甘肃省靖远县北湾乡北湾初级中学八年级数学上册 第七章 平行线的证明一单元综合测试(无答案)(新版)北师
北师大版八年级数学上册第七章平行线的证明复习与小结课件
课后巩固
第七章
练一练
完成相关作业.
平行线的证听
平行线的证明
第六章
数据的分析
九条基本事实
目前我们学习了九条基本事实中的八条,它们是:
基本事实1:两点确定一条直线。 基本事实2:两点之间线段最短。
基本事实3:过一点有且只有一条直线与这条直线垂直。
基本事实4:两条直线被第三条直线所截,如果同位角相等,
那么两直线平行. 简述:同位角相等,两直线平行.
基本事实5:过直线外一点有且只有一条直线与这条直线平行。
于它的任意一个内角C. 三角形的一个外角大于与它
不相邻的任意内角D. 三角形的外角和是180°
基础训练
第七章
4. 如图AB∥CD,∠C=110°,∠B=120°,
则∠E等于 (
)
C
A. 110°
B. 120°
C. 130°
D. 150°
5.如图,将三角板的直角顶点放在直尺的一边上,若
∠1=65°,则∠2的度数为 25° .
什么是证明? 演绎推理的过程称为证明.
什么是定理?经过证明的真命题称为定理. 定理都只能经过公
理、定义和已经证明为真的命题来证明.
什么是推论? 由一个基本事实或定理直接推出的定理,叫做这个
基本事实或定理的推论. 推论可以当作定理使用.
什么是三角形
由三角形的一边与另一边的反向延长线构成的角.
的外角?
基本事实
证明:∵EF⊥AB,CD⊥AB,,
∴CD∥EF,
∴∠BCD=∠CFG,∠DCG=∠CGF.
∵∠CGF=∠CFG,
∴∠BCD=∠DCA,
∴CD平分∠ACB.
第七章
平行线的证明
(完整版)新北师大版八年级数学上册第七章平行线的证明知识点复习,推荐文档
知识点1:命题平行线的证明知识点复习(1)判断一件事情的句子,叫. 的命题是真命题,不正确的命题是. (2)公认的真命题称为,经过证明的真命题称为.典型练习: 1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b,则11.②.两个锐角的和是锐角.③.同位角相等,两直线平行.a b④.一个角的邻补角大于这个角.⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:相等,两直线平行. 判定定理1:相等,两直线平行.判定定理2: ,两直线平行. 定理:平行于同一直线的两直线. (2).平行线的性质公理:两直线平行,同位角. 性质定理1:两直线平行,内错角.性质定理2:两直线平行,同旁内角.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC,求证:AB//CD2.已知:BC//EF,∠B=∠E,求证:AB//DE。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 A D件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗? B P CE F4.如图,某湖上风景区有两个观望点A,C 和两个度假村B,D.度假村D 在C 的正西方向,度假村B 在 C 的南偏东30°方向,度假村 B 到两个观望点的距离都等于 2km.(1)求道路 CD 与CB 的夹角;(2)如果度假村 D 到C 是直公路,长为 1km,D 到A 是环湖路,度假村 B到两个观望点的总路程等于度假村 D 到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接 AB,直线 AC,BD 及线段 AB 把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点 P 落在某个部分时,连接 PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点 P 落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD 三个角的数量关系时,利用图 1,过点P作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点 P 落在第②部分时,在图 2 中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点 P 落在第③、第○4 部分时,在图 3、图 4 中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于.(2)定理:三角形的一个外角等于和它不相邻的.(3)定理:三角形的一个外角大于任何一个和它.