函数的单调性一 新课标 人教版 必修一
新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 课件(48张)
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.
随堂水平达标
课后课时精练
2.做一做(请把正确的答案写在横线上) (1)已知函数 f(x)=x 的图象如图 1 所示,从左至右图象是上升的还是下降 的:________. (2)已知函数 y=f(x)的图象如图 2 所示,则该函数的单调递增区间是 ________,单调递减区间是________.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
金版点睛 定义法证明单调性的步骤
判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格 按照单调性的定义操作.
利用定义法判断函数的单调性的步骤为:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
注意:对单调递增的判断,当 x1<x2 时,都有 f(x1)<f(x2),也可以用一个 不等式来替代:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
3.单调区间 (1)这个区间可以是整个定义域.如 y=x 在整个定义域(-∞,+∞)上单 调递增, y=-x 在整个定义域(-∞,+∞)上单调递减; (2)这个区间也可以是定义域的真子集.如 y=x2 在定义域(-∞,+∞) 上不具有单调性,但在(-∞,0]上单调递减,在[0,+∞)上单调递增. 4.函数在某个区间上单调递增(减),但是在整个定义域上不一定都是单 调递增(减).如函数 y=1x(x≠0)在区间(-∞,0)和(0,+∞)上都单调递减, 但是在整个定义域上不具有单调性.
人教新课标版数学高一-必修一1.3.1函数 的单调性(第1课时)
§1.3 函数的基本性质1.3.1 单调性与最大(小)值第1课时 函数的单调性课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.函数的单调性一般地,设函数f (x )的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__________.(2)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__________.(3)如果函数y =f (x )在区间D 上是________或________,那么就说函数y =f (x )在这一区间具有________________,区间D 叫做y =f (x )的__________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________________.一、选择题1.定义在R 上的函数y =f (x +1)的图象如右图所示.给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是( )A .②③B .①④C .②④D .①③2.若(a ,b )是函数y =f (x )的单调增区间,x 1,x 2∈(a ,b ),且x 1<x 2,则有( )A .f (x 1)<f (x 2)B .f (x 1)=f (x 2)C .f (x 1)>f (x 2)D .以上都可能3.f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )A .至少有一个根B .至多有一个根C .无实根D .必有唯一的实根4.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减5.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中不正确的是( )A.f (x 1)-f (x 2)x 1-x 2>0 B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b )D.x 1-x 2f (x 1)-f (x 2)>0 6.函数y =x 2+2x -3的单调递减区间为( )A .(-∞,-3]B .(-∞,-1]C .[1,+∞)D .[-3,-1]二、填空题7.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是______________.8.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.三、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.1.函数的单调区间必须是定义域的子集.因此讨论函数的单调性时,必须先确定函数的定义域.2.研究函数的单调性,必须注意无意义的特殊点,如函数f (x )=1x在(-∞,0)和(0, +∞)上都是减函数,但不能说函数f (x )=1x在定义域上是减函数. 3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:即“取值——作差变形——定号——判断”这四个步骤.若f (x )>0,则判断f (x )的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.§1.3 函数的基本性质1.3.1 单调性与最大(小)值第1课时 函数的单调性知识梳理1.(1)增函数 (2)减函数 (3)增函数 减函数 (严格的)单调性 单调区间 2.[0,+∞) 3.