第7讲 归纳与猜想
【猜想归纳】图案规律中的猜想归纳思想(学生版)
图案规律中的猜想归纳思想知识方法精讲1.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.认识图形(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.(3)重点和难点突破:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.3.猜想归纳思想归纳猜想类问题也是探索规律型问题,这类问题一般给出一组具有某种有规律的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,通过认真观察、分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。
考查学生的归纳、概括、类比能力。
有利于培养学生思维的深刻性和创造性。
解决归纳猜想类问题的基本思路是“观察→归纳→猜想→证明(验证)”,具体做法:(1)认真观察所给的一组数、式、图等,发现它们之间的关系;(2)根据它们之间的关系分析、概括,归纳它们的共性和蕴含的变化规律,猜想得出一个一般性的结论;(3)结合题目所给的材料情景证明或验证结论的正确性。
4.归纳猜想类问题可以分成四大类:(1)数式归纳猜想题这类题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论。
找出题目中规律,即不变的和变化的,变化的部分与序号的关系是解这类题的关键。
(2)图形归纳猜想题此类题通常给出一组图形的排列(或操作得到一系列的图形)探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系。
其解题关键是找出相邻两个图形之间的位置关系和数量关系。
(3)结论归纳猜想题结论归纳猜想题常考数值结果、数量关系及变化情况。
(完整版)整式的乘法与因式分解培优
第二章 整式的乘法【知识点归纳】1.同底数幂相乘, 不变, 相加。
a n.a m = (m,n 是正整数)2.幂的乘方, 不变, 相乘。
(a n )m = (m,n 是正整数)3.积的乘方,等于把 ,再把所得的幂 。
(ab)n = (n 是正整数)4.单项式与单项式相乘,把它们的 、 分别相乘。
5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )=6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。
7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )=8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。
(a+b )2= ,(a-b )2= 。
9.公式的灵活变形:(a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- ,a 2+b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。
【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值【例2】已知两个多项式A 和B ,43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少?【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 .【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值.【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ;(2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y .【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.【例8】归纳与猜想:(1)计算:①(x﹣1)(x+1)= ;②(x﹣1)(x2+x+1)= ;③(x﹣1)(x3+x2+x+1)= ;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)= ;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)= (n为整数);(4)若(x﹣1)•m=x15﹣1,则m= ;(5)根据猜想的规律,计算:226+225+…+2+1.【例9】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).课后作业:1、若0352=-+y x ,求y x 324⋅的值。
归纳初一数学 找规律
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。
2022年初中数学同步 7年级下册 第07课 算数平方根与平方根(学生版)-
第07课 算数平方根与平方根课程标准1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.知识点01 平方根和算术平方根的概念1.算术平方根的定义如果一个 的平方等于,即,那么这个正数x 叫做的 (规定0的算术平方根还是 );的算术平方根记作 ,读作“ ”,叫做 . 注意:(1)当式子有意义时,一定表示一个 ,即 , . (2) 没有算数平方根;(3)算数平方根等于本身的数有: ; (4)算数平方根 等于原来的数; (5)注意a 运算结果的非负性; 2.平方根的定义如果,那么 叫做 的平方根.求一个数的平方根的运算,叫做 .平方与开平方互为 . (≥0)的平方根的符号表达为 ,其中是的 . 注意:(1) 才有平方根; (2) 没有平方根;(3)平方根等于本身的数是: ;(4)一个正数有 个平方根,他们 ; (5)平方根 等于原来的数;知识点02 平方根和算术平方根的区别与联系x a 2x a =a a a a a a a 2x a =a a a a a 目标导航知识精讲1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 注意:算术平方根平方根定义若正数x ,2x a =, x 叫做a 的算术平方根,若数x ,2x a =, x 叫做a 的平方根,a 的范围 表示正数有一个算术平方根,是正数正数有 个平方根,它们互为相反数0的算术平方根是 0的平方根是 没有算术平方根没有平方根知识点03 平方根的性质(1)2a = (2)2()a =知识点04 平方根小数点位数移动规律被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动 位。
例如:,,,.考法01 算数平方根与平方根的计算【典例1】16的算术平方根是___________. 【典例2】9的平方根是_________. 【典例3】81的平方根是____.a ±a 62500250=62525= 6.25 2.5=0.06250.25=能力拓展的平方根是.考法02 利用平方根解方程【典例4】求下列各式中的x值:(1)169x2=144;(2)(x-2)2-36=0.【即学即练】利用平方根求下列x的值:(1)(x+1)2=16.(2)3(x+2)2=27(3)64(x+1)2﹣25=0.考法03 平方根和算数平方根的逆运算【典例5】已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.【即学即练】已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求:3a-4b的平方根.【即学即练】如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.【即学即练】已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.考法04 算数平方根结果的非负性+【典例6】已知2a b(1)求2a-3b的平方根;(2)解关于x的方程2420+-=.ax b【即学即练】-17|=0,求x+y的算术平方根.考法05 算数平方根小数点移动规律【典例7】观察下表,按你发现的规律填空=的值为_______.3.873【即学即练】.【即学即练】 1.414 4.472≈,≈_______.【即学即练】10.02=考法06 平方根的性质应用【典例8】实数a ,b 在数轴上对应点的位置如图所示,化简a _________________【即学即练】实数a 、b =______.【即学即练】已知实数a 在数轴上的位置如图,则化简|1﹣_____.考法07 算数平方根的估算【典例9__________.