版高考数学大一轮复习第二章函数概念与基本初等函数I第2讲函数的单调性与最值教师用书文新人教版

合集下载

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

第二章 函数的概念及基本初等函数(Ⅰ)第二节 函数的单调性与最值A 级·基础过关 |固根基|1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上是增函数. 2.如果函数f(x)=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-14,+∞B .⎣⎢⎡⎭⎪⎫-14,+∞C .⎣⎢⎡⎭⎪⎫-14,0 D .⎣⎢⎡⎦⎥⎤-14,0 解析:选D 当a =0时,f(x)=2x -3在定义域R 上单调递增,故在(-∞,4)上单调递增; 当a≠0时,二次函数f(x)的对称轴为x =-1a ,因为f(x)在(-∞,4)上单调递增, 所以a<0,且-1a ≥4,解得-14≤a<0.综上,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.3.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f(x)是定义在区间[0,+∞)上的增函数,满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13, 所以0≤2x-1<13,解得12≤x<23.4.设偶函数f(x)的定义域为R ,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A .f (π)>f(-3)>f(-2)B .f (π)>f(-2)>f(-3)C .f (π)<f(-3)<f(-2)D .f (π)<f(-2)<f(-3) 解析:选A 因为f(x)是偶函数, 所以f(-3)=f(3),f(-2)=f(2). 又因为函数f(x)在[0,+∞)上是增函数, 所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).5.函数y =f(x)(x∈R)的图象如图所示,则函数g(x)=f(log a x)(0<a<1)的单调递减区间是( )A .⎣⎢⎡⎦⎥⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ D .[a ,a +1 ]解析:选B 由图象,知f(x)在(-∞,0)和⎣⎢⎡⎭⎪⎫12,+∞上单调递减,而在⎣⎢⎡⎦⎥⎤0,12上单调递增.又因为当0<a<1时,y =log a x 为(0,+∞)上的减函数,所以要使g(x)=f(log a x)单调递减,则需log a x ∈⎣⎢⎡⎦⎥⎤0,12,即0≤log a x ≤12,解得x∈[a ,1].6.定义新运算⊕:当a≥b 时,a ⊕b =a ;当a<b 时,a ⊕b =b 2,则函数f(x)=(1⊕x)x -(2⊕x),x∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得,当-2≤x≤1时,f(x)=x -2; 当1<x≤2时,f(x)=x 3-2.因为f(x)=x 3-2,f(x)=x -2在定义域内都为增函数,且f(1)<f(2), 所以f(x)的最大值为f(2)=23-2=6.7.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________.解析:当x≥1时,log 12x≤0;当x<1时,0<2x<2,故f(x)的值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)8.函数f(x)=x +2x -1 的值域为________. 解析:由2x -1≥0,得x≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞. 又函数f(x)=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12,∴函数f(x)的值域为⎣⎢⎡⎭⎪⎫12,+∞.答案:⎣⎢⎡⎭⎪⎫12,+∞9.已知f(x)=xx -a(x≠a). (1)若a =-2,证明:f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任取x 1<x 2<-2, 当a =-2时,f(x 1)-f(x 2)= x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴f(x)在(-∞,-2)上单调递增.(2)任取1<x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a>0,x 2-x 1>0,∴要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a 的取值范围是(0,1].10.(2019届福建师大附中模拟)定义在(0,+∞)上的函数f(x)满足下面三个条件: ①对任意正数a ,b ,都有f(a)+f(b)=f(ab); ②当x>1时,f(x)<0; ③f(2)=-1. (1)求f(1)的值;(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数; (3)求满足f(3x -1)>2的x 的取值集合.解:(1)由f(a)+f(b)=f(ab),得f(1)+f(1)=f(1),则f(1)=0. (2)证明:任取x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1=f(x 2),所以f(x 2)-f(x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1. 由x 2x 1>1,得f ⎝ ⎛⎭⎪⎫x 2x 1<0,即f(x 2)<f(x 1),∴f(x)在(0,+∞)上是减函数.(3)∵f(2)=-1,∴f(4)=f(2)+f(2)=-2,又f(4)+f ⎝ ⎛⎭⎪⎫14=f(1)=0,∴f ⎝ ⎛⎭⎪⎫14=2.又f(x)的定义域为(0,+∞),且在其上是减函数, ∴⎩⎪⎨⎪⎧3x -1<14,3x -1>0,解得13<x<512. 故满足要求的x 的取值集合为⎝ ⎛⎭⎪⎫13,512.B 级·素养提升 |练能力|11.设a>0且a≠1,则“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f(x)=a x在R 上为减函数,则有0<a<1;若函数g(x)=(2-a)x 3在R 上为增函数,则有2-a>0,即a<2,所以“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件,故选A .12.已知在函数f(x)=lg(a x-b x)+x 中,常数a ,b 满足a>1>b>0,且a =b +1,那么f(x)>1的解集为( )A .(0,1)B .(1,+∞)C .(1,10)D .(10,+∞) 解析:选B 由a x-b x>0,a>1>b>0,得⎝ ⎛⎭⎪⎫a b x>1,解得x>0,所以函数f(x)的定义域为(0,+∞).因为a>1>b>0,所以y =a x单调递增,y =-b x单调递增,所以t =a x-b x单调递增.又y =lg t 单调递增,所以f(x)=lg(a x-b x)+x 为(0,+∞)上的增函数.而f(1)=lg(a -b)+1=lg 1+1=1,所以当x>1时,f(x)>1,故f(x)>1的解集为(1,+∞).故选B .13.如果函数y =f(x)在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y=f(x)是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f(x)=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:选D 因为函数f(x)=12x 2-x +32的对称轴为x =1,所以函数y =f(x)在区间[1,+∞)上是增函数.又当x≥1时,f (x )x =12x +32x -1,令g(x)=12x +32x -1(x≥1),则g′(x)=12-32x 2=x 2-32x 2,由g′(x)≤0,得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].故选D . 14.定义运算:x y =⎩⎪⎨⎪⎧x ,xy≥0,y ,xy<0,例如:34=3,(-2)4=4,则函数f(x)=x2(2x -x 2)的最大值为________.解析:由已知,得f(x)=x2(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x≤2,2x -x 2,x<0或x>2,易知函数f(x)的最大值为4. 答案:4。