增 4.(-∞,0)和(0,+∞)作业设计1.B2.A [由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,对应的f (x 2)>f (x 1).]3.D [∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴①当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,②当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,由①②知f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.]4.C [如图所示,该函数的对称轴为x =3,根据图象可知函数在(2,4)上是先递减再递增的.]5.C [由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,选项A 、B 、D 正确;对于C ,若x 1<x 2时,可能有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故C 不成立.]6.A [该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.]7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28, 由题意m 4=2,∴m =8. ∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y=-x2+2|x|+3的单调增区间是(-∞,-1]和[0,1],单调减区间是[-1,0]和[1,+∞).10.证明设a<x1<x2<b,∵g(x)在(a,b)上是增函数,∴g(x1)<g(x2),且a<g(x1)<g(x2)<b,又∵f(x)在(a,b)上是增函数,∴f(g(x1))<f(g(x2)),∴f(g(x))在(a,b)上是增函数.11.解函数f(x)=x2-1在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,则f(x2)-f(x1)=x22-1-x21-1=x22-x21x22-1+x21-1=(x2-x1)(x2+x1)x22-1+x21-1.∵1≤x1<x2,∴x2+x1>0,x2-x1>0,x22-1+x21-1>0. ∴f(x2)-f(x1)>0,即f(x2)>f(x1),故函数f(x)在[1,+∞)上是增函数.12.解(1)在f(m+n)=f(m)·f(n)中,令m=1,n=0,得f(1)=f(1)·f(0).因为f(1)≠0,所以f(0)=1.(2)函数f(x)在R上单调递减.任取x1,x2∈R,且设x1<x2.在已知条件f(m+n)=f(m)·f(n)中,若取m+n=x2,m=x1,则已知条件可化为f(x2)=f(x1)·f(x2-x1),由于x 2-x 1>0,所以0<f (x 2-x 1)<1. 在f (m +n )=f (m )·f (n )中,令m =x ,n =-x ,则得f (x )·f (-x )=1.当x >0时,0<f (x )< 1,所以f (-x )=1f (x )>1>0, 又f (0)=1,所以对于任意的x 1∈R 均有f (x 1)>0. 所以f (x 2)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, 即f (x 2)<f (x 1).所以函数f (x )在R 上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5, ∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2). ∵f (x )是(0,+∞)上的减函数,∴⎩⎪⎨⎪⎧m -2≥2m -2>0,解得m ≥4. ∴不等式的解集为{m |m ≥4}.。
高中数学第三章函数的概念与性质3.2.1单调性与最大小值第1课时函数的单调性新人教A版必修1
课前篇 自主预习
一二
(2)如何利用函数解析式f(x)=x2来描述随着自变量x值的变化,函 数值f(x)的变化情况?
提示:在(-∞,0]上,随着自变量x值的增大,函数值f(x)逐渐减小;在 (0,+∞)上,随着自变量x值的增大,函数值f(x)逐渐增大.
提示:可以.增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是 相同的不等号“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”也是相同 的不等号“>”,步调也一致.因此我们可以简称为:步调一致增函数.
课前篇 自主预习
一二
2.填表 增函数
减函数
定义
一般地,设函数 f(x)的定义域为 I,区间 D⊆I:如果∀x1,x2∈D,
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
函数单调性的应用 例3 已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)
3
与f 4 的大小.
分析:要比较两个函数值的大小,需先比较自变量的大小.
解:∵a2-a+1=
������-
1 2
2
+
3 4
≥
34,
∴3与
4
a2-a+1
(3)用x与f(x)的变化来描述当x在给定区间从小到大取值时,函数 值依次增大?如果是函数值依次减小呢?
提示:在给定区间上,∀x1,x2,且x1<x2,则f(x1)<f(x2).在给定区间 上,∀x1,x2且x1<x2,则f(x1)>f(x2).