【即学即练】a ,小数部分为b ,则________,_________a b ==.【即学即练】已知a ,b 为两个连续的整数,且,则a +b =____.【即学即练】已知a ,b 为两个连续的整数,且a <b ,则a +b =___________.考法08 找规律【典例10】请先在草稿纸上计算下列四个式子的值:④326++=__________.【即学即练】===……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________. 【即学即练】归纳并猜想:(1)211+的整数部分为____;(2)222+的整数部分为____;(3)233+的整数部分为____;(4)猜想:当n为正整数时,2n n+的整数部分为____,并把小数部分表示出来为____.【即学即练】观察分析下列数据,并寻找规律:2,5,8,11,14,17,…,根据规律可知第n个数据应是__________.题组A 基础过关练1.4的算术平方根为()A.2±B.2C.2±D.22.下列说法中错误的是()A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根3.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b4.已知2|1|0++-=a b,那么()2017a b+的值为( )A.-1B.1C.20173D.20173-5.若320,a b-++=则a b+的值是()A.2B.1C.0D.1-6.下列计算正确的是()A.9=±3B.38-=﹣2C.2(3)-=﹣3D.235+=分层提分7.916的平方根是34±,用式子表示正确的是( )A .34B .34=± C 34= D 34± 8.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25B .49C .64D .8110.若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3B .-1C .1D .-3或1题组B 能力提升练11.16的平方根是 .12.已知a 、b 满足(a ﹣1)2,则a+b=_____. 13.一个正数的平方根分别是1x +和5x -,则x =__.14a b ,则a b + 15.若(x ﹣1)2=4,则x=_____.1610.1= 3.41==__________________.17.代数式-3_______,这时a 与b 的关系是_______.18;……,则第n (n 为正整数)个等式是__. 题组C 培优拔尖练19.解方程. (1)24289x = (2)()29316x += (3)()22640x --=20.已知2a -1的算术平方根是3,3a+b -1的平方根是±4,c a+2b -c 的平方根.21.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.22.实数a b 、.在数轴上的位置如图所示,请化简:a b -.23.有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程. (1)解题与归纳①小明摘选了以下各题,请你帮他完成填空.= ;= ;= ;= ;= ;= ;②归纳:对于任意数a,= ③小芳摘选了以下各题,请你帮她完成填空.2= ;2= ;2= ;2= ;2= ; 2= ;④归纳:对于任意非负数a,有2= (2)应用根据他们归纳得出的结论,解答问题.数a ,b -224.观察下列式子变形过程,完成下列任务:111n n n +=-+ 1111n n =+-+(1)(2)1199++。
高中数学数学归纳法
数学归纳法能通过“归纳—猜想—证明”解决一些数学问题.1.数学归纳法公理对于某些与正整数n有关的数学命题,可以用数学归纳法证明.2.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.想一想:(1)数学归纳法的第一步n0的初始值是否一定为1?提示不一定,如证明n边形的内角和为(n-2)·180°,第一个值n0=3.(2)为什么可以先假设n=k(k≥n0,k∈N+)时命题成立?再证n=k+1时命题也成立就可说明命题成立?提示“假设n=k(k≥n0,k∈N+)时命题成立,证明当n=k+1时命题成立,”其本质是证明一个递推关系,有了这种向后传递的关系,就能从一个起点不断发展,以至无穷.如果没有它,即使前面验证了命题对许多正整数n都成立,也不能保证命题对后面的所有正整数都成立.3.用数学归纳法证题时,要把n=k时的命题当作条件,在证n=k+1命题成立时须用上假设.要注意当n=k+1时,等式两边的式子与n=k时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决.想一想:数学归纳法的两个步骤有何关系?提示使用数学归纳法时,两个步骤缺一不可,步骤(1)是递推的基础,步骤(2)是递推的依据.名师点睛1.运用数学归纳法的注意点数学归纳法的步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤(2),无法对n取n0后的数时的结论是否正确作出判断;如果缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)就没有意义了.(1)验证是基础数,并不一定所有的第一个允许值n0都是1.(2)递推乃关键“假设n=k(k≥n0,k∈N*)时命题成立”这一归纳假设起着已知的作用,“n=k+1时命题成立”则是求证的目标.在证明“n=k+1时命题也成立”的过程中,必须利用归纳假设,再根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时命题成立.可见数学归纳法证明的关键在于第二步.说明:(1)数学归纳法是直接证明的一种重要方法,应用十分广泛.一般来说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n项和等问题,都可以考虑用数学归纳法证明.(2)归纳推理可以帮助我们发现一般规律,但是其正确性需要通过证明来验证.一般情况下,有关正整数的归纳、猜想问题,都需要由不完全归纳法得到猜想,然后用数学归纳法证明猜想是否正确.2.归纳→猜想→证明(1)归纳、猜想和证明是人们探索事物发展规律的常用方法,在数学中是我们分析问题、解决问题的一个重要的数学思想方法.(2)在归纳、猜想阶段体现的是一般与特殊的相互转化关系.(3)在数学归纳法证明阶段体现的是有限和无限的转化,是一种极限的思想.知识点一正确判断命题从n=k到n=k+1项的变化【例1】已知f(n)=1+12+13+…+1n(n∈N*),证明不等式f(2n)>n2时,f(2k+1)比f(2k)多的项数是________.在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k+1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.变式迁移1 设f(n)=1+12+13+…+13n-1(n∈N*),那么f(n+1)-f(n)等于________.知识点二 证明与自然数n 有关的等式 【例2】 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .变式迁移2 用数学归纳法证明:当n ≥2,n ∈N *时,211111111149162n n n+⎛⎫⎛⎫⎛⎫⎛⎫----= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.知识点三 用数学归纳法证明不等式问题【例3】 用数学归纳法证明:122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.变式迁移3 用数学归纳法证明:对一切大于1的自然数n ,不等式11111+1+1+1+357212n ⎛⎫⎛⎫⎛⎫⎛⎫> ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立.知识点四用数学归纳法证明整除性问题【例4】用数学归纳法证明:f(n)=(2n+7)·3n+9(n∈N*)能被36整除.变式迁移4用数学归纳法证明62n-1+1(n∈N*)能被7整除.知识点五归纳—猜想—证明【例5】在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列{n∈N+}.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:1a1+b1+1a2+b2+…+1a n+b n<512.变式迁移5已知数列11×4,14×7,17×10,…,1(3n-2)(3n+1),…,计算S1,S2,S3,S4,根据计算结果,猜想S n的表达式,并用数学归纳法进行证明.