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第二节函数的单调性与最值实用文PPT课件

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第二节函数的单调性与最值实用文PPT课件

[易错提醒] (1)单调区间是定义域的子集,故求单调区间时应树立 “定义域优先”的原则. (2)单调区间只能用区间表示,不能用集合或不等式表 示;如有多个单调区间应分开写,不能用并集符号“∪”连 结,也不能用“或”连结. (3)函数的单调性是函数在某个区间上的“整体”性质,所 以不能仅仅根据某个区间内的两个特殊变量 x1,x2 对应的函 数值的大小就判断函数在该区间的单调性,必须保证这两个 变量是区间内的任意两个自变量.
(2)若 k>0,则 kf(x)与 f(x)单调性相同,若 k<0,则 kf(x) 与 f(x)单调性相反;
(3)在公共定义域内,函数 y=f(x)(f(x)≠0)与 y=-f(x),y =f1x单调性相反;
(4)在公共定义域内,函数 y=f(x)(f(x)≥0)与 y= fx单 调性相同;
(5)奇函数在其关于原点对称的区间上单调性相同,偶函 数在其关于原点对称的区间上单调性相反.
应用(三) 求参数的取值范围 [例 4] (1)如果函数 f(x)=ax2+2x-3 在区间(-∞,4)上
应用(二) 解函数不等式
[例 3] f(x)是定义在(0,+∞)上的单调增函数,满足 f(xy)=f(x)
+f(y),f(3)=1,当 f(x)+f(x-8)≤2 时,x 的取值范围是________.
[解析] 2=1+1=f(3)+f(3)=f(9),由 f(x)+f(x-8)≤2,可
得 f[x(x-8)]≤f(9),因为 f(x) 是定义在(0,+∞)上的增函数,
(2)设 t=x2-2x-3,由 t≥0, 即 x2-2x-3≥0,解得 x≤-1 或 x≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数 t=x2-2x-3 的图象的对称轴为 x=1,所以函 数 t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增. 所以函数 f(x)的单调递增区间为[3,+∞). [答案] (1)③ (2)[3,+∞)

高考数学一轮复习 第二章 函数概念与基本初等函数 第2课时 函数的单调性与最值学案(含解析)(1)(

高考数学一轮复习 第二章 函数概念与基本初等函数 第2课时 函数的单调性与最值学案(含解析)(1)(

高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)(1)的全部内容。

函数的单调性与最值一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式,就是 .② 复合函数f [g(x )]的有关定义域,就要保证内函数g (x )的 域是外函数f (x )的 域.③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y =f (x )中,与自变量x 的值 的集合。

2.常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法) 例如:①形如y =221x +,可采用 法;② y =)32(2312-≠++x x x ,可采用 法或法;③ y =a [f (x )]2+bf (x )+c ,可采用 法;④ y =x -x-1,可采用 法;⑤ y =x -21x -,可采用 法;⑥ y =xxcos 2sin -可采用 法等。

三、单调性1.定义:如果函数y =f (x )对于属于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2,当x 1、〈x 2时,①都有 ,则称f (x )在这个区间上是增函数,而这个区间称函数的一个 ;②都有 ,则称f (x )在这个区间上是减函数,而这个区间称函数的一个 。

2021年高考数学一轮复习第二章函数概念与基本初等函数I.函数的单调性与最值理

2021年高考数学一轮复习第二章函数概念与基本初等函数I.函数的单调性与最值理

2021年高考数学一轮复习第二章函数概念与基本初等函数I2.2函数的单调性与最值理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I 上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.( ×)(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.(xx·北京改编)下列函数中,①y =x +1;②y =(x -1)2;③y =2-x;④y =log 0.5(x +1),在区间(0,+∞)上为增函数的是________. 答案 ①解析 ①中,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;②中,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;③中,函数y =2-x=(12)x 在R 上为减函数,故错误;④中,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________. (2)函数的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性 例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1(a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1,∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +a x(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2 =(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 1-a x 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +a x(a >0)在(0,a ]上为减函数; 当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +a x(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +a x(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数. 方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-a x2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-a x2<0,解得-a <x <a . ∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数. 题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +a x+2,x ∈[1,+∞). ①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)答案 < >解析 ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0, ∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 命题点2 解不等式例 5 已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧2-a x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎢⎡⎦⎥⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,2-a ×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________. (2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数, ∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R,且x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1.[2分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N) 的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号) 答案 ①解析 由题意知f (x )在(0,+∞)上是减函数. ①中,f (x )=1x满足要求;②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数; ③中,f (x )=e x是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________. 答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数, 当a ≠0时,由⎩⎪⎨⎪⎧ a >0,-4a -34a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________.答案 [3,+∞)解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增.所以函数f (x )的增区间为[3,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2. 8.函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a (x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a. ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝ ⎛⎭⎪⎫19=f (1)=0,故f ⎝ ⎛⎭⎪⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝ ⎛⎭⎪⎫x 2x1<0, 由f (xy )=f (x )+f (y )得 f (x 2)=f ⎝ ⎛⎭⎪⎫x 1·x 2x 1=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝ ⎛⎭⎪⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x 2-x >19,0<x <2, 由此解得x 的取值范围是⎝ ⎛⎭⎪⎫1-223,1+223. B 组 专项能力提升 (时间:20分钟) 11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6. 13.(xx·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +2y 2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号.14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2, 而h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

高考数学一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值课件 理 (2)

高考数学一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值课件 理 (2)

12345
解析答案
返回
题型分类 深度剖析
题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性
例 1 (1)下列函数中,①y=ln(x+2);②y=- x+1;③y=(12)x; ④y=x+1x,在区间(0,+∞)上为增函数的是_①___. 解析 y=ln(x+2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.
第二章 函数概念与基本初等函数 I
§2.2 函数的单调性与最值
内容 索引
基础知识 自主学习 题型分类 深度剖析 答题模板系列 思想方法 感悟提高 练出高分
基础知识 自主学习
1
知识梳理
1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数y=f(x)的定义域为A,区间
I⊆A,如果对f(于x1)<区f(x间2) I内的任意两个值f(xx11,)>f(x22)
12345
解析答案
2.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为_-__6_. 解析 由图象易知函数f(x)=|2x+a|的单调增区间是 [-a2,+∞), 令-a2=3,
∴a=-6.
12345
解析答案
3.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)= a2-2a,-2≤a<1, __-__1_,__a_≥__1__________.
12345
解析答案
4.(教材改编)已知函数 f(x)=x-2 1,x∈[2,6],则 f(x)的最大值为_2__,最小 2
值为__5_.
解析 可判断函数 f(x)=x-2 1在[2,6]上为减函数, 所以 f(x)max=f(2)=2,f(x)min=f(6)=25.