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点 A 向下移到 BE 上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点 C 向上移到 BD 上时,如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究 1:如图 1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90°+1 ∠A,理由如下:2∵BO 和 CO 分别是∠ABC 和∠ACB 的角平分线,1 1∴∠1= ∠ABC,∠2=∠ACB2 21∴∠1+∠2= (∠ABC+∠ACB)2又∵∠ABC+∠ACB=180°—∠A1 1∴∠1+∠2= (180°—∠A)=90°—∠A2 21∴∠BOC=180°—(∠1+∠2)=180°—(90°—∠A)21∴∠BOC=90°+ ∠A2探究2:如图2,O 是∠ABC与外角∠ACD的平分线BO 和CO 的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究 3:如图 3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD∥BC,AC 与BD 相交于O,则图中相等的角有对.2.如上右图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .3.如右图,DAE 是一条直线,DE∥BC,则∠BAC= .4.“一次函数y=kx-2,当k>0 时,y 随x 的增大而增大”是一个命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3.下列句子中,不是命题的是( )A.三角形的内角和等于180 度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4. 如右图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )A.AD∥BCB.∠B=∠CC.∠2+∠B=180°D.AB∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D 之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180° D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM 平分∠BCE,∠MCN=90°,求∠DCN 的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的位置关系,为什么?3.如图,如图,在三角形ABC 中,∠C=70°,∠B=38°,AE 是∠BAC 的平分线,AD⊥BC 于D.(1)求∠DAE 的度数;(2)判定AD 是∠EAC 的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE 与∠C—∠B 有何关系,并证明你的猜想.∠DAE 的度数.(∠C>∠B)4.如图,y 轴的负半轴平分∠AOB,P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P 在y 轴的负半轴上运动到图3 处(Q 为BA、NM 的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
北师大版初中数学八年级(上)第七章平行线的证明7-2定义与命题(第1课时) 教学详案
第七章 平行线的证明2 定义与命题第1课时 认识定义与命题教学目标1.了解定义与命题的含义,会区分某些语句是不是命题.2.了解命题的含义及结构,能分清楚一个命题的条件和结论,会把一个命题写成“如果……,那么……”的形式.3.了解命题结构的基础上,能判断命题的真假.教学重难点重点:通过对实例的交流分析,理解定义、命题的概念,能分析命题的条件和结论; 难点:在了解命题结构的基础上,能判断命题的真假.教学过程导入新课提出问题:你能说一说什么样的三角形是直角三角形、锐角三角形、钝角三角形吗?即:三个内角都是锐角的三角形叫做锐角三角形.有一个角为90°的三角形叫做直角三角形.有一个角是钝角的三角形就是钝角三角形.在数学学习中,教材对许多名称和术语进行了“定义”,你能举出一些例子吗? 探究新知1.什么是定义?一般地,能清楚地规定某一名称或术语意义的句子叫做该名称或术语的定义.即对名称和术语的含义加以描述,作出明确的规定.如:(1)“两点之间线段的长度,叫做这两点之间的距离”是__两点之间的距离的定义.(2)_两组对边分别平行的四边形_是平行四边形的定义.议一议下面语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n 为怎样的自然数,式子 的值都是质数; 211n n -+(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.即(1)(2)(3)(4)都对事情作出了判断,(5)(6)没有对事情作出判断.一般地,对某一件事情作出正确或不正确判断的句子叫做命题.命题的判断只有两种形式,要么肯定,要么否定.作判断时,必须泾渭分明,不能模棱两可;二是命题的句子只能是完整的句子,对一件事情的前因后果应叙述完整.从语法上讲,它应是陈述句,不能是祈使句、疑问句或感叹句.想一想观察下列命题,这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.即:命题的形式:如果……那么…….命题的结构:由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.