课后作业6.127.不一定,图略:8.(1)x的最大值是19,最小值是3.(2)x的取值范围是3<x<19.。

人教版八年级上《11.3多边形及其内角和》同步测试含答案解析

人教版八年级上《11.3多边形及其内角和》同步测试含答案解析

11.3基础闯关全练 拓展训练多边形及其内角和1.(2017 山东临沂中考)一个多边形的内角和是外角和的 2 倍,则这个多边形是( A.四边形 C.六边形 B.五边形 D.八边形)2.(2017 江苏南京中考)如图,∠1 是五边形 ABCDE 的一个外角,若∠1=65°,则 ∠A+∠B+∠C+∠D= °.3.如图,正五边形 FGHIJ 的顶点在正五边形 ABCDE 的边上,若∠1=20°,则∠2=.能力提升全练 拓展训练 1.在四边形 ABCD 中,若∠A 与∠C 之和等于四边形外角和的一半,∠B 比∠D 大 15°,则∠B 的度数等于 ( ) A.150° C.82.5° B.97.5° D.67.5° )2.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H 的度数为(A.90°B.180°C.270°D.360°3.如果一个多边形的所有内角从小到大排列起来,恰好依次增加相同的度数,且最小内角的度数为 100°, 最大内角的度数为 140°,那么这个多边形是 三年模拟全练 拓展训练 1.(2018 福建南平三中期中,7,★★☆)已知一个多边形的最小的外角是 60°,其余外角依次增加 20°,则 这个多边形的边数为( A.6 C.4 B.5 D.3 ) 边形.2.(2018 辽宁抚顺新宾期中,16,★★☆)如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将△BMN 沿 MN 翻 折,得△FMN,若 MF∥AD,FN∥DC,则∠D 的度数为 °.五年中考全练 拓展训练 1.(2017 山东莱芜中考,7,★★☆)一个多边形的内角和比其外角和的 2 倍多 180°,则该多边形的对角线 的条数是( A.12 ) B.13 C.14 D.152.(2016 四川广元中考,5,★★☆)如图,五边形 ABCDE 中,AB∥CD,∠1、∠2、∠3 分别是∠BAE、∠AED、 ∠EDC 的外角,则∠1+∠2+∠3=( )A.90°B.180°C.120°D.270°核心素养全练 拓展训练将若干个大小相等的正五边形排成环状,如图所示是前 3 个五边形,要完成这一圆环还需 边形( )个正五A.6B.7C.8D.911.3 多边形及其内角和答案 基础闯关全练 拓展训练 1.C 设所求多边形边数为 n,由题意得(n-2)·180°=360°×2,解得 n=6.则这个多边形是六边形.故选 C. 2.答案 425 解析 ∵∠1=65°,∴∠AED=115°, ∴∠A+∠B+∠C+∠D=(5-2)×180°-∠AED=425°, 故答案为 425. 3.答案 52° 解析 正五边形的每一个内角为(5-2)×180°÷5=108°, ∴∠AFG=180°-∠1-∠GFJ=180°-20°-108°=52°, ∴∠AGF=180°-∠A-∠AFG=180°-108°-52°=20°, ∴∠2=180°-∠AGF-∠FGH=180°-20°-108°=52°. 能力提升全练 拓展训练 1.B ∵∠A 与∠C 之和等于四边形外角和的一半,四边形的外角和为 360°,∴∠A+∠C=180°,∴∠B+∠D=360°-(∠A+∠C)=180°①,∵∠B 比∠D 大 15°,∴∠B-∠D=15°②,①+②得 2∠B=195°,∴∠B=97.5°. 2.D 如图,∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠ 2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°. 3.答案 六 解析 设多边形的边数为 n,则 三年模拟全练 拓展训练 1.C ∵多边形的外角和等于 360°,多边形的最小的外角是 60°,∴这个多边形的边数< 当边数为 3 时,60°+80°+100°<360°,不合题意; 当边数为 4 时,60°+80°+100°+120°=360°,符合题意; 当边数为 5 时,60°+80°+100°+120°+140°>360°,不合题意.故选 C. 2.答案 95 解析 ∵MF∥AD,FN∥DC,∠A=100°,∠C=70°, ∴∠BMF=100°,∠FNB=70°,∵将△BMN 沿 MN 翻折,得 △FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°-50°-35°=95°, ∴∠D=360°-100°-70°-95°=95°. 故答案为 95. 五年中考全练 拓展训练 1.C 根据题意,得(n-2)·180°=360°×2+180°,解得 n=7.则这个多边形的边数是 7,七边形的对角线条 数为( - ) ( )=180·(n-2),解得 n=6.故这个多边形为六边形.=6,=14,故选 C.2.B 如图,分别延长线段 AB,DC,∵AB∥CD, ∴∠4+∠5=180°,∵∠1+∠2+∠3+∠4+∠5=360°, ∴∠1+∠2+∠3=180°.故选 B.核心素养全练 拓展训练 B 五边形的内角和为(5-2)·180°=540°,所以正五边形的每一个内角为 540°÷5=108°,如图,延长 正五边形的两边相交于点 O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有 3 个正五 边形,10-3=7,∴完成这一圆环还需 7 个正五边形.。