第1课时数学归纳法【课标要求】1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.【核心扫描】1.用数学归纳法证明数学命题的两个步骤相辅相成,缺一不可.2.对数学归纳法的考查主要是在解答题中出现,用数学归纳法证明不等式是高考的热点.自学导引1.数学归纳法公理对于某些与正整数n有关的数学命题,可以用数学归纳法证明.2.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.*想一想:(1)数学归纳法的第一步n 0的初始值是否一定为1?提示 不一定,如证明n 边形的内角和为(n -2)·180°,第一个值n 0=3.(2)为什么可以先假设n =k (k ≥n 0,k ∈N +)时命题成立?再证n =k +1时命题也成立就可说明命题成立? 提示 “假设n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题成立,”其本质是证明一个递推关系,有了这种向后传递的关系,就能从一个起点不断发展,以至无穷.如果没有它,即使前面验证了命题对许多正整数n 都成立,也不能保证命题对后面的所有正整数都成立.名师点睛运用数学归纳法的注意点数学归纳法的步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤(2),无法对n 取n 0后的数时的结论是否正确作出判断;如果缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)就没有意义了.(1)验证是基础一般情况下,用数学归纳法证明与正整数有关的数学命题时,第一个允许值是命题成立的第一个正整数,并不一定所有的第一个允许值n 0都是1.(2)递推乃关键“假设n =k (k ≥n 0,k ∈N *)时命题成立”这一归纳假设起着已知的作用,“n =k +1时命题成立”则是求证的目标.在证明“n =k +1时命题也成立”的过程中,必须利用归纳假设,再根据有关的定理、定义、公式、性质等数学结论推证出n =k +1时命题成立.可见数学归纳法证明的关键在于第二步.说明:(1)数学归纳法是直接证明的一种重要方法,应用十分广泛.一般来说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n 项和等问题,都可以考虑用数学归纳法证明.(2)归纳推理可以帮助我们发现一般规律,但是其正确性需要通过证明来验证.一般情况下,有关正整数的归纳、猜想问题,都需要由不完全归纳法得到猜想,然后用数学归纳法证明猜想是否正确.题型一 正确判断命题从n =k 到n =k +1项的变化【例1】 已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是________.[思路探索] 仔细观察命题的结构特点,理解命题由n =k 到n =k +1的变化趋势. 解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+13+…+12k ,而f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k )多了2k 项. 答案 2k 项在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k +1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.【变式1】 设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于________.解析 ∵f (n )=1+12+13+…+13n -1,∴f (n +1)=1+12+13+…+13n -1+13n +13n +1+13n +2,∴f (n +1)-f (n )=13n +13n +1+13n +2.答案13n +13n +1+13n +2题型二 证明与自然数n 有关的等式【例2】 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[思路探索]证明 (1)当n =1时,左边=1-12=12,右边=12,等式成立;(2)假设当n =k (k ≥1,且k ∈N *)时等式成立,即: 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k .则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12(k +1)-1=1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎣⎡⎦⎤1k +1-12(k +1)=1(k +1)+1+1(k +1)+2+…+1(k +1)+k+12(k +1)=右边;所以当n =k +1时等式也成立. 由(1)(2)知对一切n ∈N *等式都成立.(1)用数学归纳法证明命题时,两个步骤缺一不可,且书写必须规范;(2)用数学归纳法证题时,要把n =k 时的命题当作条件,在证n =k +1命题成立时须用上假设.要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决.【变式2】 用数学归纳法证明:当n ≥2,n ∈N *时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…·⎝⎛⎭⎫1-1n 2 =n +12n. 证明 (1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴n =2时等式成立.(2)假设当n =k (n ≥2,n ∈N *)时等式成立, 即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2=k +12k , 那么当n =k +1时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ·⎣⎡⎦⎤1-1(k +1)2=(k +1)2-12k (k +1)=k +22(k +1)=(k +1)+12(k +1).∴当n =k +1时,等式也成立.根据(1)和(2)知,对任意n ≥2,n ∈N *,等式都成立.题型三 证明与数列有关的问题【例3】 某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前五项;(2)写出这个数列的通项公式,并加以证明. 审题指导 据条件写出前五项→猜测出通项公式→[规范解答] (1)已知a 1=1,由题意得a 1·a 2=22, ∴a 2=22,∵a 1·a 2·a 3=32,∴a 3=3222. 同理可得a 4=4232,a 5=5242. 因此这个数列的前五项为1,4,94,169,2516.(4分) (2)观察这个数列的前五项,猜测数列的通项公式应为:a n =⎩⎪⎨⎪⎧ 1 (n =1),n 2(n -1)2 (n ≥2),(6分) 下面用数学归纳法证明当n ≥2时,a n =n 2(n -1)2. ①当n =2时,a 2=22(2-1)2=22, 所以等式成立.(8分)②假设当n =k (k ≥2,k ∈N +)时,结论成立,即a k =k 2(k -1)2, 则当n =k +1时,∵a 1·a 2·…·a k -1=(k -1)2,∴a 1·a 2·…·a k +1=(k +1)2.∴a k +1=(k +1)2(a 1·a 2·…·a k -1)·a k=(k +1)2(k -1)2·(k -1)2[(k +1)-1]2=(k +1)2[(k +1)-1]2, 所以当n =k +1时,结论也成立.(11分)根据①②可知,当n ≥2时,这个数列的通项公式是a n =n 2(n -1)2,∴a n =⎩⎪⎨⎪⎧ 1 (n =1),n 2(n -1)2 (n ≥2).(12分)【题后反思】 (1)数列{a n }既不是等差数列,又不是等比数列,要求其通项公式,只能根据给出的递推式和初始值,分别计算出前几项,然后归纳猜想出通项公式a n ,并用数学归纳法加以证明.(2)数学归纳法是重要的证明方法,常与其他知识结合,尤其是数学中的归纳,猜想并证明或与数列中的不等式问题相结合综合考查,证明中要灵活应用题目中的已知条件,充分考虑“假设”这一步的应用,不考虑假设而进行的证明不是数学归纳法.【变式3】 数列{a n }满足:a 1=16,前n 项和S n =n (n +1)2a n ,(1)写出a 2,a 3,a 4;(2)猜出a n 的表达式,并用数学归纳法证明.解 (1)令n =2,得S 2=2×(2+1)2a 2, 即a 1+a 2=3a 2,解得a 2=112. 令n =3,得S 3=3×(3+1)2a 3, 即a 1+a 2+a 3=6a 3,解得a 3=120. 