高考数学设计大一轮复习 第二章 函数概念与基本初等函数ⅰ第2节 函数的单调性与最值课件 理

高考数学设计大一轮复习 第二章 函数概念与基本初等函数ⅰ第2节 函数的单调性与最值课件 理

6-x},则M的最小值是( )
解析 如 f(x)=x3,则 y=f(1x)的定义域为(-∞,0)∪(0,+∞),在定义域上无单 调性,A 错;则 y=|f(x)|在 R 上无单调性,B 错;则 y=-f(1x)的定义域为(-∞, 0)∪(0,+∞),在定义域上无单调性,C 错.
答案(dáàn) D
12/12/2021
第十页,共三十三页。
由于-1<x1<x2<1, 所以x2-x1>0,x1-1<0,x2-1<0, 故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数(hánshù)f(x)在(-1,1)上单调递减; 当a<0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),函数f(x)在(-1,1)上单调递增.
12/12/2021
第十八页,共三十三页。
知识衍化体验
考点聚集突破
考点(kǎo diǎn)二 求函数的最值
【例2】 (1)已知函数f(x)=ax+logax(a>0,且a≠1)在[1,2]上的最大值与最小值之和为loga2+6, 则a的值为( )
1
1
A.2
B.4
C.2
D.4
(2) 已 知 函 数 f(x) = x+2x-3,x≥1, 则 f[f( - 3)] = ________ , f(x) 的 最 小 值 是 lg(x2+1),x<1,
12/12/2021
第二十一页,共三十三页。
知识衍化体验
考点聚集突破
【训练 2】 (1)(2019·郑州调研)函数 f(x)= x-x12在 x∈[1,4]上的最大值为 M,最小值 为 m,则 M-m 的值是( )

高考数学大一轮复习 第二章 函数概念与基本初等函数 第2讲 函数的单调性与最值课件 文

高考数学大一轮复习 第二章 函数概念与基本初等函数 第2讲 函数的单调性与最值课件 文
第二十六页,共三十八页。
求函数最值的五种常用方法
第二十七页,共三十八页。
1.函数 f(x)=x-1 1在区间[a,b]上的最大值是 1,最小值是13, 则 a+b=________. 解析:易知 f(x)在[a,b]上为减函数, 所以ff((ab))==113,,即ab- -11 11= =113, ,所以ab==24,. 所以 a+b=6. 答案:6
答案:2
2 5
第十三页,共三十八页。
确定函数的单调性(区间)(多维探究) 角度一 判断或证明函数的单调性
(一题多解)试讨论函数 f(x)=xa-x1(a≠0)在(-1,1)上的 单调性.
第十四页,共三十八页。
【解】 法一:设-1<x1<x2<1, f(x)=ax-x-1+1 1=a1+x-1 1, f(x1)-f(x2)=a1+x1-1 1-a1+x2-1 1=(x1a-(1x)2-(xx12)-1), 由于-1<x1<x2<1, 所以 x2-x1>0,x1-1<0,x2-1<0, 故当 a>0 时,f(x1)-f(x2)>0,即 f(x1)>f(x2),函数 f(x)在 (-1,1)上单调递减; 当 a<0 时,f(x1)-f(x2)<0,即 f(x1)<f(x2),函数 f(x)在(-1,1) 上单调递增.
第六页,共三十八页。
2.函数最值存在的两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭 区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大(小)值.
第七页,共三十八页。
判断正误(正确的打“√”,错误的打“×”) (1)若定义在 R 上的函数 f(x),有 f(-1)<f(3),则函数 f(x)在 R 上为增函数.( ) (2)函数 y=f(x)在[1,+∞)上是增函数,则函数 f(x)的单调递增 区间是[1,+∞).( ) (3)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞).( ) (4)所有的单调函数都有最值.( )

高考数学一轮复习 第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用 2.2 函数的单调性与最大(小

高考数学一轮复习 第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用 2.2 函数的单调性与最大(小
第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用
§2.2 函数的单调性与 最大(小)值
1.函数的单调性
(1)增函数与减函数
一般地,设函数 f(x)的定义域为 I:
①如果对于定义域 I 内某个区间 D 上的
自变量的值 x1,x2,当
x1<x2 时,都有 f(x1)<f(x2),那么就说函数 f(x)在区间 D 上是
上是增函数.
解法二:求导可得 f′(x)=1-xa2. 令 f′(x)>0,则 1-xa2>0,解得 x> a或 x<- a(舍). 令 f′(x)≤0,则 1-xa2≤0,解得- a≤x≤ a. ∵x>0,∴0<x≤ a. ∴f(x)在(0, a]上是减函数;在( a,+∞)上是增函数.
【点拨】求函数的单调区间和判断函数的单调性方法一 致.通常有以下几种方法:(1)复合函数法:f(g(x))的单调性遵 循“同增异减”的原则;(2)定义法:先求定义域,再利用单调 性定义求解;(3)图象法:可由函数图象的直观性写出它的单调 区间;(4)导数法:利用导数取值的正负确定函数的单调区间.特 别注意:单调区间必为定义域的子集.

②如果对于定义域 I 内某个区间 D 上的
自变量的值 x1,x2,当
x1<x2 时,都有 f(x1)>f(x2),那么就说函数 f(x)在区间 D 上是

(2)单调性与单调区间
如果函数 y=f(x)在区间 D 上是增函数或减函数,那么就说函数 y=f(x)
在这一区间具有(严格的)
,区间 D 叫做 y=f(x)的
=f(x)在(-∞,-2)上单调递增.故填(-∞,-2).
设 a 为常数,函数 f(x)=x2-4x+3.若
f(x+a)在[0,+∞)上是增函数,则 a 的取值范围是