人教版八年级上册数学:11.3多边形及内角和练习同步练习(40道)

人教版八年级上册数学:11.3多边形及内角和练习同步练习(40道)

人教版八年级上册数学同步练习11.3多边形及其内角和一.选择题(共22小题)1.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形2.若一个多边形的内角和为360°,则这个多边形的边数是()A.3B.4C.5D.63.一个多边形的内角和的度数可能是()A.1600°B.1700°C.1800°D.1900°4.六边形的内角和是()A.900°B.720°C.540°D.360°5.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.下列多边形中,内角和与外角和相等的是()A.B.C.D.7.在四边形ABCD中,边AB的对边是()A.BC B.AC C.BD D.CD 8.正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°9.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.若一个正n边形的每个内角为144°,则n等于()A.10B.8C.7D.511.为了说明各种三角形之间的关系,小敏画了如下的结构图(如图1).小聪为了说明“A.正方形;B.矩形;C.四边形;D.菱形;E.平行四边形”这五个概念之间的关系,类比小敏的思路,画了如下结构图(如图2),则在用“①、②、③、④”所标注的各区域中,正确的填法依次是()(用名称前的字母代号表示)A.C、E、B、D B.E、C、B、D C.E、C、D、B D.E、D、C、B 12.如果一个正多边形的一个外角是45°,则这个正多边形的边数是()A.8B.7C.6D.513.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB=()A.36B.72°C.108°D.144°14.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°15.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.6B.5C.4D.716.将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是()A.B.C.D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形18.一个五边形有三个内角是直角,另两个内角都等于n,则n的值是()A.30°B.120°C.135°D.108°19.下列说法中,正确的个数有()①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等.A.1个B.2个C.3 个D.4个20.n边形的内角和与外角和相等,则n=()A.3B.4C.5D.621.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DF A等于()A.30°B.36°C.45°D.32°22.下列说法中错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.四个角都相等的四边形是矩形C.每组邻边都相等的四边形是菱形D.对角线互相垂直的平行四边形是正方形二.填空题(共12小题)23.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.24.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.25.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.26.如图所示,已知O是四边形ABCD内一点,OB=OC=OD,∠BCD=∠BAD=75°,则∠ADO+∠ABO=度.27.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=度.28.正n边形的一个外角为72°,则n的值是.29.如图,AC、AD是正五边形的对角线,则∠CAD的度数是.30.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为.31.如果一个多边形的每一个外角都等于30°,则它的内角和是°.32.一个多边形的每个内角都是150°,那么这个多边形的边数为.33.若一个正多边形的周长是100,且内角和1440°,则它的边长为.34.回答下列问题:(1)若一个多边形的内角和与外角和的总和为1800°,则这个多边形是边形.(2)一个多边形的每一个外角都等于72°,这个多边形是边形,它的每个内角是度?三.解答题(共6小题)35.一个多边形的内角和等于外角和的a倍,则这个多边形的边数为多少?36.如图,已知BC与DE交于点M,求∠A+∠B+∠C+∠D+∠E+∠F的度数.37.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.38.已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和.39.如图所示,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.40.