令n =4,得S 4=4×(4+1)2a 4, 即a 1+a 2+a 3+a 4=10a 4,解得a 4=130. (2)由(1)的结果猜想a n =1(n +1)(n +2),下面用数学归纳法给予证明: ①当n =1时,a 1=16=1(1+1)(2+1),结论成立. ②假设当n =k (k ∈N *)时,结论成立,即a k =1(k +1)(k +2), 则当n =k +1时,S k =k ·(k +1)2a k ,① S k +1=(k +1)(k +2)2a k +1,② ②与①相减得a k +1=(k +1)(k +2)2a k +1-k ·(k +1)2a k , 整理得a k +1=k +1k +3a k =k +1k +3·1(k +1)(k +2)=1(k +2)(k +3)=1[(k +1)+1][(k +1)+2], 即当n =k +1时结论也成立.由①、②知对于n ∈N +,上述结论都成立.误区警示 未应用归纳假设而导致错误【示例】 证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *) [错解] (1)当n =1时,左边=12,右边=1-12=12,等式成立. (2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1. 这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.从形式上看,会认为以上的证明是正确的,过程是完整的,但实际上以上的证明却是错误的.错误的原因在第(2)步,它是直接利用等比数列的求和公式求出了当n =k +1时式子12+122+123+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,这是在用数学归纳法证题时极易犯的一种错误,要引以为戒,一定要引起同学们的足够重视.[正解] (1)当n =1时,左边=12,右边=1-12=12,等式成立. (2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,有12+122+123+…+12k -1+12k =1-12k . 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-2-12k +1=1-12k +1=右边. 这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.数学归纳法证明命题的步骤及注意事项:①两个步骤,缺一不可,其中第一步是递推的基础,第二步是递推的依据;②两个步骤中关键是第二步,即当n =k +1时命题为什么成立.在证n =k +1命题时成立时,必须利用归纳假设当n =k 时成立这一条件,再根据有关定理、定义、公式、性质等推证出当n =k +1时成立.切忌直接代入,否则当n =k +1时成立也是假设了,命题并没有得到证明.题型三 用数学归纳法证明几何问题【例3】 用数学归纳法证明凸n 边形的对角线有12n (n -3)条. [思路探索] 可先弄清凸n 边形多增加一条边时对角线的变化情况,再归纳出变化规律,然后求解.证明 ①当n =3时,12n (n -3)=0,这就说明三角形没有对角线,故结论正确. ②假设当n =k (k ≥3,k ∈N +)时结论正确,即凸k 边形的对角线有12k (k -3)条, 则当n =k +1时,凸(k +1)边形的对角线的条数f (k )=12k (k -3)(k ≥4), 当n =k +1时,凸(k +1)边形是在k 边形基础上增加了一边,增加了一个顶点,设为A k +1,增加的对角线是顶点A k +1与不相邻顶点的连线再加上原k 边形一边A 1A k ,共增加了对角线的条数为k -2+1=k -1.∴f (k +1)=12k (k -3)+k -1 =12(k 2-k -2)=12(k +1)(k -2) =12(k +1)[(k +1)-3] 故当n =k +1时命题成立.由(1)(2)知,对任意n ≥4,n ∈N *,命题成立.用数学归纳法证明几何问题,关键在于分析由n =k 到n =k +1的变化情况,即分点(或顶点)增加了多少,直线的条数(或划分区域)增加了几部分等,或先用f (k +1)-f (k )得出结果,再结合图形给予严谨的说明,几何问题的证明:一要注意数形结合;二要注意要有必要的文字说明.【变式3】 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,求证交点的个数f (n )=n (n -1)2. 证明 (1)当n =2时,两条直线的交点只有一个,又f (2)=12×2×(2-1)=1, ∴当n =2时,命题成立.(2)假设当n =k (k ∈N *,k ≥2)时命题成立,即平面内满足题设的任何k 条直线的交点个数f (k )=12k (k -1), 那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线的交点个数为f (k )=12k (k -1), l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1) =12(k +1)[(k +1)-1], ∴当n =k +1时,命题成立.由(1),(2)可知,对任意n ∈N *(n ≥2)命题都成立.题型四 归纳—猜想—证明【例4】 在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列{n ∈N +}.(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512. 审题指导 (1)根据已知条件求出{a n },{b n }的前几项,由此猜测{a n },{b n }的通项公式.然后根据递推关系式用数学归纳法加以证明.(2)用放缩法证明不等式.[规范解答] (1)由条件得2b n =a n +a n +1,a 2n +1=b n b n +1.由此可以得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.(4分)用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ∈N *)时,结论成立.即a k =k (k +1),b k =(k +1)2,那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),b k +1=a 2k +1b k=(k +2)2, 所以当n =k +1时,结论也成立.由①②,可知a n =n (n +1),b n =(n +1)2对一切正整数都成立.(8分)(2)证明 1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .故1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎣⎡⎦⎤12×3+13×4+…+1n (n +1) =16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1 =16+12⎝⎛⎭⎫12-1n +1<16+14=512. 综上,原不等式成立.(12分)【题后反思】 探索性命题是近几年高考试题中经常出现的一种题型,此种问题未给出问题的结论,往往需要由特殊情况入手,归纳、猜想、探索出结论,然后再对探索出的结论进行证明,而证明往往用到数学归纳法.这类题型是高考的热点之一,它对培养创造性思维具有很好的训练作用.【变式4】 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明.解 S 1=11×4=14;S 2=14+14×7=27; S 3=27+17×10=310;S 4=310+110×13=413.可以看到,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1.于是可以猜想S n =n 3n +1(n ∈N *). 下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14, 猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k 3k +1,那么, 11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4)=(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1, 所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立.误区警示 未使用归纳假设而出错【示例】 用数学归纳法证明n 2+n <n +1(n ∈N *).