高考数学一轮复习 第二章 函数概念与基本初等函数 第2

高考数学一轮复习 第二章 函数概念与基本初等函数 第2

函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两数”改为“存在两数”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ ) (3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,在区间(0,+∞)内单调递减的是( ) A.y =1x-xB.y =x 2-x C.y =ln x -x D.y =e x-x答案 A解析 对于A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数;B ,C ,D 选项中的函数在(0,+∞)上均不单调. 故选A.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2 B.2 C.-6 D.6答案 C解析 由图像易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( ) A.增函数 B.减函数 C.先增后减 D.先减后增答案 B解析 由y =ax 在(0,+∞)上是减函数,知a <0; 由y =-b x在(0,+∞)上是减函数,知b <0. ∴y =ax 2+bx 的对称轴x =-b2a <0,又∵y =ax 2+bx 的开口向下,∴y =ax 2+bx 在(0,+∞)上是减函数.故选B. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________.答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图像开口向上,对称轴为直线x =a ,画出草图如图所示.由图像可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =ln(x +2) B.y =-x +1 C.y =(12)xD.y =x +1x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)(3)y =-x 2+2|x |+3的单调增区间为____________________________________. 答案 (1)A (2)D (3)(-∞,-1],[0,1]解析 (1)因为y =ln(x +2)的增区间为(-2,+∞), 所以在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图像如图.由图像可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数.命题点2 解析式含参函数的单调性 例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1x 1-x 2-,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1(a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-x 22-=a x 2-x 1x 1x 2+x 21-x 22-.∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图像法,图像不连续的单调区间不能用“∪”连接.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 1-a x 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +a x(a >0)在(0,a ]上为减函数; 当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +a x(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +a x(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数. 方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-a x2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-a x2<0,解得-a <x <a . ∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +a x+2,x ∈[1,+∞). ①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为[12,2],则a =________.答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎢⎡⎦⎥⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12=12,f =2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)<0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)>0,f (x 2)>0答案 B解析 ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A.(-1,1)B.(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)答案 C解析 由f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A.a >-14B.a ≥-14C.-14≤a <0D.-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧-a x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,-a +1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)(2)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]答案 (1)B (2)D解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数, ∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式. 规范解答(1)证明设x1,x2∈R,且x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1.[2分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[10分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在的单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图像法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图像法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.A 组 专项基础训练 (时间:35分钟)1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A.y =1xB.y =e -xC.y =-x 2+1 D.y =lg|x |答案 C解析 y =1x是奇函数,选项A 错;y =e -x是指数函数,非奇非偶,选项B 错;y =lg|x |是偶函数,但在(0,+∞)上单调递增,选项D 错;只有选项C 是偶函数且在(0,+∞)上单调递减. 2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A.(0,1] B.[1,2] C.[1,+∞) D.[2,+∞)答案 C解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图像关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <a D.a <b <c答案 B解析 ∵函数图像关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为( )A.-3B.-2C.-1D.1答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1, ∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A.(0,34) B.(0,34] C.[0,34) D.[0,34] 答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数, 当a ≠0时,由⎩⎪⎨⎪⎧ a >0,-a -4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧ log 12x ,x ≥1,2x ,x <1的值域为________.答案 (-∞,2) 解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又a x -a 是增函数,故a >1,所以a 的取值范围为1<a ≤2. 8.函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a. ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝ ⎛⎭⎪⎫19=f (1)=0,故f ⎝ ⎛⎭⎪⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝ ⎛⎭⎪⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得 f (x 2)=f ⎝ ⎛⎭⎪⎫x 1·x 2x 1=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝ ⎛⎭⎪⎫19,其中0<x <2, 由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x -x 19,0<x <2,由此解得x 的取值范围是⎝ ⎛⎭⎪⎫1-223,1+223. B 组 专项能力提升(时间:25分钟)11.已知函数f (x )=log a ⎝⎛⎭⎪⎫x 2-ax +12有最小值,则实数a 的取值范围是( ) A.(0,1)B.(1,2)C.(0,1)∪(1,2)D.(2,+∞)答案 B解析 设g (x )=x 2-ax +12,因为g (x )的图像开口向上,有最小值.又因为f (x )在定义域内有最小值,所以y =log a t 应单调递增,即a >1,且x 2-ax +12>0恒成立,所以1<a <2,故选B.12.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A.f (x )=1xB.f (x )=(x -1)2C.f (x )=e xD.f (x )=ln(x +1) 答案 A 解析 由题意知f (x )在(0,+∞)上是减函数.A 中,f (x )=1x满足要求; B 中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;C 中,f (x )=e x是增函数;D 中,f (x )=ln(x +1)是增函数.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为______. 答案 (-3,-1)∪(3,+∞) 解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3. 所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立.所以a >3x -x 2,令h (x )=3x -x 2, 而h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.2函数的单调性与最值课件文新人教A

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.2函数的单调性与最值课件文新人教A

[点石成金] 判断函数单调性的方法 (1)定义法:取值,作差,变形,定号,下结论. (2)利用复合函数关系:若两个简单函数的单调性相同,则 这两个函数的复合函数为增函数,若两个简单函数的单调性相 反,则这两个函数的复合函数为减函数,简称“同增异减”. (3)图象法:从左往右看,图象逐渐上升,单调递增;图象 逐渐下降,单调递减. (4)导数法:利用导函数的正负判断函数单调性.
考点2 求函数的单调区间
单调区间的定义 如果函数y=f(x)在区间D上是__增_函__数___或__减_函__数___,那么就 说函数y=f(x)在这一区间具有(严格的)单调性,__区__间__D__叫做函 数y=f(x)的单调区间.
(1)[教材习题改编]函数f(x)=
2 x-1
在[-6,-2]上的最大值
(x1-x2)[f(x1)-f(x2)]>0 -x2)[f(x1)-f(x2)]<
0
2.函数单调性的常用结论
(1)若 f(x),g(x)均为区间 A 上的增(减)函数,则 f(x)+g(x)也是区 间 A 上的_____增__(减__)_函__数_____;
(2)若 k>0,则 kf(x)与 f(x)单调性相同;若 k<0,则 kf(x)与 f(x) 单调性______相__反_________;
[解析]
注意到 1 与 fx
f(x)在相应区间上的单调性是相反的,
故选 B.
(2)[2017·广东佛山联考]试讨论函数f(x)=x-ax1(a≠0)在(-1,1) 上的单调性.
[解] 解法一(定义法): 设-1<x1<x2<1,f(x)=ax-x-1+1 1=a1+x-1 1, f(x1)-f(x2)=a1+x1-1 1-a1+x2-1 1 =x1a-x12-xx2-1 1, 由于-1<x1<x2<1,