如图所示,求∠A+∠B+∠C+∠D+∠E的度数.参考答案一.选择题(共22小题)1.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【解答】解:∵360÷40=9,∴这个正多边形的边数是9.故选:D.2.若一个多边形的内角和为360°,则这个多边形的边数是()A.3B.4C.5D.6【解答】解:根据n边形的内角和公式,得(n﹣2)•180=360,解得n=4.故这个多边形的边数为4.故选:B.3.一个多边形的内角和的度数可能是()A.1600°B.1700°C.1800°D.1900°【解答】解:n边形的内角和可以表示成(n﹣2)•180°,A.∵1600°不是180°的整数倍,∴一个多边形的内角和的度数不可能是1600°;B.1700°不是180°的整数倍,∴一个多边形的内角和的度数不可能是1700°;C.(12﹣2)×180°=1800°,所以十边形的内角和的度数为1800°;D.1900°不是180°的整数倍,∴一个多边形的内角和的度数不可能是1900.故选:C.4.六边形的内角和是()A.900°B.720°C.540°D.360°【解答】解:根据题意,得(6﹣2)×180°=4×180°=720°,故选:B.5.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【解答】解:设多边形的边数为n,多加的外角度数为x,根据题意列方程得,(n﹣2)•180°+x=1160°,n﹣2=6,n=8.故选:D.6.下列多边形中,内角和与外角和相等的是()A.B.C.D.【解答】解:设所求多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.7.在四边形ABCD中,边AB的对边是()A.BC B.AC C.BD D.CD 【解答】解:在四边形ABCD中,边AB的对边是CD.故选:D.8.正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=.故选:D.9.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.10.若一个正n边形的每个内角为144°,则n等于()A.10B.8C.7D.5【解答】解:∵正n边形的一个内角为144°,∴正n边形的一个外角为180°﹣144°=36°,∴n=360°÷36°=10.故选:A.11.为了说明各种三角形之间的关系,小敏画了如下的结构图(如图1).小聪为了说明“A.正方形;B.矩形;C.四边形;D.菱形;E.平行四边形”这五个概念之间的关系,类比小敏的思路,画了如下结构图(如图2),则在用“①、②、③、④”所标注的各区域中,正确的填法依次是()(用名称前的字母代号表示)A.C、E、B、D B.E、C、B、D C.E、C、D、B D.E、D、C、B 【解答】解:①表示四边形,②表示平行四边形,③或④表示菱形或矩形,故选:A.12.如果一个正多边形的一个外角是45°,则这个正多边形的边数是()A.8B.7C.6D.5【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选:A.13.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB=()A.36B.72°C.108°D.144°【解答】解:∵正五边形的每个外角是360°÷5=72°,∴∠OCD=∠ODC=72°,∴∠COD=36°,又∵正五边形每个内角是108°,∴∠AOB=360°﹣108°﹣108°﹣36°=108°.故选:C.14.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°【解答】解:∵三角形的内角和等于180°,∴可得∠1和∠2的邻补角等于90°,∴∠1+∠2=2×180°﹣90°=270°.故选:C.15.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.6B.5C.4D.7【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个多边形为六边形.故选:A.16.将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是()A.B.C.D.【解答】解:A.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;B.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;C.剪开后的两个图形都是四边形,它们的内角和都是360°;故此选项符合题意;D.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;故选:C.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【解答】解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.18.一个五边形有三个内角是直角,另两个内角都等于n,则n的值是()A.30°B.120°C.135°D.108°【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故选:C.19.