新课标必修一函数的单调性的教学设计
课题:函数的单调性教学目标:1.知识与技能(1)通过已学过的函数特别是二次函数,理解函数的单调性概念;(2)学会运用函数图象理解和研究函数的性质;(3)了解数形结合的思想及严密的逻辑推理,培养学生良好的数学思想和数学方法;(4)能够熟练应用定义判断数在某区间上的的单调性.2.过程与方法能够观察研究函数图象的特点,来研究函数的单调性性质.3.情感、态度、价值观:培养学生学习数学的兴趣,体会函数图象的变化规律及蕴含本质教学方法:引导发现法教学重点:函数的单调性.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学程序与环节设计:1.创设情境 :问题引入2.组织探究:通过几个函数的图象的“上升“和”下降“的整体认识探究函数的单调性的定义及判断函数单调性的方法步骤3.尝试练习:利用函数的图象确定函数的单调区间 4.巩固提高:利用函数的单调性定义判断、证明函数的单调性.5.作业反馈:单调性定义的应用 教学过程: 一、 引入课题 1.在初中,有没有学过函数的增减性?(学过)一些函数的增减性是怎样知道的?(观察图象得出)2(1). f(x) = -x○1 从左至右图象上升还是下降______? ○2 在区间 ____________ 上,随着x 的增大, f(x)的值随着 ________ . (2). f(x) = x 2○1在区间 ____________ 上,f(x)随着x的增大而 ________ .○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ .(3).如何把上述的图象所反映的特征用数学符号语言表示出来?{引导学生探讨,归纳}二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.根据函数图象说明函数的单调性.如图,是定义在区间[]-上的函数()5,5y f x=,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解:函数()y f x =的单调区间有[)5,2-,[)2,1-,[)1,3,[]3,5。
新课标人教(A)必修一 函数单调性说课稿
课题:函数的单调性儋州市第一中学数学组黄礼燕一、教材分析1、教材内容本节课是人教版第一章《集合与函数概念》§1.3.1单调性与最大(小)值的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、学会通过函数图像来判断函数的单调性、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.4、重点与难点教学重点(1)领会函数单调性概念,体验函数单调性的形式化过程.(2)运用函数单调性的定义判断一些函数的单调性.教学难点(1)突破抽象,深刻理解函数单调性形式化的概念(2)利用函数单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.三、教学过程教学设计说明本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题: 1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随x 的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数1)(+=x xx f 在定义域上的单调性的讨论. 2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。
函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
高中数学(函数的单调性)教案 新人教版必修1 教案
函数的单调性【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2008年奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?预案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:(1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①.②若函数.③若函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取, 设元求差变形,断号∴∴即∴函数在上是增函数.定论2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。
高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性
x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1
函数的单调性人教版高中必修第一册
课堂互动
素养达成
解析
要使 f(x)在 R 上是减函数,需满足:( 3-a3- aa<- 10<,10),×1+4a≥-a·1.解得18≤a<13.
答案 A
27
课前预习
课堂互动
素养达成
角度2 利用单调性解不等式
【例3-2】 已知函数y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),
18
课前预习
课堂互动
素养达成
题型二 求函数的单调区间 角度1 利用图象求函数的单调区间 【例2-1】 已知函数f(x)=x2-4|x|+3,x∈R.
(1)将函数写成分段函数的形式; (2)画出函数的图象; (3)根据图象写出它的单调区间.
19
课前预习
课堂互动
素养达成
解 (1)f(x)=x2-4|x|+3=xx22- +44xx+ +33, ,xx≥ <00. , (2)如图.
有 f(x2)-f(x1)=x22-1 1-x12-1 1=((xx121--x12) )( (xx122- +1x2)) 由 x1,x2∈(1,+∞),得 x1>1,x2>1,所以 x21-1>0,x22-1>0,x1+x2>0.
又 x1<x2,所以 x1-x2<0,于是((xx121--x12) )( (xx122- +1x2))<0,即 f(x1)>f(x2), 因此,函数 f(x)=x2-1 1在(1,+∞)上单调递减.
23
课前预习
课堂互动
素养达成
【训练2】 (1)(多空题)如图所示的是定义在区间[-5,5]上的函数y=f(x)的图象, 则函数的单调递减区间是________,在区间________上是增函数.
新教材人教版高中数学必修第一册 3-2-1-1 单调性与最大(小)值——函数的单调性 教学课件
2.单调性与单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y =f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的_单__调__区__间__. [ 思考] 若函数 f(x)是其定义域上的增函数且 f(a)>f(b),则 a,b 满足什么关 系,如果函数 f(x)是减函数呢? 提示:若函数 f(x)是其定义域上的增函数,那么当 f(a)>f(b)时,a> b;若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
第二十八页,共四十一页。
(3)由题知--11<<12-a-a<1<1,1, 1-a>2a-1,
解得 0<a<23,即所求 a 的取值范围是
0,23.