高考数学一轮复习第二章函数与基本初等函数I2.2函数的单调性与最值课件理

高考数学一轮复习第二章函数与基本初等函数I2.2函数的单调性与最值课件理

(3)利用单调性求参数.
①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与
已知单调区间比较求参数;
②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也
是单调的;
③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.
跟踪训练3 (1)(2016·太原模拟)已知函数f(x)=x(ex-e1x),若f(x1)<f(x2),
命题点2 解析式含参数的函数的单调性
例2 已知函数f(x)=x2a-x 1 (a>0),用定义法判断函数f(x)在(-1,1)上的单
调性. 解答
几何画板展示
则 设-f(x11<)-x1<f(xx22<)=1,x21a-x11-x22a-x21=ax1x22-x21-ax11-xa22x-2x121+ ax2=axx221--x11xx122-x2+11 ∵-1<x1<x2<1,
函数. (4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同 增异减”.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)若定义在R上的函数f(x),有f(-1)<f(3),则函数f(x)在R上为增函数.( × ) (2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y=1的单调递减区间是(-∞,0)∪(0,+∞).( × )
例1 (1)函数 f x=log1 (x2-4) 的单调递增区间是 答案 解析
A.(0,+∞)
2
B.(-∞,0)
C.(2,+∞)
D.(-∞,-2)
因为 y log 1 t, t>0在定义域上是减函数,

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书 理 苏教版

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书 理 苏教版

第二章函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书理苏教版1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是单调增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是单调减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I 上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值【知识拓展】函数单调性的常用结论 (1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)所有的单调函数都有最值.( × )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(6)闭区间上的单调函数,其最值一定在区间端点取到.( √ )1.(教材改编)下列函数中,在区间(0,2)上为增函数的是________.(填序号) ①y =1x;②y =2x -1;③y =1-x ;④y =(2x -1)2.答案 ②解析 ①y =1x在(0,2)上为减函数;②y =2x -1在(0,2)上为增函数; ③y =1-x 在(0,2)上为减函数;④y =(2x -1)2在(-∞,12)上为减函数,在(12,+∞)上为增函数.2.(教材改编)函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为__________;单调减区间为__________.答案 [0,+∞) (-∞,0)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数.3.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上是增函数,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数f (x )的单调递增区间是[a ,+∞), 由[1,2]⊆[a ,+∞),可得a ≤1.4.(2016·盐城模拟)函数y =x 2+2x -3(x >0)的单调增区间为________. 答案 (0,+∞)解析 函数的对称轴为x =-1,又x >0, 所以函数f (x )的单调增区间为(0,+∞). 5.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数, 所以f (x )max =f (2)=2,f (x )min =f (6)=25.题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性例1 (1)(2016·连云港模拟)函数f (x )=12log (x 2-4)的单调递增区间是______________.(2)y =-x 2+2|x |+3的单调增区间为____________. 答案 (1)(-∞,-2) (2)(-∞,-1],[0,1]解析 (1)因为y =12log t ,t >0在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). (2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参数的函数的单调性 例2 已知函数f (x )=axx 2-1(a >0),用定义法判断函数f (x )在(-1,1)上的单调性.解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. 引申探究如何用导数法求解例2?解 f ′(x )=a ·x 2-1-ax ·2x x 2-12=-a x 2+1x 2-12,∵a >0,∴f ′(x )<0在(-1,1)上恒成立, 故函数f (x )在(-1,1)上为减函数. 思维升华 确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法; (2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为__________.答案 [3,+∞)解析 设t =x 2-2x -3,则t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1, 所以函数t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).(2)已知函数f (x )=ln x +mx 2(m ∈R ),求函数f (x )的单调区间. 解 (导数法)依题意知f (x )的定义域为(0,+∞). 对f (x )求导,得f ′(x )=1x +2mx =1+2mx2x.当m ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增. 当m <0时,令f ′(x )=0,得x = -12m. 当x ∈(0,-12m)时,f ′(x )>0, 所以f (x )在(0, -12m)上单调递增; 当x ∈(-12m,+∞)时,f ′(x )<0, 所以f (x )在(-12m,+∞)上单调递减. 题型二 函数的最值例3 (1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.答案 2解析 当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x+2,又x ∈[1,+∞),所以f ′(x )=1-12x 2>0,即f (x )在[1,+∞)上是增函数,所以f (x )min =f (1)=1+12×1+2=72.②f (x )=x +ax+2,x ∈[1,+∞).(ⅰ)当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, 所以-3<a ≤0.(ⅱ)当0<a ≤1时,f ′(x )=1-a x2,因为x ∈[1,+∞),所以f ′(x )≥0,即f (x )在[1,+∞)上为增函数, 所以f (x )min =f (1)=a +3, 即a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1].思维升华 求函数最值的五种常用方法及其思路 (1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数y =x +x -1的最小值为________.(2)函数f (x )=x 2+8x -1(x >1)的最小值为________.答案 (1)1 (2)8解析 (1)易知函数y =x +x -1在[1,+∞)上为增函数,∴x =1时,y min =1.(本题也可用换元法求解)(2)方法一 (基本不等式法)f (x )=x 2+8x -1=x -12+2x -1+9x -1=(x -1)+9x -1+2≥2 x -1·9x -1+2=8,当且仅当x -1=9x -1,即x =4时,f (x )min =8. 方法二 (导数法)f ′(x )=x -4x +2x -12,令f ′(x )=0,得x =4或x =-2(舍去). 当1<x <4时,f ′(x )<0,f (x )在(1,4)上是递减的;当x >4时,f ′(x )>0,f (x )在(4,+∞)上是递增的,所以f (x )在x =4处取到极小值也是最小值, 即f (x )min =f (4)=8. 题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为____________. 答案 b >a >c解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f (-12)=f (52),且2<52<3,所以b >a >c .