“如果” 引出的部分是条件,“那么”引出的部分是结论.例下列命题的条件是什么?结论是什么?(1)如果a≠b,b≠c,那么a≠c;(2)两角和其中一角的对边对应相等的两个三角形全等;(3)全等三角形的面积相等.【解】(1)条件:a≠b,b≠c,结论:a≠c.(2)条件:两个三角形的两角和其中一角的对边对应相等,结论:这两个三角形全等.(3)条件:两个三角形全等,结论:它们的面积相等.做一做下列命题的题设(条件)是什么?结论是什么?(1)如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等;(2)如果一个三角形中有两个角相等,那么这个三角形是等腰三角形;(3)直角三角形的两锐角互余;(4)两直线平行,同位角相等;(5)如果两个角相等,那么它们是对顶角.上述命题中,哪些正确?哪些不正确?你的理由是什么?即:(1)条件:两个三角形的两边及其夹角分别相等,结论:这两个三角形全等;(2)条件:一个三角形中有两个角相等,结论:这个三角形是等腰三角形;(3)条件:直角三角形的两锐角,结论:两锐角互余;(4)两直线平行,结论:同位角相等;(5)条件:两个角相等,结论:它们是对顶角.(1)(2)(3)(4)正确,(5)不正确,如图,∠AOC=90°,则∠BOD=90°,∠AOB=∠DOC,但不是对顶角.我们把正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,只需举一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.课堂练习1.下列句子中,哪些是命题?哪些不是命题?(1)画一个角等于已知角.(2)两直线平行,内错角相等.(3)a、b两条直线平行吗?(4)若a2=4,求a的值.(5)若a2=b2,则a=b.2.判断下列命题的真假.真命题用“√”表示,假命题用“× ”表示.(1)同旁内角互补;(2)两点可以确定一条直线;(3)两点之间线段最短;(4)一个角的补角大于这个角;(5)同角的余角相等.3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等.参考答案1.(2)(5)是命题,(1)(3)(4)不是命题.2.(1)×(2)√(3)√(4)×(5)√3.(1)条件:两个三角形中三条边对应相等,结论:两个三角形全等,如果两个三角形有三条边对应相等,那么这两个三角形全等.(2)条件:在同一个三角形中有两个角相等,结论:这两个角所对的边也相等,如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等.(3)条件:两个角是对顶角,结论:两个角相等,如果两个角是对顶角,那么这两个角相等.课堂小结1.定义:对名称和术语的含义加以描述,作出明确的规定.2.命题: 概念:对某一件事情作出正确或不正确判断的句子.结构:如果……那么……分类:真命题、假命题反例布置作业习题7.2第2,3题板书设计第七章平行线的证明2定义与命题第1课时认识定义与命题1.定义2.命题: 概念结构:如果……那么……分类:真命题、假命题反例。
北师大版八年级数学(上)第七章 平行线的证明 第5节 平行线的性质
典型例题
例 1:如图,直线 AB∥CD,直线 EF 与 AB 相交于点 P,与 CD 相交于点 Q,且 PM⊥EF,若∠1=68°, 求∠2 的度数.
解:∵AB∥CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°. ∴∠2+68°=90°,∴∠2=22°.
练习:如图,已知 AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E 的度数.
例 4:如图,已知直线 AB∥DF,∠D+∠B=180° (1)求证:DE∥BC; (2)如果∠AMD=75°,求∠AGC 的度数.
解:(1)证明:∵AB∥DF,∴∠D+∠BHD=180°, ∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC;
(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.
例 2:已知:如图所示,AB∥CD,AE 交 CD 于点 C,DE⊥AE,垂足为 E,∠A+∠1=70°, 求:∠D 的度数.
解:∵AB∥CD,∴∠A=∠1,∵∠A+∠1=70°,∴∠1=∠A=35°, ∴∠ECD=∠1=35°,∵DE⊥AE,∴∠DEC=90°, ∴∠D=180°﹣∠DEC﹣∠ECD=55°.
证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D, ∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.
练习:如图所示,已知直线 DE∥BC,GF⊥AB 于点 F,∠1=∠2,判断 CD 与 AB 的位置 关系.并说明理由.
解:CD⊥AB,理由为:∵DE∥BC,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB, ∴FG∥CD,∵GF⊥AB,∴CD⊥AB.