[答案] (1)①(-∞,-4] ②-4
(2)(-4,-2) (3)0,23
第二十九页,共四十一页。
[方法技巧] (1)区间 D 是函数 f(x)的定义域的子集,x1,x2 是区间 D 中的任意两 个自变量,且 x1<x2, ①f(x)在区间 D 上单调递增,则 x1<x2⇔f(x1)<f(x2). ②f(x)在区间 D 上单调递减,则 x1<x2⇔f(x1)>f(x2).
第十八页,共四十一页。
题型二 求函数的单调区间 [学透用活]
(1)如果函数 f(x)在其定义域内的两个区间 A,B 上都是增(减)函数, 则两个区间用“,”或“和”连接,不能用“∪”连接.
(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、 开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.
C.a+b>0
D.a>0,b>0
第三十二页,共四十一页。
高中数学 第三章函数的概念与性质函数的单调性讲义 新人教A版必修一第一册
3.2.1 单调性与最大(小)值最新课程标准:借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.第1课时 函数的单调性知识点一 定义域为I 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间. 知识点二 单调性与单调区间如果函数y =f (x )在区间D 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y=1x 在(-∞,0)∪(0,+∞)上单调递减. [教材解难]1.教材P 77思考f (x )=|x |在(-∞,0]上单调递减,在[0,+∞)上单调递增; f (x )=-x 2在(-∞,0]上单调递增,在[0,+∞)上单调递减.2.教材P 77思考(1)不能 例如反比例函数f (x )=-1x,在(-∞,0),(0,+∞)上是单调递增的,在整个定义域上不是单调递增的.(2)函数f (x )=x 在(-∞,+∞)上是单调递增的.f (x )=x 2在(-∞,0]上是单调递减,在[0,+∞)上是单调递增的. [基础自测]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:由于①中的x 1,x 2不是任意的,因此①不正确;②③④显然不正确. 答案:A2.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12C .m >-12D .m <-12解析:使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.答案:B3.函数y =-2x 2+3x 的单调减区间是( ) A .[0,+∞) B.(-∞,0) C.⎝ ⎛⎦⎥⎤-∞,34 D.⎣⎢⎡⎭⎪⎫34,+∞ 解析:借助图象得y =-2x 2+3x 的单调减区间是⎣⎢⎡⎭⎪⎫34,+∞,故选D.答案:D4.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x2题型一利用函数图象求单调区间[经典例题]例1 已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4) B.(-5,-3)∪(-1,1)C.(-3,-1),(1,4) D.(-5,-3),(-1,1)【解析】在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).【答案】 C观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.跟踪训练1 函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数解析:函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.答案:A根据图象上升或下降趋势判断.题型二函数的单调性判断与证明[教材P79例3]例2 根据定义证明函数y =x +1x在区间(1,+∞)上单调递增.【证明】 ∀x 1,x 2∈(1,+∞), 且x 1<x 2,有y 1-y 2=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 由x 1,x 2∈(1,+∞),得x 1>1,x 2>1. 所以x 1x 2>1,x 1x 2-1>0. 又由x 1<x 2,得x 1-x 2<0. 于是x 1-x 2x 1x 2(x 1x 2-1)<0, 即y 1<y 2.所以,函数y =x +1x在区间(1,+∞)上单调递增.先根据单调性的定义任取x 1,x 2∈(1,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号. 教材反思利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数. 证明:设x 1,x 2是区间(-1,+∞)上任意两个实数且x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1), ∵-1<x 1<x 2,∴x 2-x 1>0,x 1+1>0,x 2+1>0. ∴x 2-x 1(x 1+1)(x 2+1)>0.即f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴y =x +2x +1在(-1,+∞)上是减函数. 利用四步证明函数的单调性.