[错解] (1)n =1时显然命题成立.(2)假设n =k (k ∈N *)时,有k 2+k <k +1,则当n =k +1时, 左边=(k +1)2+k +1=k 2+3k +2<k 2+4k +4=(k +1)+1.∴当n =k +1时,命题成立,根据(1)(2)对n ∈N *原不等式成立.以上证明过程中,第(2)步未用归纳假设,不用归纳假设的证法不是数学归纳法,故以上解法是错误的.[正解] (1)当n =1时,显然命题成立.(2)假设n =k (k ∈N *)时,原不等式成立. 即k 2+k <k +1,∴k 2+k <(k +1)2.则当n =k +1时, 左边=(k +1)2+(k +1)=k 2+3k +2 =k 2+k +2k +2<(k +1)2+2k +2 =k 2+4k +3<k 2+4k +4=k +2=(k +1)+1. ∴(k +1)2+k +1<(k +1)+1,故当n =k +1时,原不等式成立.由(1)(2)知,原不等式对n ∈N *成立. 即n 2+n <n +1.数学归纳法一般被用于证明某些与正整数n (n 取无限多个值)有关的数学命题,但是,并不是所有与正整数n 有关的数学命题都可以用数学归纳法证明,例如用数学归纳法证明⎝⎛⎭⎫1+1n n (n ∈N *)的单调性就难以实现.一般说,从n =k 时的情形过渡到n =k +1时的情形,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.。
数学归纳法及应用举例
数学归纳法及应用举例重点难点分析:(1)数学归纳法的第一步是验证命题递推的基础,第二步是论证命题递推的依据,两个步骤密切相关,缺一不可。
(2)归纳思想充分体现了辩证唯物主义的特殊与一般的思想,是数学的基本思想,数学归纳法体现了有限与无限的辩证关系与转化思想。
(3)归纳——猜想——证明是经常运用的数学方法,观察是解决问题的前提条件,需要进行合理的试验和归纳,提出合理的猜想,从而达到解决问题的目的。
(4)数学归纳法的应用通常与数学的其它方法联系在一起,如比较法,放缩法,配凑法,分析法和综合法等。
典型例题:例1.用数学归纳证明:=-n(n+1)(4n+3)。
证明:①当n=1时,左边,右边=-1(1+1)(4+3)=-14,等式成立。
②假设n=k时等式成立,即=-k(k+1)(4k+3)。
那么n=k+1时,+[(2k+1)(2k+2)2-(2k+2)(2k+3)2] =-k(k+1)(4k+3)-2(k+1)(4k2+12k+9-4k2-6k-2)=-(k+1)[4k2+3k+2(6k+7)]=-(k+1)(4k2+15k+14)=-(k+1)(k+2)(4k+7)=-(k+1)[(k+1)+1][4(k+1)+3],等式也成立。
由①②知,当n∈N′时等式成立,∴原命题成立。
例2.试证S n=n3+(n+1)3+(n+2)3能被9整除。
证明:①n=1时,S1=4×9,能9整除。
②假设,n=k时,S k能被9整除,则S k+1=(k+1)3+(k+2)3+(k+3)3=S k+(k+3)3-k3=S k+9(k3+3k+3)由归纳假设知S k+1能被9整除,也就是说n=k+1时命题也成立。
综上所述:命题成立。
点评:用数学归纳法证明整除问题时,关键是把n=k+1时的式子分成两部分,其中一部分应用归纳假设,另一部分经过变形处理,确定其能被某数(某式)整除。
例3.通过一点有n个平面,其中没有任何3个平面交于同一条直线,用数学归纳法证明这些平面把空间分成(n2-n+2)个部分。
归纳与猜想
三.归纳与猜想一、 知识综述归纳是一种重要的推理方法,是根据具体事实和特殊现象,通过实验、观察、比较、概括出一般的原理和结论。
猜想是一种直觉思维,它是通过对研究对象的实验、观察和归纳、猜想它的规律和结论的一种思维方法。
猜想往往依据直觉来获得,而恰当的归纳可以使猜想更准确。
我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律。
二、理解掌握例1、用等号或不等号填空:(1)比较2x 与x 2+1的大小①当x =2时,2x x 2+1;②当x =1时,2x x 2+1;③当x =-1时,2x x 2+1.(2)可以推测:当x 取任意实数时,2x x 2+1.分析:本题是通过计算发现和猜想一般规律题,正确计算和发现规律是关键。
解:(1)<,=,<; (2)≤。
例2、观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+, 45451-=+…从计算结果中找出规律,并利用这一规律计算: 1)2002)(200120021341231121(+++++++++ =____。
分析:解本题时,要抓住分每有理化后的结果都是两数之差,且可以错位相消。
还要注意相消后所剩下的是什么。
解:1)2002)(200120021341231121(+++++++++ =)12002)(20012002342312(+-++-+-+- =)12002)(12002(+-=2002—1=2001。
例3、观察下列数表:1 2 3 4 …第一行2 3 4 5 …第二行3 4 5 6 …第三行4 5 6 7 …第四行…………第一列第二列第三列第四列根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为____,第n行与第n列交叉点上的数应为____。
(用含正整数n的式子表示)分析:本题要求的是同行同列交叉点上的数,因此,必须先研究同行同列交叉点上的数有什么规律,然后利用此规律解题。
解: 11 , 2n—1.例4、将一个边长为1的正方形纸,剪成四个大小一样的正方形,然后将其中的一个按同样的方法剪成四个正方形,如此循环下去,观察下列图形和所给表格中的数据后填空格。
学而思初一数学资料培优汇总(精华)
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。
二、【典型例题解析】:
1、计算:
2、计算:(1)、
(2)、(-18.75)+(+6.25)+(-3.25)+18.25
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;
(2)计算: =(填写最后的计算结果)。
7、观察下列各式,你会发现什么规律?
3×5=15,而15=42-1 5×7=35,而35=62-1……
11×13=143,而143=122-1……
将你猜想的规律用只含一个字母的式子表示出来。
6、已知 ,求 的值。
7、已知 均为正整数,且 ,求 的值。
8、求证 等于两个连续自然数的积。
9、已知 ,求 的值。
10、一堆苹果,若干个人分,每人分4个,剩下9个,若每人分6个,最后一个人分到的少于3个,问多少人分苹果?
三、【备用练习题】:
1、已知 ,比较M、N的大小。
, 。
2、已知 ,求 的值。
第一讲数系扩张--有理数(一)
一、【问题引入与归纳】
1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:
3、有理数的本质定义,能表成 ( 互质)。
4、性质:①顺序性(可比较大小);
②四则运算的封闭性(0不作除数);
③稠密性:任意两个有理数间都存在无数个有理数。
归纳与猜想系统讲义
观察、猜想、规律
【李老师提醒】寻找规律是近年来中考必考题,主要考察大家的观察和猜想能力,多以选择题
出现。
解决此类问题主要是两种方法:
第一种:数字归纳法,就是找出已知图形的个
数差别,并找出他们的规律进行延展。
一般来
说就是看几个数字的差之间的关系。
第二种:追根朔源法,就是观察图形变化引起
的数字变化,从而推导出通向公式进行求解。
下列图案均是用长度相同的小木棒按一定的规
律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依次规律,拼搭第8个图案需小木棒根.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆个“金鱼”需用火柴棒的根数为()
A.B.
C.D.
按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.
n
26n
+86n
+
44n
+8
n
第第第
第。
第七章数学解题的思维过程
分离
预见
重组 组织 充实
结合
例5已知a1 , a2 , L , an , L 成等差数列,且诸ai 及公差都是 非零实数,考虑方程ai x 2 2ai 1 x ai 2 0(i 1, 2, L ). (1)证明这些方程有公共根,并求出这个公共根。 (2)设这个方程的另一根是i,则 1 1 1 , ,L , , L 成等差数列。 1 1 2 1 n 1
例 1解不等式:
x 1 x2
1 x 0. (三角公式) 2 1 x
2
分析:令x tan (
2
2
),即解 sin cos 2 0.