北师大八年级数学上《第七章平行线的证明》综合测评(含答案)
第七章 平行线的证明综合测评时间90分钟 满分120分班级:_________姓名:__________得分:________一、精心选一选(每小题3分,共24分) 1.下列命题是真命题的是( ) A.若a 2=b 2,则a=bB.若∠1+∠2=90º,则∠1与∠2互余C.若∠α与∠β是同位角,则∠α=∠βD.若a ⊥b ,b ⊥c ,则a ⊥c2.下列命题中,是公理的是( )A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º 3.如图1,下列条件能判定AB ∥CD 的是( )A.∠1+∠2=180ºB.∠3=∠2C.∠2=∠1D.∠1+∠3=180º4.如图2,已知AB ∥CD ,能得到∠1=∠2的依据是( )A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知在△ABC 中,∠A ,∠B 的外角分别是120º,150º,则∠C 等于( ) A.60º B.90º C.120º D.150º6.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( ) A.a=-3 B.a=-1 C.a=1 D.a=37.如图3,已知∠2是△ABC 的一个外角,那么∠2与∠B+∠1的大小关系是( ) A.∠2>∠B+∠1 B.∠2=∠B+∠1 C.∠2<∠B+∠1 D.无法确定8.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( )A.三中B.二中C.一中D.不能确定 二、细心填一填(每小题4分,共32分)9.把命题“直角三角形的两锐角互余”改写成“如果……那么……”的形式是________. 10.如图4所示,添加一个条件______,可使AC ∥DE.图1 3 2DC BA 1 BA1 2 图2 CD E A BCD 21 图311.如图5,已知直线a ∥b ,小杜把直角三角尺的直角顶点放在直线b 上,若∠1=18°,则∠3的度数为____________.12.如图6,点D 为BC 延长线上的一点,∠A=∠ACB ,∠A=2∠B ,则∠ACD 的度数为________.13.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a ,b ,c 满足(a -b)(a+b)+c 2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号). 14.如图7,把一个长方形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠AED '=30º, 则∠CFE=_____________°.15. 如图8,把一块含有30°角(∠A=30°)的直角三角尺ABC 的直角顶点放在长方形桌面CDEF (CD ∥EF )的一个顶点C 处,桌面的另一个顶点F 与三角尺斜边相交于点F ,如果∠1=40°,那么∠AFE=________°.16.小明同学连续观察了太原市2014年8月份某几天的天气情况,他的观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数为_________.三、耐心做一做(共64分) 17.(8分)读句画图:如图9,直线CD 与直线AB 相交于点C ,根据下列语句画图:(1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =120°,猜想∠PQC 是多少度?并说明理由.18.(10分)如图10,已知点B ,D ,G 在同一条直线上,AB ∥CD ,∠1=∠2,请问BE 与DF 平行吗?为什么?图4 图5图6 图7A B CD E F D 'C '图9 1 2 A BCD E F 图10G19.(10分)已知:如图11,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =120°,求∠DAC 的度数.20.(10分)阅读理解:如果三角形满足一个角α是另一个角β的3倍时,那么我们称这个三角形为“智慧三角形”.其中α称为“智慧角”.解答问题:⑵ 一个角为60º的直角三角形______(填“是”或“不是”)“智慧三角形”,若是,“智慧角”是_____.⑵已知一个“智慧三角形”的“智慧角”为108°,求这个“智慧三角形”各个角的度数.21.(12分) 如图12已知四边形ABCD 中,BC ⊥AB ,CF 平分∠DCB ,∠DCF +∠BAE =90°,试判断AE 与CF 的位置关系,并说明理由.22.(14分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图13所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系. 解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图14所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.AB D EC 图13 A B DEC F图11 图12(拟题张华)第七章平行线的证明综合测评(一)一、1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.A二、9.如果一个三角形是直角三角形,那么这个三角形的两锐角互余10.答案不唯一,如∠A=∠BDE11.72º12.108º13. ③14.105 15.1016.10天提示:由题意知,小明同学每天测两次,共测的次数为7+5+8=20.因此他共测了20÷2=10(天).三、17.解:(1)(2)如图所示.(3)∠PQC=60°.理由:因为PQ∥CD,所以∠DCB+∠PQC=180°.因为∠DCB=120°,所以∠PQC=180°-120°=60°.18.解:BE∥DF.理由:因为AB∥CD,所以∠ABG=∠CDG .因为∠1=∠2,所以∠ABG-∠2=∠CDG-∠1,即∠EBG=∠FDG.所以BE∥DF.19.解:因为∠BAC=120°,所以∠2+∠3=60°.①因为∠1=∠2,所以∠4=∠3=∠1+∠2=2∠2.②把②代入①,得3∠2=60°,所以∠2=20°. 所以∠1=∠2=20°.所以∠DAC=∠BAC-∠1=120°-20°=100°.20.解:⑴是90º⑵因为这个“智慧三角形”的“智慧角”为108°,所以另一个角为108º÷3=36º,第三个内角为180º-108º-36º=36º.即这个“智慧三角形”各个角的度数分别为108°,36°,36°.21.调北八13~14学年第一学期20期3版22题答案.。
北师大版八年级数学上册第7章 平行线的证明 平行线的判定
CO
D
∴∠EOD +∠OEB = 180°.