命题点2 解函数不等式例5 (2017·苏州月考)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f (12)=0,则满足19(log )f x >0的x 的集合为________________.答案 {x |0<x <13或1<x <3}解析 由题意知f (12)=0,f (-12)=0,由19(log )f x >0,得19log >12,或-12<19log x <0,解得0<x <13或1<x <3.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是____________.(2)已知f (x )=⎩⎪⎨⎪⎧2-a x +1,x <1,a x,x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)[-14,0] (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,得-14≤a ≤0.(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,2-a ×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)(2016·徐州模拟)已知函数f (x )=x (e x-1ex ),若f (x 1)<f (x 2),则下面正确的式子为________. ①x 1>x 2; ②x 1+x 2=0; ③x 1<x 2;④x 21<x 22.(2)(2016·宿迁模拟)要使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________. 答案 (1)④ (2)(-∞,-4)解析 (1)f (-x )=-x (1e x -e x)=f (x ),∴f (x )在R 上为偶函数,f ′(x )=e x -1e x +x (e x +1ex ),∴当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|, ∴x 21<x 22.(2)由于y =log 3(x -2)的定义域为(2,+∞),且为增函数,故函数y =log 3(x -2)在(3,+∞)上是增函数. 又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,因其在(3,+∞)上是增函数,故4+k <0,得k <-4.1.解抽象函数不等式典例 (14分)函数f (x )对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R且x1<x2,则x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [3分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[5分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数. [7分] (2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[9分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2). [14分]解函数不等式问题的一般步骤第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.1.(2016·南京模拟)下列函数中,在区间(1,+∞)上是增函数的是________.①y=-x+1; ②y=11-x;③y=-(x-1)2; ④y=31-x.答案 ②解析 ①中,函数在(1,+∞)上为减函数,③中,函数在(1,+∞)上为减函数,④中,函数在(1,+∞)上为减函数.2.函数f (x )=|x -2|x 的单调减区间是__________. 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,f (x )为增函数,当x <2时,(-∞,1]是函数f (x )的增区间; [1,2]是函数f (x )的减区间. 3.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知得,当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, ∴f (x )的最大值为f (2)=23-2=6.4.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,4-a2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是________. 答案 [4,8)解析 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a2+2,解得4≤a <8.*5.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数,设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ).则f (13)+f (18)=________.答案 34解析 由①③,令x =0,可得f (1)=1.由②,令x =1,可得f (13)=12f (1)=12.令x =13,可得f (19)=12f (13)=14.由③结合f (13)=12,可知f (23)=12,令x =23,可得f (29)=12f (23)=14,因为19<18<29且函数f (x )在[0,1]上为非减函数,所以f (18)=14, 所以f (13)+f (18)=34.6.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是____________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.7.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.8.(2017·江苏天一中学月考)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x+1|,|x -2|}(x ∈R )的最小值是________. 答案 32解析 方法一f (x )=⎩⎪⎨⎪⎧2-x ,x <12,x +1,x ≥12,f (x )在(-∞,12)和[12,+∞)上分别为减函数和增函数,∴[f (x )]min =f (12)=32.方法二 作函数f (x )的图象如图所示,由图知当x =12时,[f (x )]min =f (12)=32.9.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.函数的单调递增区间为[-a2,+∞),∴-a2=3,∴a =-6.*10.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________. 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3, 同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减, ∴-x 2-2x +3<3,∴f (x )在R 上单调递减, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).11.(2016·江苏新海中学期中)已知函数f (x )=-4x 2+4ax -4a -a 2(a >0)在区间[0,1]内有一个最大值-5,则a 的值为________. 答案 54解析 f (x )=-4(x -a2)2-4a ,对称轴为x =a 2,顶点为(a2,-4a ).①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f (a2)=-4a ,令-4a =-5,∴a =54∈(0,2).12.(2016·江苏泰州中学月考)已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 二次函数y =x 2-2x -t 图象的对称轴为x =1,函数y =|x 2-2x -t |的图象是将二次函数y =x 2-2x -t 的图象在x 轴下方的部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知y max =f (3)=|3-t |=2,解得t =1或5;检验t =5时,f (0)=5>2不符,而t =1时满足题意.13.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.14.(2016·江苏南通中学质检)已知函数f (x )=-(x +1)2+2|x +1|+3.(1)试求函数f (x )的单调区间,并指出相应的单调性;(2)若f (2a 2+a +1)<f (3a 2-2a +1)恒成立,试求实数a 的取值范围. 解 (1)当x ≥-1时,f (x )=-[(x +1)2-2(x +1)+1]+4=-[(x +1)-1]2+4=-x 2+4,当x <-1时,f (x )=-[(x +1)2+2(x +1)+1]+4 =-[(x +1)+1]2+4=-(x +2)2+4,即f (x )=⎩⎪⎨⎪⎧-x 2+4x ≥-1,-x +22+4x <-1,其大致图象如图所示.由图易知函数f (x )在区间(-∞,-2],(-1,0]上单调递增,在区间(-2,-1],(0,+∞)上单调递减.(2)易知2a 2+a +1>0且3a 2+2a +1>0恒成立,由(1)知函数f (x )在(0,+∞)上单调递减, 故由f (2a 2+a +1)<f (3a 2-2a +1), 得2a 2+a +1>3a 2-2a +1, 即a 2-3a <0,解得0<a <3, ∴a 的取值范围为{a |0<a <3}.。