题型三 由函数的单调性求参数的取值范围[经典例题]例3 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.【解析】 ∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的减区间是(-∞,1-a ]. ∵f (x )在(-∞,4]上是减函数,∴对称轴x =1-a 必须在直线x =4的右侧或与其重合. ∴1-a ≥4,解得a ≤-3. 故a 的取值范围为(-∞,-3].状元随笔 首先求出f(x)的单调减区间,求出f(x)的对称轴为x =1-a ,利用对称轴应在直线x =4的右侧或与其重合求解.方法归纳“函数的单调区间为I ”与“函数在区间I 上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I ,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练3 例3中,若将“函数在区间(-∞,4]上是减函数”改为“函数的单调递减区间为(-∞,4]”,则a 为何值?解析:由例3知函数f (x )的单调递减区间为(-∞,1-a ], ∴1-a =4,a =-3.求出函数的减区间,用端点值相等求出a.一、选择题1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( )A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数 解析:由f (a )-f (b )a -b>0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数.答案:B2.下列函数中,在(0,2)上为增函数的是( ) A .y =-3x +2 B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -10解析:显然A 、B 两项在(0,2)上为减函数,排除;对C 项,函数在(-∞,2)上为减函数,也不符合题意;对D 项,函数在⎝ ⎛⎭⎪⎫-43,+∞上为增函数,所以在(0,2)上也为增函数,故选D.答案:D3.函数f (x )=x |x -2|的增区间是( ) A .(-∞,1] B .[2,+∞) C .(-∞,1],[2,+∞) D.(-∞,+∞)解析:f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,2x -x 2,x <2,作出f (x )简图如下:由图象可知f (x )的增区间是(-∞,1],[2,+∞). 答案:C4.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.答案:C 二、填空题5.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是____________.解析:由图象知单调递增区间为[-1.5,3]和[5,6]. 答案:[-1.5,3]和[5,6]6.若f (x )在R 上是单调递减的,且f (x -2)<f (3),则x 的取值范围是________. 解析:函数的定义域为R .由条件可知,x -2>3,解得x >5. 答案:(5,+∞)7.函数y =|x 2-4x |的单调减区间为________.解析:画出函数y =|x 2-4x |的图象,由图象得单调减区间为:(-∞,0],[2,4].答案:(-∞,0],[2,4] 三、解答题8.判断并证明函数f (x )=-1x+1在(0,+∞)上的单调性.解析:函数f (x )=-1x+1在(0,+∞)上是增函数.证明如下:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-1x 1+1-⎝ ⎛⎭⎪⎫-1x 2+1=x 1-x 2x 1x 2,由x 1,x 2∈(0,+∞),得x 1x 2>0, 又由x 1<x 2,得x 1-x 2<0, 于是f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )=-1x+1在(0,+∞)上是增函数.9.作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象,并指出函数的单调区间.解析:f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象如图所示.由图象可知:函数的单调减区间为(-∞,1]和(1,2];单调递增区间为(2,+∞). [尖子生题库]10.已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围. 解析:∵f (x )是定义在[-1,1]上的增函数, 且f (x -2)<f (1-x ), ∴⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,所以x 的取值范围为1≤x <32.。
3.1.2 高中必修一数学教案《函数的单调性》
高中必修一数学教案《函数的单调性》教材分析函数的单调性与最值指的是在初中基础上对函数的单调性的再认识,是利用集合与对应的思想理解函数的定理,从而加深对抽象函数单调性的定义理解,根据定义,证明函数的单调性,理解单调区间以及理解函数最大(小)值的定义并掌握其求法。
因为函数的单调性是初等数学与高等代数学衔接的枢纽,是函数的第一个也是最基本的性质,为研究指数函数、对数函数、幂函数、三角函数以及导函数的内容,对函数定性分析、求极值最值、比较大小、解不等式、判定零点都有重要的作用,所以具有重要的地位。
学情分析本节课的教学对象是高一理科的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣,不过由于年龄和思维原因,看问题容易片面。