下列说法中,正确的个数有()①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等.A.1个B.2个C.3 个D.4个【解答】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误;故选:A.20.n边形的内角和与外角和相等,则n=()A.3B.4C.5D.6【解答】解:由题意得:(n﹣2)×180=360,n=4,故选:B.21.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DF A等于()A.30°B.36°C.45°D.32°【解答】解:在正五边形ABCDE中,∠C=×(5﹣2)×180°=108°,∵正五边形ABCDE的边BC=CD,∴∠CBD=∠CDB,∴∠CDB=(180°﹣108°)=36°,∵AF∥CD,∴∠DF A=∠CDB=36°.故选:B.22.下列说法中错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.四个角都相等的四边形是矩形C.每组邻边都相等的四边形是菱形D.对角线互相垂直的平行四边形是正方形【解答】解:A、一组对边平行且一组对角相等的四边形是平行四边形,故A正确;B、四个角都相等的四边形是矩形,股B正确;C、每组邻边都相等的四边形是菱形,故C正确;D、对角线互相垂直的平行四边形是菱形,故D错误;故选:D.二.填空题(共12小题)23.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是八.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.24.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n.【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.25.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.26.如图所示,已知O是四边形ABCD内一点,OB=OC=OD,∠BCD=∠BAD=75°,则∠ADO+∠ABO=135度.【解答】解:∵OB=OC=OD,∴∠CDO=∠DCO,∠OCB=∠OBC,∵∠DCO+∠BCO=75°,∴∠CDO+∠DCO+∠OCB+∠OBC=150°,∴∠ADO+∠ABO=360°﹣∠BAD﹣(∠CDO+∠DCO+∠OCB+∠OBC)=135°.故答案为:135.27.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95度.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.28.正n边形的一个外角为72°,则n的值是5.【解答】解:n=360°÷72°=5,故答案为5.29.如图,AC、AD是正五边形的对角线,则∠CAD的度数是36°.【解答】解:∵ABCDE是正五边形,∴每个内角是108°,在△ABC中,AB=BC,∴∠BAC=∠BCA=36°,在△AED中,AE=DE,∴∠EAD=∠EDA=36°,∴∠CAD=108°﹣36°﹣36°=36°.故答案为36°.30.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为15,16,17.【解答】解:设新多边形的边数是n,则(n﹣2)•180°=2520°,解得n=16,∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,∴原多边形的边数是15,16,17.故答案为:15,16,17.31.如果一个多边形的每一个外角都等于30°,则它的内角和是1800°.【解答】解:360÷30=12,则这个多边形的边数是12,内角和是:(12﹣2)•180=1800度.故答案为:180032.一个多边形的每个内角都是150°,那么这个多边形的边数为12.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.所以多边形是12边形,故答案为:12.33.若一个正多边形的周长是100,且内角和1440°,则它的边长为10.【解答】解:根据题意,得:(n﹣2)•180=1440,解得n=10.所以它的边长是100÷10=10.故答案为:10.34.回答下列问题:(1)若一个多边形的内角和与外角和的总和为1800°,则这个多边形是十边形.(2)一个多边形的每一个外角都等于72°,这个多边形是五边形,它的每个内角是108度?【解答】解:(1)∵相邻的内角与外角是邻补角,∴相邻内角与外角的和180°,1800÷180=10,故答案为:十;(2)360°÷72°=5,故答案为:五;内角180°﹣72°=108°,故答案为:108.三.解答题(共6小题)35.一个多边形的内角和等于外角和的a倍,则这个多边形的边数为多少?【解答】解:多边形的内角和是:360a°,设多边形的边数是n,则180(n﹣2)=360a,解得:n=2a+2.36.如图,已知BC与DE交于点M,求∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.37.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.【解答】解:如图:根据三角形外角可得:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°38.