例2已知: cos cos 2m,sin sin 2n. 求 tan tan 的值。(三角函数--中点坐标公式
6、思维过程的解释
解题都要提取已储存的信息,对信息进行加工,运用,收 集信息的反馈,并进行再处理,这里面包含着辩证思维和直觉 思维,它们弥漫在整个解题坐标平面上,体现了解题活动的实 质是思维活动。一条解题折线的画出往往经历许多类比、联想、 归纳、尝试和失败,这就像解题坐标系上,试着用铅笔画草图 折线,画了又擦,擦了又画,但决不是盲目瞎碰,有是一个机 智的数学念头导致了一个卓有成效的解题计划,这个念头正是 有准备的思考和解题经验长期积累的升华。
3、审题同心圆 审题,尽量从题意中获取更多的信息,可以表示 为以条件和结论为中心的一系列同心圆。从条件出发 的同心圆信息,预示可知并启发解题手段;从结论出 发的同心圆信息,预告须知并诱导解题方法,两组同 心圆的交接处,就是分别从条件、结论出发进行思考 的结合点,也是手段与目标的统一处。
4、内容与方法的统一 在解题坐标系上,内容是提高方法的内容,方法 是体现内容的方法。解题坐标系上的每一点,一方面 是内容与方法的统一,另一方面是其在两轴上的投影 又都不唯一。同一内容可以从不同的角度去理解,同 一方法又可以在不同的地方发挥效能。这就为多角度、 多侧面考虑数学对象及其之间的关系提供了理论依据。
数学归纳法要点讲解
《数学归纳法》要点讲解数学归纳法是用于证明与正整数有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位.1.数学归纳法的基本形式(1)第一数学归纳法设是一个与正整数有关的命题,如果①当0n n =(N n ∈0)时,成立;②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,也成立,那么,根据①②对一切正整数0n n ≥时,成立.(2)第二数学归纳法设是一个与正整数有关的命题,如果①当0n n =(N n ∈0)时,成立;②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,也成立,那么,根据①②对一切正整数0n n ≥时,成立.2.数学归纳法的其他形式(1)跳跃数学归纳法①当l n ,,3,2,1 =时,)(,),3(),2(),1(l P P P P 成立,②假设k n =时成立,由此推得l k n +=时,也成立,那么,根据①②对一切正整数时,成立.(2)反向数学归纳法设是一个与正整数有关的命题,如果①对无限多个正整数成立;②假设k n =时,命题成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数时,成立.3.应用数学归纳法的技巧(1)起点前移或后移:有些命题对一切大于等于1的正整数都成立,但命题本身对也成立,而且验证起来比验证时容易,因此用验证成立代替验证,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以.因而为了便于起步,有意前移起点.而有些命题在第一步证明中,不仅要证明时原不等式成立,还要证明当时,原不等式也成立.例1 已知n *∈N ,求证:2111(123)123n n n ⎛⎫++++++++ ⎪⎝⎭≥. 分析:可结合不等式关系:111111(1)232n n +++++>≥来证明,但注意要将奠基的起点后移,即在第一步证明中,不仅要证明时原不等式成立,还要证明当时,原不等式也成立. 证明:(1)当时,原不等式显然成立,当时,不等式左边191(12)14222⎛⎫=+⨯+== ⎪⎝⎭, 右边224==,则左边>右边,∴当时,原不等式成立.(2)假设当()n k k *=∈N 时,2111(123)123k k k ⎛⎫++++++++ ⎪⎝⎭≥成立, 则1n k =+时,1111[123(1)]1231k k k k ⎡⎤⎛⎫+++++++++++ ⎪⎢⎥+⎝⎭⎣⎦ 111123111(123)11(1)123123k k k k k k ++++⎛⎫⎛⎫=++++++++++++++++ ⎪ ⎪+⎝⎭⎝⎭2(1)11(1)12(1)2k k k k k +⎛⎫+++++ ⎪+⎝⎭≥ 2231(1)22k k k k >+++=+. 所以当1n k =+时原不等式也成立.由(1)和(2),可知原不等式对任何n *∈N 都成立.(2)起点增多:有些命题在由k n =向1+=k n 跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点.(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多.例2 试证:任何一个正方形都可以分割成5个以上的任意多个正方形. 分析:一个正方形分割成4个正方形是很容易的.由此猜想:若能把一个正方形分割成k 个正方形,则必能分割成(4)13k k +-=+个正方形.故第一步应对678n =,,的情形加以验证.第二步,则只需从k 递推到k +3.证明:(1)当678n =,,时,由以下各图所示的分割方法知,命题成立.(2)假设当(6)n k k k *=∈N ,且≥时命题成立,即一个正方形必能分割成k 个正方形.那么,只要把其中任意一个正方形两组对边的中点分别连结起来,即把该正方形再分割成4个小正方形,则正方形的个数就增加了3个.因而原正方形就分割成了个正方形,即当3n k =+时命题也成立.因为任何一个大于5的自然数n 都可以表示成637383()p p p p +++∈N ,,中的一种形式,所以根据(1)和(2),可知命题对任何大于5的自然数n 都成立.(4)选择合适的假设方式:归纳假设为一定要拘泥于“假设k n =时命题成立”不可,需要根据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用.(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明.例3 已知01p <<,定义11a p =+,且11n na p a +=+.试证明:对一切n *∈N ,都有1n a >.分析:显然有11a >,但若假设1k a >,则很难由递推公式11k ka p a +=+推得11k a +>.为此,必须知道小于什么数值才行. 其实,要使111k k a p a +=+>,即11k p a >-,只须11k a p<-.所以本题可转化为证明如下更强的不等式:111n a p<<-.① 证明:(1)当时,显然有11a >. 又因为211111p a p p-=<--, 所以1111a p<<-. (2)假设当()n k k *=∈N 时,111k a p <<-成立,则有 11(1)1k k a p p p a +=+>-+=, 21111111k k p a p p a p p+-=+<+=<--, 所以1111k a p+<<-,即当1n k =+时不等式①也成立. 由(1)和(2),可知对任何n *∈N ,不等式①都成立,从而原命题获证.4.归纳、猜想和证明在数学中经常通过特例或根据一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理方法称为不完全归纳法.不完全归纳法得出的结论,只能是一种猜想,其正确与否,必须进一步检验或证明,经常采用数学归纳法证明.不完全归纳法是发现规律、解决问题极好的方法.。
专题复习 归纳与猜想(含答案)-
①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。
★ 范例精讲【归纳与猜想】例1【河北实验区05】观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。
猜想——验证——归纳——运用
“猜想——验证——归纳——运用”的小学数学教学模式一、模式的理论依据:牛顿曾经说过:没有大胆的猜想,就做不出伟大的发现,爱因斯坦的不少发明和理论也都是由一定的猜想而产生的。
《新课程标准》指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。
除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。
”因此,小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。
二、模式的教学目标:1、教师方面:引领数学教师理解《新课程标准》,研究新教材,更好地整体把握教材体系,对教材中的教学内容和呈现方式进行深度思考、重新组合、创造性地用好,达到优化有效,从而进一步提高教师驾驭教材的能力以及科学、合理设计课堂教学方案,从而提高课堂教学效果。