在之前的学习中,学生已经掌握了函数的三要素,并且学生初中学过y随x的增大而增大(或减小),这些都有利于学生的理解。
但是本节课的单调性的定义更抽象,对学生而言是一个较大的考验。
教学目标1、理解增函数、减函数、单调区间、单调性等概念;2、掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质,能利用函数图象划分函数的单调区间。
教学重点形成增减函数的定义。
教学难点在形成增减函数概念的过程中,从函数升降的直观认识,过渡到增减函数的数学符号语言表述;用定义证明函数的单调性。
教学方法讲授法,演示法,讨论法,练习法教学过程一、情境导学我们知道,“记忆”在我们的学习过程中扮演着非常重要的角色,因此有关记忆的规律一直都是人们研究的课题。
德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似图3-1-7所示的记忆规律。
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图3-1-7中,y是x的函数,记这个函数为y = f(x)这个函数反映出记忆具有什么规律?你能从中得到什么启发?二、教学过程1、单调性的定义与证明情境中的函数y = f(x)反映出记忆的如下规律:随着时间间隔x的增大,记忆保持量y将减小。
高一数学1.3.1《函数的单调性》教案(新人教A版必修1)
⾼⼀数学1.3.1《函数的单调性》教案(新⼈教A版必修1)§1.3.1函数的单调性⼀、三维⽬标1、知识与技能:(1)建⽴增(减)函数的概念通过观察⼀些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的⼤⼩⽐较,认识函数值随⾃变量的增⼤(减⼩)的规律,由此得出增(减)函数单调性的定义 . 掌握⽤定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学⽣通过⾃主探究活动,体验数学概念的形成过程的真谛。
2、过程与⽅法(1)通过已学过的函数特别是⼆次函数,理解函数的单调性及其⼏何意义;(2)学会运⽤函数图象理解和研究函数的性质;(3)能够熟练应⽤定义判断与证明函数在某区间上的单调性.3、情态与价值,使学⽣感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. ⼆、教学重点与难点重点:函数的单调性及其⼏何意义.难点:利⽤函数的单调性定义判断、证明函数的单调性.三、学法与教学⽤具1、从观察具体函数图象引⼊,直观认识增减函数,利⽤这定义证明函数单调性。
通过练习、交流反馈,巩固从⽽完成本节课的三维⽬标。
2、教学⽤具:投影仪、计算机. 四、教学思路:(⼀)创设情景,揭⽰课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增⼤,y 的值有什么变化?○2 能否看出函数的最⼤、最⼩值?○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左⾄右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增⼤,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左⾄右图象上升还是下降 ______?⼤,f(x)的值随着________ .(3)f(x) = x2○1在区间____________ 上,f(x)的值随着x的增⼤⽽________ .○2在区间____________ 上,f(x)的值随着x的增⼤⽽________ .3、从上⾯的观察分析,能得出什么结论?学⽣回答后教师归纳:从上⾯的观察分析可以看出:不同的函数,其图象的变化趋势不同,同⼀函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的⼀个重要性质——函数的单调性(引出课题)。
函数的单调性
B.[0,+∞) D.(-∞,+∞)
解析:函数y=-x2的图象开口向下,以x=0为对称轴,由图象 易知y=-x2在(-∞,0]上为增函数,故选A. y x ( ∞ 0] A. 答案:A
人教A版必修一 新课标 人教 版必修一·新课标 数学 版必修一 新课标·数学
人教A版必修一 新课标 人教 版必修一·新课标 数学 版必修一 新课标·数学
人教A版必修一 新课标 人教 版必修一·新课标 数学 版必修一 新课标·数学
1.增函数 (1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间 D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么 就说函数f(x)在区间D上是增函数,区间D称为函数f(x)的单调递增区 间. (2)几何意义:函数f(x)的图象在区间D上是上升的.如下图所 示.
人教A版必修一 新课标 人教 版必修一·新课标 数学 版必修一 新课标·数学
类型二 【例 2】
求函数的单调区间 求下列函数的单调区间.
(1)f(x)=-x2+2|x|+3; a-x2 (2)f(x)= (a>0). x
思路分析:对于(1),去绝对值符号,转化为分段函数,结合函 数的图象可以直观地判断出函数的单调区间;对于(2),由于 f(x)=- a 1 x+ ,我们可以利用 y= 的单调性进行判断. x x
人教A版必修一 新课标 人教 版必修一·新课标 数学 版必修一 新课标·数学
●想一想:在增、减函数定义中,能否把“任意两个自变量” 改为“存在两个自变量”? 提示:不能.如下图所示,虽是f(-1)<f(2),但f(x)在[-1,2]上 并不单调.