已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和.【解答】解:(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°.39.如图所示,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.【解答】解:如图,∵∠10=∠1+∠9,∠11=∠1+∠8,∴∠10+∠11=∠1+∠9+∠1+∠8=180°+∠1,∴(∠2+∠3+∠4+∠11)+(∠5+∠6+∠7+∠10)=360°+360°=720°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=720°﹣180°=540°,即∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数是540°.40.如图所示,求∠A+∠B+∠C+∠D+∠E的度数.【解答】解:由图可知:∵∠2是三角形的外角,∴∠2=∠A+∠1,同理∠1也是三角形的外角,∴∠1=∠E+∠C,在△BDF中,∠B+∠D+∠2=180°,即∠A+∠B+∠C+∠D+∠E=180°.。

人教版八年级上册11.3多边形及内角和同步练习

人教版八年级上册11.3多边形及内角和同步练习

11.3多边形及其内角和知识要点:1.多边形:在平面内,由一些线段首位顺次相接组成的封闭图形叫做多边形.2.正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.3.多边形的内角和:n 边形的内角和等于(n –2)×180°.4.多边形的外角和:多边形的外角和等于360°.一、单选题1.如果一个多边形的内角和是外角和的3倍,那么这个多边形是A .四边形B .六边形C .八边形D .十边形 2.一个多边形截去一个角后,形成新多边形的内角和为2520︒,则原多边形边数为( ) A .13 B .15 C .13或15 D .15或16或17 3.一个多边形的每一个外角都等于72°,则这个多边形的内角和等于( )A .360°B .540°C .720°D .900°4.当一个多边形的边数增加时,它的内角和与外角和的变化情况分别是( ) A .增大,增大 B .增大,不变 C .不变,增大 D .不变,不变 5.正六边形的每个内角度数为( )A .72B .108C .120D .1356.一个多边形截去一个角后,形成另一个多边形的内角和为1800°,你知道原多边形的边数为( )A .11B .12C .13D .11或12或13 7.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠、2∠、3∠、4∠对应的邻补角和等于225︒,则BOD ∠的度数为( )A.35︒B.40︒C.45︒D.50︒8.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7 B.2<AD<7 C.0<AD<13 D.1<AD<139.要使一个六边形的木架稳定,至少要钉()根木条A.3 B.4 C.6 D.910.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12二、填空题11.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.12.如果n边形的每一个内角都等于与它相邻外角的2倍,则n的值是_____.∠+∠+∠+∠+∠+∠+∠的度13.小明用一笔画成了如图所示的图形,则A B C D E F G数为______.14.正n边形的一个外角为72°,则n的值是_________.三、解答题∠+∠+∠+∠+∠+∠+∠的度数.15.如图,求123456716.一个多边形的内角和是它的外角和的4倍,求:(1)这个多边形是几边形?(2)这个多边形共有多少条对角线?17.(1)问题:①从四边形的一个顶点出发可以画______条对角线,四边形共有______条对角线;②从五边形的一个顶点出发可以画______条对角线,五边形共有______条对角线;③从六边形的一个顶点出发可以画______条对角线,六形共有______条对角线.(2)猜想:①从100边形的一个顶点出发可以画______条对角线,100边形共有______条对角线;②从n边形的一个顶点出发可以画______条对角线,n边形共有______条对角线.(3)应用:有32支足球队进行单循环赛,一共需要赛几场?18.一个正多边形的每个外角都是45 .(1)试求这个多边形的边数;(2)求这个多边形内角和的度数.答案:1.C2.D3.B4.B5.C6.D7.C8.D9.A10.C11.1012.613.540°.14.515.540°.16.(1)n =10;(2)35条.17.(1)①1;2;②2;5;③3;9(2)①97;4850;②(3)n -;(3)2n n -;(3)496场 18.(1)边数为8;(2)内角和1080︒.。

人教版八年级数学上册11.3 多边形及内角和同步练习

人教版八年级数学上册11.3 多边形及内角和同步练习