2020版高考数学一轮复习第二章函数与基本初等函数第2讲函数的单调性与最值教案理新人教A版

2020版高考数学一轮复习第二章函数与基本初等函数第2讲函数的单调性与最值教案理新人教A版

第2讲 函数的单调性与最值基础知识整合1.函数的单调性 (1)增函数与减函数一般地,设函数f (x )的定义域为I :①如果对于定义域I 内某个区间D 上的□01任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是□02增函数. ②如果对于定义域I 内某个区间D 上的□03任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是□04减函数. (2)单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)□05单调性,区间D 叫做y =f (x )的□06单调区间. 2.函数的最值 (1)最大值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有□07f (x )≤M ; ②存在x 0∈I ,使得□08f (x 0)=M . 那么,我们称M 是函数y =f (x )的最大值. (2)最小值一般地,设函数y =f (x )的定义域为I ,如果存在实数N 满足: ①对于任意的x ∈I ,都有□09f (x )≥N ; ②存在x 0∈I ,使得□10f (x 0)=N . 那么我们称N 是函数y =f (x )的最小值.1.对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞);减区间为[-a ,0)和(0,a ],且对勾函数为奇函数.2.设∀x 1,x 2∈D (x 1≠x 2),则①x 1-x 2>0(<0),f (x 1)-f (x 2)>0(<0)⇔f (x )在D 上单调递增;x 1-x 2>0(<0),f (x 1)-f (x 2)<0(>0)⇔f (x )在D 上单调递减;②f x 1-f x 2x 1-x 2>0(或(x 1-x 2)[f (x 1)-f (x 2)]>0)⇔f (x )在D 上单调递增;③f x 1-f x 2x 1-x 2<0(或(x 1-x 2)[f (x 1)-f (x 2)]<0)⇔f (x )在D 上单调递减.1.下列函数中,在区间(-∞,0)上是减函数的是( ) A .y =1-x 2B .y =x 2+xC .y =--xD .y =xx -1答案 D解析 选项D 中,y =xx -1=1+1x -1.易知其在(-∞,1)上为减函数.故选D. 2.(2019·信阳模拟)函数y =-2x 2-4ax +3在区间[-4,-2]上是单调函数,则a 的取值范围是( )A .(-∞,1]B .[4,+∞)C .(-∞,2]∪[4,+∞)D .(-∞,1]∪[2,+∞)答案 C解析 函数y =-2x 2-4ax +3的图象的对称轴为x =-a ,由题意可得-a ≤-4或-a ≥-2,解得a ≤2或a ≥4,故选C.3.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6 答案 C解析 由图象易知函数f (x )=|2x +a |的单调增区间是⎣⎢⎡⎭⎪⎫-a 2,+∞,令-a2=3,所以a=-6.故选C.4.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).5.(2019·衡水模拟)函数f (x )=xx -1(x ≥2)的最大值为________.答案 2 解析 f (x )=xx -1=x -1+1x -1=1+1x -1,∵x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=x x -1取得最大值2.6.(2019·浙江模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f [f (-3)]=________,f (x )的最小值是________. 答案 0 22-3解析 ∵f (-3)=lg [(-3)2+1]=lg 10=1, ∴f [f (-3)]=f (1)=1+2-3=0.当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg (x 2+1)≥lg (02+1)=0, 此时f (x )min =0.所以f (x )的最小值为22-3.核心考向突破考向一 确定函数的单调区间 例1 求下列函数的单调区间:(1)y =-x 2+2|x |+1;(2)y =log 12(x 2-3x +2). 解 (1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.画出函数图象如图所示.由图象可知,函数的单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12 u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12 (x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又∵u =x 2-3x +2的对称轴x =32,且开口向上,∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12 (x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).触类旁通确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法或导数法.复合函数法,复合函数单调性的规律是“同增异减”.图象法,图象不连续的单调区间一般不能用“∪”连接.即时训练 1.求出下列函数的单调区间:(1)f(x)=|x2-4x+3|;(2)f(x)=13-2x-x2.解(1)先作出函数y=x2-4x+3的图象,由于绝对值的作用,把x轴下方的部分翻折到上方,可得函数y=|x2-4x+3|的图象.如图所示.由图可知f(x)在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f(x)的增区间为[1,2],[3,+∞),减区间为(-∞,1],[2,3].(2)∵3-2x-x2>0,∴-3<x<1.由二次函数图象(图略)可知f(x)的递减区间是(-3,-1],递增区间为[-1,1).考向二函数单调性的应用角度1 利用函数的单调性比较大小例2 (1)(2019·长沙模拟)已知偶函数f(x)在区间[0,+∞)上是增函数,则f(-1)与f(a2-2a+3)的大小关系是( )A.f(-1)≥f(a2-2a+3)B.f(-1)=f(a2-2a+3)C.f(-1)>f(a2-2a+3)D.f(-1)<f(a2-2a+3)答案 D解析a2-2a+3=(a-1)2+2≥2,由偶函数f(x)在区间[0,+∞)上是增函数,可得f(-1)=f(1)<f(a2-2a+3),故选D.(2)(2019·大同模拟)设函数f(x)=x2+x+a(a>0)满足f(m)<0,则( )A.f(m+1)=0 B.f(m+1)≤0C.f(m+1)>0 D.f(m+1)<0答案 C解析 ∵f (x )图象的对称轴为x =-12,f (0)=f (-1)=a ,∴f (x )的大致图象如图所示.结合图象,由f (m )<0,得-1<m <0,∴m +1>0,∴f (m +1)>f (0)>0.故选C.角度2 利用函数的单调性解不等式例3 (1)(2019·长春模拟)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞) B.(8,9] C .[8,9] D .(0,8) 答案 B解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -解得8<x ≤9.(2)函数y =f (x )是R 上的增函数,且y =f (x )的图象经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,1解析 因为y =f (x )的图象经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x -1<1,即⎩⎪⎨⎪⎧2x -1>-2,2x -1<1,即⎩⎪⎨⎪⎧x >-12,x <1,所以-12<x <1.角度3 利用函数的单调性求参数例4 (1)(2019·太原模拟)若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]答案 D解析 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].故选D.(2)已知f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,1 答案 C解析 由f (x )在R 上单调递减, 则有⎩⎪⎨⎪⎧3a -1<0,0<a <1,a -+4a ≥0,解得17≤a <13.触类旁通函数单调性应用问题的解题策略(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时,应特别注意函数的定义域.利用单调性求参数时,通常要把参数视为已知数,依据函数的图象或单调性的定义,确定函数的单调区间,与已知单调区间比较求参数.解决分段函数的单调性问题,要注意上、下段端点值的大小关系.即时训练 2.(2019·商丘模拟)若f (x )是定义在(-∞,+∞)上的偶函数,且对任意的x 1,x 2∈[0,+∞)且x 1≠x 2,有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (1)<f (-2)B .f (3)<f (-2)<f (1)C .f (-2)<f (1)<f (3)D .f (1)<f (-2)<f (3)答案 B解析 ∵对任意的x 1,x 2∈[0,+∞)且x 1≠x 2,有f x 2-f x 1x 2-x 1<0,∴当x ≥0时,函数f (x )为减函数,∴f (3)<f (2)<f (1),又f (x )是定义在(-∞,+∞)上的偶函数,∴f (3)<f (-2)<f (1).故选B.3.(2019·曲阜师大附中质检)已知函数f (x )=log a x (a >0且a ≠1)满足f (a +1)>f (a +2),则f (2x -3)>0的解集是( )A .(-∞,2)B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫32,2 D .(2,+∞)答案 C解析 因为函数f (x )=log a x (a >0且a ≠1)满足f (a +1)>f (a +2),所以0<a <1,则函数f (x )=log a x (0<a <1)是减函数,所以f (2x -3)>0可化为0<2x -3<1,求解可得32<x <2,故选C.4.