人教新课标版数学高一-数学(人教A)必修1教学设计 1.3.1(1)函数的单调性
1.3.1(1)函数的单调性教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1.理解增函数、减函数的概念及函数单调性的定义2.会根据函数的图像判断函数的单调性3.能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1.培养学生利用数学语言对概念进行概括的能力2.学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1.通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2.通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1.函数与映射的定义。
2.函数的常用表示方法。
3.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:①随x 的增大,y 的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?4.作出下列函数的图象:(1)y=x ; (2)y=x 2 。
二、师生互动,新课讲解观察函数y=x 与y=x 2的图象,当x 逐渐增大时,y 的变化情况如何?可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).区间D 叫做函数的增区间。
新人教A版高中数学必修一课件:3.2.1.1函数的单调性
解析:由题知,当-−22a≤2或-−22a≥3,即a≤2或a≥3时,满足题意.
(2)设函数f(x)是R上的减函数,若f(m2+2)>f(2m+5),则实数m的取 值范围是_(_-_1,__3)___.
解析:因为函数f(x)是R上的减函数,则f(m2+2)>f(2m+5)等价于m2+2<2m+5,即m2-2m-3<0,即(m +1)(m-3)<0,解得-1<m<3,即m∈(-1,3).
2.(多选)如图是函数y=f(x)的图象,则函数y=f(x)在下列区间单调
递减的是( )
A.[-6,-4] B.[-4,-1]
C. [-1,2]
D.[2,5]
答案:BD
解析:结合图象易知, 函数f(x)在区间[-4,-1]、[2,5]上单调递减.
3.[2022·北京大兴高一期中]下列函数中,在区间(0,+∞)上是增
∴实数a的取值范围为(-∞,-4].
题型 3 函数单调性的应用 例 3 (2) 已 知 函 数 y = f(x) 是 ( - ∞ , + ∞) 上 的 增 函 数 , 且 f(2x - 3)>f(5x-6),则实数x的取值范围为_(-_∞_,__1)___.
解析:∵f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6), ∴2x-3>5x-6,即x<1,∴实数x的取值范围为(-∞,1).
m ≤ b ≤ n. ②方法:依据函数的单调性去掉符号“f”,转化为不等式问题.
巩固训练3 (1)已知二次函数y=x2-2ax+1在区间(2,3)内是单调函 数,则实数a的取值范围是( )
A.(-∞,2]∪ 3, + ∞ B.[2,3] C.(-∞,-3]∪ −2, + ∞ D.[-3,-2]
答案:A
新人教A版必修一 函数的单调性 课件(38张)
利用定义证明函数单调性的步骤
[注意] 作差变形是证明函数单调性的关键,且变形的结果多为 几个因式乘积的形式.
1.下列四个函数在(-∞,0)上为增函数的是( ) ①y=|x|+1;②y=|xx|;③y=-|xx2|;④y=x+|xx|.
A.①②
B.②③
C.③④
D.①④
解析:选 C.①y=|x|+1=-x+1(x<0)在(-∞,0)上为减函数;
求函数的单调区间
画出函数 y=-x2+2|x|+3 的图象,并指出函数的单调 区间.
【解】 y=-x2+2|x|+3=--((xx-+11))22++44,,xx≥<00. ,函数图象 如图所示.
函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1, +∞)上是减函数.所以函数的单调增区间是(-∞,-1]和[0, 1],单调减区间是[-1,0]和[1,+∞).
【解析】 (1)f(x)=-x2-2(a+1)x+3 =-(x+a+1)2+(a+1)2+3. 因此函数的单调递增区间为(-∞,-a-1]. ①由 f(x)在(-∞,3]上是增函数知 3≤-a-1, 即 a≤-4. ②由题意得-a-1=3,a=-4.