11.3多边形及其内角和一、选择题1.一个多边形的边数增加2,则这个多边形的外角和( )A.增加180°B.增加360°C.增加540°D.不变2.如果一个多边形的每个内角都相等,且内角和为1 800度,那么这个多边形的一个外角是( )A.30°B.36°C.60°D.72°3.如图,在六边形中,,分别平分和,若,则的度数为( )A. B. C. D.4. 一个多边形的每一个外角都是,那么这个多边形的内角和为()A. B. C. D.5.把n边形变为边形,内角和增加了,则x的值为A.4B. 6C. 5D. 36.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3=( )A.90°B.180°C.120°D.270°8.一个多边形内角和是外角和的K倍,那么这个多边形的边数是 ( )A. KB. 2K+1C. 2K+2D. 2K-29.下列说法正确的是()A.每条边相等的多边形是正多边形B. 每个内角相等的多边形是正多边形C. 每条边相等且每个内角相等的多边形是正多边形D.以上说法都对10.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为( )A.90°B.180°C.270°D.360°二、填空题11.若四边形ABCD的相对的两个内角互补,且满足∠A∶∠B∶∠C=2∶3∶4,则∠A=________,∠B=________,∠C=________,∠D=________.12.若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.13. 如图,把边长为12的正三角形纸板剪去三个小正三角形,得到正六边形,则剪去的小正三角形的边长为 .14.一个多边形截去一个角后,所形成的新多边形的内角和为 2 520°,则原多边形有条边.15. 如图,小亮从点出发前进,向右转,再前进,又向右转,…,这样一直走下去,他第一次回到出发点时,一共走了________.140,则从此多边形一个顶点发出的对角线16.多边形的每一个内角都等于0有条.17.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.三、解答题18.在一个多边形中,一个内角相邻的外角与其他各内角的和为.如果这个多边形是五边形,请求出这个外角的度数;是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.19.请根据下面X与Y的对话,解答下列各小题:X:我和Y都是多边形,我们俩的内角和相加的结果为1 440°.Y:X 的边数与我的边数之比为1∶3. (1)求X 与Y 的外角和相加的度数; (2)分别求出X 与Y 的边数; (3)试求出Y 共有多少条对角线.20.(1)若多边形的内角和为,求此多边形的边数.(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为,求这个多边形的边数.21.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数; (2)求证://AB DE .22.如图,四边形ABCD 中,∠BAD=100°,∠BCD=70°,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,求∠B 的度数.23.探究:画出下列多边形的对角线.完成下表: 四边形 五边形 六边形 边数顶点数从一个顶点引对角线对角线条数猜想:从n边形的一个顶点出发可以画_____条对角线,把n分成了个三角形;n边形共有_____条对角线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

………装………_________姓名:_____………装………绝密★启用前 2017-2018学年数学人教版八年级上册11.3 多边形及其内角和同步练习 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知一个多边形的内角和与外角和的比是9:2,则这个多边形的边数是 A . 9 B . 10 C . 11 D . 12 2.如图,在五边形ABCDE 中, ,DP 、CP 分别平分 、 ,则 的度数是 A . B . C . D . 3.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于 ,则该多边形的边数是( ) A . 7 B . 8 C . 7或8 D . 无法确定 4.如图,在四边形ABCD 中, 的角平分线与 的外角平分线相交于点P ,且 ,则 =( )…装………………订…○…………………○……不※※要※※在※※※线※※内※※※ …装………………订…○…………………○…… A . B . C . D . 5.如图,将矩形纸片ABCD 剪去一个角后,得到五边形ABCFE ,则 的值为( )A .B .C .D .6.如图所示,小华从A 点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A . 200米B . 180米C . 160米D . 140米7.如图,四边形ABCD 中, , ,将 沿MN 翻折得 ,若 , ,则 的度数为( )A .B .C .D .8.一个多边形从一个顶点最多能引出三条对角线,这个多边形是( )A . 三角形B . 四边形C . 五边形D . 六边形9.一个多边形的边数由原来的3增加到n 时 ,且n 为正整数 ,它的外角和( )A . 增加B . 减小C . 增加D . 没有改变10.如图,在三角形纸片ABC 中, ,过边BC 上的一点,沿与BC 垂直的方向将它剪开,分成三角形和四边形两部分,则在四边形中,最大的内角的度数为( )………○……………○…… A . B . C . D .