2、学生方面:激发学生学习的兴趣,引导他们积极投身到数学学习的过程中去;数学猜想能缩短学生解决问题的时间,使学生获得数学发现的机会,提升他们的数学思维能力;数学猜想能促使学生产生探究知识的欲望,提高观察、分析问题的能力,增强学生的创造力。
三、模式的操作流程:(一)、知识迁移——有“理”猜想,激活思维学生的生活经验和已有知识常常与新知之间存在着一层“真空地带”,这正是学生学习新知时在认知和心理上竭力要跨越的障碍。
在教学过程中,学生的猜测活动就应在这“真空地带”中展开,让学生抓住新旧知识的连接点,创设一定的问题情景,使学生能借助旧知产生“正迁移”,先建立猜想,然后从不同角度来验证猜想。
观察、实验、归纳、类比、猜想、证明学案
观察、实验、归纳、类比、猜想、证明学案七年级数学《观察、猜想与证明》一、【观察与实验】认识来源于实践, 是我们认识事物的重要方法,通过观察和实验,可以发现许多规律。
是获得感性认识的重要途径,但观察得到的结果是否正确,还需要经过验证, 是人们认识事物的一种有目的的探索过程,一般是为了检验某种猜想或理论而进行的操作或活动。
实验的关键是要具有可重复操作性。
例题,1.下面给出了两个图形,你能分别用一笔画出来吗,,每部分既不能重复,也不能遗漏,,2.【错觉】上图,3,中的两条紫色的线条是平行的吗,图,4,中线段AB与线段CD哪个比较长,用什么办法验?证你的观察,下面左边两幅图形中,哪个图形的竖线更长, 右图中有曲线吗, 【结论】,观察可能产生错觉,所以观察的结果需要验证。
3. 一个正方体有六个面,分别标上文字“观,察,猜,想,证,明”是从三个不同方向看到的几个汉字 . 观察图形中的汉字特点,那么,“观”相对面上的汉字是,“察”相对面上的汉字是,“猜”相对面1上的汉字是 ,24. 用锯锯木,锯会发热,用锉锉物,锉会发热,在石头上磨刀,刀会发热,所以物体摩擦会发热,此结论的得出运用的方法是, ,A,观察 B,实验 C,归纳 D,类比5. 【实验是人们认识事物的一种有目的的探索过程】三条线段能组成一个三角形吗,用两块形状、大小相同的三角尺,你能拼出多少个形状不同的三角形,能拼出多少个形状不同的四边形, ,摆一摆,试一试,如图,OM 为?AOB 的平分线,点 P是射线 OM 上的一点,PA ? OA 于点 A,PB ? OB 于点 B,分别度量PA,PB 的长度,并判断它们的数量关系,如果在射线 OM 上再取几个不同位置的点 P,然后向角的两边作垂线段,刚才的数量关系还存在吗,用剪刀把一张长方形的纸剪了一次,剩余的一部分纸是什么图形,把长方形纸片剪成两部分,用剪得的两部分可以拼成哪些形状不同的图形,你能拼接成一个三角形吗,并画出拼接后的示意图。
中考数学复习专题讲座教案:归纳猜想型问题
中考数学复习专题讲座七:归纳猜想型问题(一)一、中考专题诠释归纳猜想型问题在中考中越来越被命题者所注重。
这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。
二、解题策略和解法精讲归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
三、中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
例1(沈阳)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.考点:多项式。
810360专题:规律型。
分析:首先观察归纳,可得规律:第n个多项式为:a n+(﹣1)n+1b2n,然后将n=10代入,即可求得答案.解答:解:∵第1个多项式为:a1+b2×1,第2个多项式为:a2﹣b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4﹣b2×4,…∴第n个多项式为:a n+(﹣1)n+1b2n,∴第10个多项式为:a10﹣b20.故答案为:a10﹣b20.点评:此题考查的知识点是多项式,此题难度不大,注意找到规律第n个多项式为:a n+(﹣1)n+1b2n是解此题的关键.例2(珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.考点:规律型:数字的变化类。
7.1 归纳推理及其方法 课件(共32张PPT)
金受热后体积膨胀,
3. 意义:
银受热后体积膨胀,
不完全归纳推理在日常生活和科
铜受热后体积膨胀,
学研究中有着重要意义。
铁因受为热金后属体受积热膨后胀分,子的凝聚力它减的弱前,提与结论之间的联系是或
分子运动加速,分子彼此距离然加的大。,我们可以通过考察更多的
从而导致膨胀。
认识对象、分析认识对象与有关
而金、银、铜、铁都是金属,现象之间的因果关系等方法,提
……
③共变法—所—以特,点A与:a“有求因量果联的系变。化”
如果被考察现象a有某些变化,有一个因素A也随之发生一 定的变化,那么,这个相关因素A与被考察的现象a有因果联系。
正确地应用共变法需要注意两点: (①其他因素保持不变; ②不超出共变限度 )
归纳推理的方法
④求同求异并用法——特征:既求同又求异/“两同一异”
归纳推理的方法
例2: 在新疆天山深“求处异一法个”解逻放辑军形哨式所驻地毒蛇很多,经常爬 到房间里来场捣合乱,而当先地行哈情萨况克族人家被里研从究来对没象有发现过蛇。 战士们发现1哈. 萨克族人家A里BC就是比哨所多鹅a,其他居住条件与 哨所一样。2于. 是,战士们-就BC买四只鹅养起来-,哨所里再也没发 现过毒蛇…。… 所以,A与a有因果联系。
新课导入
我们从一个袋子里摸出来的第一个是红玻璃球,第二个 是红玻璃球,甚至第三个、第四个、第五个都是红玻璃球 的时候,我们会立刻出现一种猜想: “是不是这个袋子里的东西全部都是红玻璃球?” 但是,当我们有一次摸出一个白玻璃球的时候,这个猜想 失败了。这时,我们会出现另一种猜想: “是不是袋子里的东西全部都是玻璃球?” 但是,当有一次摸出来的是一个木球的时候,这个猜想又 失败了。这时,我们又会出现第三个猜想: “是不是袋子里的东西都是球?” 这个猜想对不对,还必须继续加以检验,要把袋子里的东 西全部摸出来,才能见个分晓。
第七讲 发现规律-推荐下载
第一讲 发现规律一、【问题引入与归纳】我国著名数学家华罗庚先生曾经说过:“先从少数的事例中摸索出规律来,再从理论上来证明这一规律的一般性,这是人们认识客观法则的方法之一”。
这种以退为进,寻找规律的方法,对我们解某些数学问题有重要指导作用,下面举例说明。
能力训练点:观察、分析、猜想、归纳、抽象、验证的思维能力。
二、【典型例题解析】1、 观察算式:(13)2(15)3(17)4(19)513,135,1357,13579,,2222+⨯+⨯+⨯+⨯+=++=+++++++= 按规律填空:1+3+5+…+99= ?,1+3+5+7+…+(21)n -=2、如图是某同学在沙滩上用石子摆成的小房子。
观察图形的变化规律,写出第个小房子用了多少块石子?n3、 用黑、白两种颜色的正六边形地面砖(如图所示)的规律,拼成若干个图案:(1)第3个图案中有白色地面砖多少块?(2)第个图案中有白色地面砖多少块?n 4、 观察下列一组图形,如图,根据其变化规律,可得第10个图形中三角形的个数为多少?第个图形中三角形的个数为多少?n5、 观察右图,回答下列问题:(1)图中的点被线段隔开分成四层,则第一层有1个点,第二层有3个点,第三层有多少个点,第四层有多少个点?(2)如果要你继续画下去,那第五层应该画多少个点,第n 层有多少个点?(3)某一层上有77个点,这是第几层?(4)第一层与第二层的和是多少?前三层的和呢?前4层的和呢?你有没有发现什么规律?根据你的推测,前12层的和是多少?6、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为,这里“”是求和符号,例如1001n n =∑∑“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为又如“”可表示为,同501(21);n n =-∑333333333312345678910+++++++++1031n n =∑学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:= (填写最后的计算结果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……广东省中考数学第2轮复习第 7讲 归纳与猜想专题归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),考生通过认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
常见类题:范例精讲【归纳与猜想】例1观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