(2018·山东泰安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是( )A .(1,+∞) B.[4,8) C .(4,8) D .(1,8) 答案 B解析 由f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,4-a 2>0,⎝ ⎛⎭⎪⎫4-a 2+2≤a ,解得4≤a <8.考向三 函数的最值(值域)问题例5 (1)函数y =1-x21+x 2的值域是________.答案 (-1,1]解析 (分离常数法)因为y =1-x 21+x 2=-1+21+x 2,又因为1+x 2≥1,所以0<21+x 2≤2,所以-1<-1+2x 2+1≤1,所以函数的值域为(-1,1]. (2)(2019·福建厦门质检)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 (单调性法)由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(3)函数f (x )=x +1-2x 的值域为________. 答案 (-∞,1]解析 (代数换元法)函数的定义域为⎝ ⎛⎦⎥⎤-∞,12. 令t =1-2x (t ≥0),则x =1-t22.所以y =1-t 22+t =-12(t -1)2+1(t ≥0),故当t =1(即x =0)时,y 有最大值1,故函数f (x )的值域为(-∞,1].(4)函数f (x )=3x +2x,x ∈[1,2]的值域为________.答案 [5,7]解析 解法一:(基本不等式)f (x )=3x +23x,易证f (x )在⎣⎢⎡⎭⎪⎫23,+∞上是增函数. ∴f (x )在[1,2]上为增函数, 从而得值域为[5,7].解法二:(导数法)f ′(x )=3-2x2,当1≤x ≤2时,f ′(x )>0, ∴f (x )在[1,2]上为增函数, 又f (1)=5,f (2)=7.∴f (x )=3x +2x,x ∈[1,2]的值域为[5,7].触类旁通函数值域的几种求解方法(1)分离常数法:分子上构造一个跟分母一样的因式,把分式拆成常量和变量,进一步确定变量范围破解.单调性法:先确定函数的单调性,再由单调性求最值.图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.即时训练 5.(2019·莱州质检)对于每一个实数x ,f (x )是y =2-x 2和y =x 这两个函数中的较小者,则f (x )的最大值是( )A .2B .1C .0D .-2 答案 B解析 解法一:f (x )=⎩⎪⎨⎪⎧2-x 2,x <-2或x >1,x ,-2≤x ≤1.当x <-2时,函数f (x )的值域为(-∞,-2);当-2≤x ≤1时,函数f (x )的值域为[-2,1];当x >1时,函数f (x )的值域为(-∞,1).故函数f (x )的值域为(-∞,1],所以f (x )max =1.故选B.解法二:画出函数f (x )的图象,如图所示:其中A (1,1),B (-2,-2),故当x =1时,函数f (x )的最大值为1.故选B. 6.函数f (x )=x +21-x 的最大值为________. 答案 2解析 设1-x =t (t ≥0), ∴x =1-t 2.∴y =x +21-x =1-t 2+2t =-t 2+2t +1=-(t -1)2+2. ∴当t =1即x =0时,y max =2.7.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则m M的值为________. 答案22解析 由题意,得⎩⎪⎨⎪⎧1-x ≥0,x +3≥0.所以函数的定义域为{x |-3≤x ≤1}. 两边平方,得y 2=4+21-x ·x +3 =4+2-xx +.所以当x =-1时,y 取得最大值M =22; 当x =-3或1时,y 取得最小值m =2, 所以mM =22. 8.设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是________. 答案 -3解析 因为a ,b ∈R ,a 2+2b 2=6,所以令a =6cos α,2b =6sin α,α∈R .则a +b =6cos α+3sin α=3sin(α+φ)⎝ ⎛⎭⎪⎫tan φ=63=2,所以a +b 的最小值是-3.函数f (x )对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2. 解 (1)证明:设x 1<x 2,所以x 2-x 1>0. 因为当x >0时,f (x )>1, 所以f (x 2-x 1)>1,f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,所以f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), 所以f (x )在R 上为增函数. (2)因为m ,n ∈R ,不妨设m =n =1,所以f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4,所以f (1)=2,所以f (a 2+a -5)<2=f (1),因为f (x )在R 上为增函数,所以a 2+a -5<1⇒-3<a <2,即原不等式的解集为{a |-3<a <2}.答题启示对于抽象函数单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形,如x 1=x 2+x 1-x 2或x 1=x 2·x 1x 2等.深挖已知条件,是求解此类题的关键.对点训练函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.(1)求f (1)的值;(2)判断f (x )的单调性并证明;(3)若f (6)=1,解不等式f (x +5)-f ⎝ ⎛⎭⎪⎫1x <2.解 (1)f (1)=f ⎝ ⎛⎭⎪⎫x x =f (x )-f (x )=0,x >0.(2)f (x )在(0,+∞)上是增函数.证明:设0<x 1<x 2,则由f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),得f (x 2)-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x1,因为x 2x 1>1,所以f ⎝ ⎛⎭⎪⎫x 2x 1>0.所以f (x 2)-f (x 1)>0,即f (x )在(0,+∞)上是增函数. (3)因为f (6)=f ⎝ ⎛⎭⎪⎫366=f (36)-f (6),又f (6)=1, 所以f (36)=2,原不等式化为f (x 2+5x )<f (36), 又因为f (x )在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ x +5>0,1x >0,x 2+5x <36,解得0<x <4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018版高考数学大一轮复习 第二章 函数概念与基本初等函数I 第2讲 函数的单调性与最值教师用书 文 新人教版基础巩固题组 (建议用时:40分钟)一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2B.2C.-6D.6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6. 答案 C2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 ∵y =11-x与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A ,B ,C 不满足题意.只有y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数. 答案 D3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( ) A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A.c <b <aB.b <a <cC.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B 二、填空题6.(2017·郑州模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2(x >1),0 (x =1),-x 2 (x <1),函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1). 答案 [0,1)7.(2017·石家庄调研)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 38.(2017·潍坊模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数, ∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25.10.已知函数f (x )=2x -a x的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎪⎫2+1x 1x2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值, 当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组 (建议用时:20分钟)11.(2017·郑州质检)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( )A.4B.2C.12D.14解析 当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1,则y =a x为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14.答案 D12.(2017·枣阳第一中学模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[0,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2)解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +ax>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a2.(3)对任意x ∈[2,+∞),恒有f (x )>0. 即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a的取值范围为(2,+∞).。

相关文档
最新文档