……外………装…………○…………订……※※要※※在※※装※※订※线※※内※※答※……内………装…………○…………订……第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 11.一个多边形的内角和是它外角和的8倍,则这个多边形是______ 边形. 12.一个五边形五个外角度数的比是2:3:4:5:6,则这个五边形最大的一个外角的度数是______ . 13.如果只用一种正多边形做平面密铺,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的每个内角度数为______ .14.小明从P 点出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α, ,照这样走下去,第一次回到出发地点P 时,一共走了120米,则α的度数是______.15.如图,正十二边形 ,连接 , ,则 ______ .三、解答题16.如图所示,在 中, ,BD 、CE 分别是AC 、AB 上的高,H 是BD 、CE 的交点,求 的度数.17.如图所示,将 沿直线BC 方向平移 的位置,G 是DE 上一点,连接AG ,过点A 、D 作直线MN .(1)求证: ;………订……………线…………○…__________考号:________………订……………线…………○…(2)若 , ,判断AG 与DE 的位置关系,并证明你的结论. 18.如图,小东在足球场的中间位置,从A 点出发,每走6m 向左转60°,已知AB=BC=6m . (1)小东是否能走回A 点,若能回到A 点,则需走几m ,走过的路径是一个什么图形?为什么?(路径A 到B 到C 到…) (2)求出这个图形的内角和.参考答案1.C【解析】分析:根据多边形的内角和公式,多边形的外角和,可得方程,解方程,即可得答案.详解:设这个多边形的边数是n,由题意得(n-2)×180°:360°=9:2.解得n=11,故选:C.点睛:本题考查了多边形的内角与外角,利用了多边形的内角和公式:(n-2)180°,外角和是360.2.A【解析】分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.详解:∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=270°-α,∴∠P=180°-(270°-α)=α-90°,故选:B.点睛:本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.3.C【解析】分析:n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.详解:设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选:C.点睛:本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.4.A【解析】分析:利用四边形内角和是360°可以求得∠DAB+∠ABC=160°.然后由角平分线的性质,邻补角的定义求得∠PAB+∠ABP=∠DAB+∠ABC+(180°-∠ABC)=90°+(∠DAB+∠ABC)=170°,所以根据ABP的内角和定理求得∠P的度数即可.详解:如图,∵∠D+∠C=200°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=160°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠PAB+∠ABP=∠DAB+∠ABC+(180°-∠ABC)=90°+(∠DAB+∠ABC)=170°,∴∠P=180°-(∠PAB+∠ABP)=10°.故选:A.点睛:本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360°”是解题的关键.5.B【解析】分析:可利用多边形的内角和,求出五边形ABCFE的内角和,再减去3个直角的度数.详解:∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°∵五边形的内角和为(5-2)×180°=540°,∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.故选B.点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.6.B【解析】分析:多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.详解:∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小华一共走了:18×10=180米.故选:B.点睛:本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形是解题关键.7.D【解析】分析:根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.详解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠ENC=∠D=50°.由将CMN沿MN翻折得EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°-∠NMC-∠MNC=125°,故选:D.