例2将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题:⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ; ⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.例3下图中,图⑴是一个扇形AOB ,将其作如下划分:第一次划分:如图⑵所示,以OA 的一半OA 1为半径画弧,再作∠AOB 的平分线,得到扇形的总数为6个,分别为:扇形AOB 、扇形AOC 、扇形COB 、扇形A 1OB 1、扇形A 1OC 1、扇形C 1OB 1;第二次划分:如图⑶所示,在扇形C1OB 1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次划分:如图⑷所示;……依次划分下去.⑴根据题意,完成右表:⑵根据上表,请你判断按上述划分方式,能否得到扇形的总数为2005个?为什么?图⑷第三次划分图⑴AB O图⑵第一次划分 AB OA 1C B 1C 1图⑶第二次划分 ABOA 1C B 1C 1同步训练:1. 【烟台03,桥西03~04】如图,细心观察图形,认真分析各式,然后解答问题:(1)2+1=2 S 1=12 (2)2+1=3 S 2=22 (3)2+1=4 S 3=32⑴请用含有n (n 是正整数)的等式表示上述变化规律; ⑵推算出OA 10的长;⑶求出S 12+S 22+S 32+…+S 102的值.2. 观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中的小黑点的个数为y .解答下列问题:⑴填表:⑵当n =8时,y = ;⑶你能猜想y 与n 之间的关系式吗?你是怎么得到的,请与同伴交流;⑷下边给出一种研究方法。
请你根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在平面直角坐标系中描出相应的各点(n ,y ).猜一猜上述各点是否在某一函数的图象上?如果在某一函数的图象上,请你求出该函数的关系式。
3.一个自然数a 恰等于另一个自然数b 的平方,则称自然数a 为完全平方数,如64=82,64就是一个完全平方数.若a =20022+20022×20032+20032,求证:a 是一个完全平方数,并写出a的平方根.图1图2图3图4图5A 6 … A 51 1 A 4 1 A 3A 21 A 111 O S 1 S2 S3 S4 S 54.下列是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.仔细观察图形可知:图①有1块黑色的瓷砖,可表示;21)11(1⨯+=图②有3块黑色的瓷砖,可表示为;22)21(21⨯+=+图③有6块黑色的瓷砖,可表示为;23)31(321⨯+=++实践与探索:⑴请在图④的虚线框内画出第4个图形;(只须画出草图) ⑵第10个图形有 块黑色的瓷砖;(直接填写结果) ⑶第n 个图形有 块黑色的瓷砖.(用含n 的代数式表示)5.随着信息技术的高速发展,电话进入了千家万户,据调查某校初三⑴班的同学家都装上了电话,暑假期间全班每两个同学都通过一次电话,如果该班有56名同学,那么同学们之间共通了多少次电话?为解决该问题,我们可把该班人数n 与通电话次数s 间的关系用下列模型来表示:⑴若把n 作为点的横坐标,s 作为纵坐标,根据上述模型中的数据,在给出的平面直角坐标系中,描出相应各点,并用平滑的曲线连接起来; ⑵根据图中各点的排列规律,猜一猜上述各点会不会在某一函数的图象上?如果在,求出该函数的解析式;⑶根据⑵中得出的函数关系式,求该班56名同学间共通了多少次电话.图①图②图③图④6.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计如图1所示的几何图形。
⑴请你利用这个几何图形, 求2341111122222n ++++⋅⋅⋅+的值为 ; ⑵请你利用图2, 再设计一个能求2341111122222n ++++⋅⋅⋅+的值的几何图形。
7.如图,正方形表示一张纸片,根据要求需多次分割,把它分割成若干个直角三角形.操作过程如下:第一次分割,将正方形纸片分成4个全等的直角三角形,第二次分割将上次得到的直角三角形中一个再分成4个全等的直角三角形;以后按第二次分割的作法进行下去.⑴请你设计出两种符合题意的分割方案图;⑵设正方形的边长为a ,请你就其中一种方案通过操作和观察将第二、第三次分割后所得的最小的直角三角形的面积S 填入下表:⑶在条件⑵下,请你猜想:分割所得的最小直角三角形面积S 与分割次数n 有什么关系?用数学表达式表示出来.图1 图212212312412①②③……8.下面的图形是由边长为1的正方形按照某种规律排列而组成的.⑴观察图形,填写下表:⑵推测第n个图形中,正方形的个数为,周长为(都用含n的代数式表示);⑶这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系式为y=.9.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形。
探究:一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形。
我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去。
n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.⑴若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)⑵当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)。
①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……第 6讲 归纳与猜想专题归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),考生通过认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
常见类题:范例精讲【归纳与猜想】例1观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题:⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ; ⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形; ⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。
例3下图中,图⑴是一个扇形AOB ,将其作如下划分:第一次划分:如图⑵所示,以OA 的一半OA 1为半径画弧,再作∠AOB 的平分线,得到扇形的总数为6个,分别为:扇形AOB 、扇形AOC 、扇形COB 、扇形A 1OB 1、扇形A 1OC 1、扇形C 1OB 1;第二次划分:如图⑶所示,在扇形C 1OB 1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次划分:如图⑷所示;……依次划分下去.图⑷第三次划分图⑴AB O 图⑵第一次划分 AB OA 1CB 1C 1图⑶第二次划分 ABOA 1C B 1C 11a 1a 2a 3⑴根据题意,完成下表:⑵根据上表,请你判断按上述划分方式,能否得到扇形的总数为2005个?为什么?解:由5n+1=2015,得n=20045,∵n是整数,∴可能。
同步训练:3.【烟台03,桥西03~04】如图,细心观察图形,认真分析各式,然后解答问题:(1)2+1=2 S1=1 2(2)2+1=3 S2=2 2(3)2+1=4 S3=3 2⑴请用含有n(n是正整数)的等式表示上述变化规律;⑵推算出OA10的长;⑶求出S12+S22+S32+…+S102的值.解:⑴(n)2+1=n+1,S n=n 2;⑵∵OA1=1,OA2=2,OA3=3,…,∴OA10=10;⑶S12+S22+S32+…+S102=14(1+2+3+…+10)=554.4.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中的小黑点的个数为y.图1 图2 图3 图4 图5A6…A511 A4 1 A3A21A111OS1S2S3S4S5解答下列问题:⑴填表:⑵当n =8时,y = 57 ;⑶你能猜想y 与n 之间的关系式吗?你是怎么得到的,请与同伴交流;⑷下边给出一种研究方法。