(2)因为函数 y=f(x)在(-∞,+∞)上是增函数,且 f(2x-3)>f(5x -6), 所以 2x-3>5x-6, 解得 x<1, 即实数 x 的取值范围为(-∞,1).
2.若 f(x)是定义在[0,+∞)上的减函数,则不等式 f(x)<f(-2x +8)的解集是__________.
解析:依题意,得不等式组x-≥20x,+8≥0, x>-2x+8,
解得83<x≤4. 答案:83,4
1.函数 y=x2-6x 的减区间是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性一
教学目标:理解函数单调性概念,掌握判断函数单调性的方法,会证明一些简单函数在某个
区间上的单调性.
教学重点、难点:函数单调性的概念与判断.
教学过程
一.问题情境
1.情境:2.1.1节开头的第3个问题中的气温变化图,()f t θ=.
2.问题:说出气温在哪些时段内是升高的,怎样用数学语言刻画“随时间的增大气温逐步升
高”这一特征.
二.学生活动
问题1:观察下列函数的图象,并指出图象变化的趋势.
观察得到:随着x 值的增大,图(1)中函数图象呈逐渐上升的趋势;图(3)中函数图象呈逐
渐下降的趋势;图(2)、(4)中函数图象在有的区间内呈逐渐上升的趋势,在有的区间内呈逐渐下降的趋势.
问题2: 在某一区间内,“图象呈逐渐上升趋势”、“图象呈逐渐下降的趋势”分别说明函数值
y 随着自变量x 的增大如何变化?
讨论得到:在某一区间内:图象呈逐渐上升趋势⇔当x 增大时,函数值y 也增大;
图象呈逐渐下降趋势⇔当x 增大时,函数值y 反而减小.
函数的这种性质称为函数的单调性.
三.建构数学
问题3:如何用数学语言来准确地表达函数的单调性呢?
通过讨论,结合图(5)给出()f x 在区间I 上是单调增函数的定义.
单调增函数的定义:
一般地,设函数()y f x =的定义域为A ,区间I A ⊆. x y O 2(1)1y x =-- (2)
2 1
1-
x y
O 21y x =+ (1) x y O 1,(0,)y x x
=∈+∞ (3) /t h /o C θ
[](),0,24f t t θ=∈
如果对于区间I 内的任意两个值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说 ()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调增区间.
练习:指出图(1)(2)(4)中函数的单调增区间.
问题4:如何定义单调减函数呢?(学生结合图(6),仿照增函数定义叙述).
注意:“任意”、“都有”等关键词.
说明:单调性、单调区间.
练习:指出图(2)(3)(4)中函数的单调减区间.
四.数学运用
1.例题
例1.(教材P .34例1.)画出下列函数图象,并写出单调区间.
(1)2
2y x =-+; (2)1y x =; (3)21, 0()22, 0
x x f x x x ⎧+≤=⎨-+>⎩. 问:函数1y x =在其定义域(,0)(0,)-∞+∞U 上是减函数吗? 引导学生从图象观察或取特殊值代入验证否定结论.
说明:1.单调区间是函数定义域的子集,所以,求函数的单调区间,必须注意函数的定义域;
2.单调区间是单调增区间和单调减区间的统称,所以,求函数的单调区间时,如果函
数既有单调增区间,又有单调减区间,必须分别写出来。
例2.(教材第35页 例2.)求证:函数1()1f x x
=--在区间(,0)-∞上是单调增函数. 归纳 :证明函数单调性的基本步骤和答题规范.
说明:判断函数的单调性,可以用图象或单调性的定义;而证明函数的单调性,只能用单调性
的定义.
2.练习:课后练习第1、2、5题.
五.回顾小结
本节课主要学习了函数单调性的概念,判断和证明函数单调性的的方法.要能运用单调性的定义证明函数的单调性,并重视答题规范.
六、课外作业:
课本第43页第1、2、7题.
补充:作出函数22||3y x x =--的图象,并写出函数的单调区间.。