点睛:本题考查了平行线的性质、翻折的性质,利用平行线的性质、翻折的性质是解题关键.8.D【解析】试题分析:对于n边形,经过一个顶点能引出(n-3)条对角线,故本题选择D.9.D【解析】分析:利用多边形的外角和特征即可解决问题.详解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.点睛:本题考查了多边形的外角和,熟记多边形的外角和等于360°,与边数无关是解题的关键.10.D【解析】分析:根据三角形的内角和,可得∠A,根据四边形的内角和,可得答案.详解:由三角形的内角和,得∠A=180°-35°-35°=110°,由四边形的内角和,得360°-90°-110°-35°=125°,故选:D.点睛:本题考查了多边形的内角,利用多边形的内角和是解题关键.11.十八【解析】分析:根据多边形的外角和是360度,即可求得多边形的内角的度数,然后利用多边形的内角和定理即可求解.详解:设多边形的边数为n,根据题意列方程得,(n-2)•180°=8×360°,n-2=16,n=18.故答案是:十八.点睛:本题主要考查了多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.12.108°【解析】分析:根据五边形五个外角度数的比是2:3:4:5:6,则可以设最小的一个是2x°,则另外几个角就可用x表示出来,根据五边形的外角和是360度,即可列方程求解.详解:设最小的一个是2x°,则另外四个外角的度数分别是:3x°,4x°,5x°,6x°.根据五边形的外角和定理得到:2x+3x+4x+5x+6x=360,解得:x=18.则最大的外角是:6×18=108°.点睛:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.13.60°【解析】分析:由镶嵌的条件知,在一个顶点处各个内角和为360°,进而得出答案.详解:∵只用一种正多边形做平面密铺,而且在每一个正多边形的每一个顶点周围都有6个正多边形,∴该正多边形的每个内角度数为360°÷6=60°.故答案为:60°.点睛:此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.14.30°【解析】分析:根据多边形的外角和与外角的关系,可得答案.详解:由题意,得120÷10=12,图形是十二边形,α=360°÷12=30°,故答案为:30°.点睛:本题考查了多边形的外角,利用周长除以边长得出多边形是解题关键.15.75°【解析】分析:如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10=×360°=150°,运用圆周角定理问题即可解决.详解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10=×360°=150°,∴∠A3A7A10=75°,故答案为:75°.点睛:此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.16.120°【解析】分析:根据高的定义得∠ADB=∠AEC=90°,于是利用四边形内角和为360°可计算出∠EHD,然后根据对顶角相等得到∠BHC的度数.详解:∵BD、CE分别是ABC边AC、AB上的高,∴∠ADB=∠AEC=90°,而∠A+∠AEH+∠ADH+∠EHD=360°,∴∠EHD=180°-60°=120°,∴∠BHC=120°.点睛:本题考查了四边形的内角和以及三角形高的意义,解答此类题的关键是利用四边形的内角和为360°.17.(1)见解析;(2)见解析.【解析】分析:(1)利用平移的性质得到AB与DE平行且相等,得到四边形ABED为平行四边形,利用平行四边形的性质得到对角相等,利用外角性质即可得证;(2)AG垂直与DE,理由为:由平移的性质得到∠EDF=∠BAC,根据∠EDF=∠DAG,等量代换得到∠BAC=∠DAG,由AB与DE平行,利用两直线平行同旁内角互补得到一对角互补,等量代换得到∠ABC=∠CAG,利用等式的性质及平行线的性质即可得证.详解:(1)由平移的性质得:ABC≌△DEF,∴AB=DE,AB∥DE,∴四边形ABED为平行四边形,∴AD∥BF,∠ADG=∠ABC,∴∠ADG=∠DEF,∴∠ABC=∠DEF=∠ADG,∵∠AGE为ADG的外角,∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;(2)AG⊥DE,理由为:由平移的性质得到∠EDF=∠BAC,∵∠EDF=∠DAG,∴∠BAC=∠DAG,∵AB∥DE,∴∠ABC+∠BEG=180°,∵∠CAG+∠CEG=180°,∴∠ABC=∠CAG,∵MN∥BC,∴∠ABC=∠MAB,∴∠MAB=∠CAG,∵∠MAB+∠BAC+∠CAG+∠DAG=180°,∴∠CAG+∠BAC=90°,即∠BAG=90°,∵AB∥DE,∴∠BAG+∠AGD=90°,则AG⊥DE.点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.18.(1)走过的路径是一个边长为6的正六边形;(2)720°.【解析】试题分析:1)利用外角和为360°计算出多边形的边数即可;(2)利用内角和公式直接计算即可.试题解析:(1)从A点出发,每走6m向左转60°,,走过的路径是一个边长为6的正六边形;(2)正六边形的内角和为:(6﹣2)×180°=720°.。

相关文档
最新文档