∴ AB∥CD (同旁内角互补,两直线平行).
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
同位角相等, 内错角相等, 两直线平行. 两直线平行.
同旁内角互补, 两直线平行.
1. 对于图中标记的各角,下列条件能够推理得到 a∥b
的是 ( D )
定理证明
如图,∠1 和∠2 是直线 a,b 被直线 c 截出的内错
角,且∠1 =∠2. 求证:a∥b. 证明:∵∠1 =∠2 (已知), ∠1 =∠3 (对顶角相等),
c
a
3
12
b
∴∠2 =∠3 (等量代换).
∴ a∥b (同位角相等,两直线平行).
总结归纳
判定方法2:两条直线被第三条直线所截,如果内
c
a
1
2
又∵∠3 +∠2 = 180° (平角的定义), b 3
∴∠1 =∠3 (同角的补角相等).
∴ a∥b (同位角相等,两直线平行).
总结归纳 判定方法3:两条直线被第三条直线所截,如果同旁 内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
应用格式: ∵∠1 +∠2 = 180° (已知), ∴ a∥b (同旁内角互补,两直线平行).
65
7 8D
F
练一练 根据图形完成填空: ① ∵∠1 =_∠__2__(已知),
CF 13
E
∴ AB∥CE (内错角相等,两直线平行).
② ∵∠1 +__∠__3_= 180°(已知),
∴ CD∥BF (同旁内角互补,两直线平行).
③ ∵∠1 +∠5 = 180°(已知),
北师大版八年级上册数学第七章平行线的证明综合素质评价试题(含答案)
八年级上册数学第七章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.下列选项中,是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗C.延长线段AO到点C,使OC=OAD.两直线平行,内错角相等2.【2022•广东佛山南海区模拟】如图,a∥b,∠1=120°,则∠2等于() A.30°B.90°C.60°D.50°(第2题) (第3题)3.如图,下列条件中,能判定AD∥BC的有()①∠1=∠4;②∠2=∠3;③∠1+∠2=∠3+∠4;④∠A+∠C=180°;⑤∠A+∠ABC=180°;⑥∠A+∠ADC=180°.A.1个B.2个C.3个D.4个4.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.等腰三角形的两底角相等D.三个角都相等的三角形是等边三角形5.某学员在驾校练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°6.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是() A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c7.下列说法正确的是()A.命题一定是定理,但定理不一定是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题8.如图,F是△ABC的角平分线CD和BE的交点,CG⊥AB于点G.若∠ACG=36°,则∠DFE的度数是()A.117°B.108°C.144°D.148°(第8题) (第9题)9.如图,在△ABC中,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于()A.10°B.15°C.20°D.30°10.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°(第10题) (第11题)11.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C =73°,则∠DAE的度数是()A.14°B.24°C.19°D.9°12.如图,AD∥BC,∠D=∠ABC,点E是DC上一点,连接AE并延长,交BC的延长线于点H.点F是AB上一点,且∠FBE=∠FEB,∠FEH的平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°(第12题) (第14题)二、填空题:本大题共6小题,每小题4分,共24分.13.将命题“等角的余角相等”写成“如果…,那么…”的形式为__________________________________________________________________.14.三角板是我们学习数学的好工具,将一副直角三角板按如图所示的方式摆放,点C在FD的延长线上,点B在DE上,AB∥CF,∠EFD=∠A=90°,∠E =30°,∠ABC=45°,则∠CBD=__________°.15.要说明命题“若a<b,c<d,则a-c<b-d”是假命题,可以举反例:a=4,b=5,c=________,d=________.16.如图,在△ABC中,点D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC =66°,则∠DAC的度数是________.(第16题) (第17题) (第18题)17.如图,在△ABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.18.如图,将一张三角形纸片ABC沿DE折叠,使点A落在四边形BCDE外部的点A′处,且点A′与点C在直线AB的异侧,已知∠C=90°,∠A=30°.若△A′DE 的一边与BC平行,则∠ADE的度数是____________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.如图,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M,BC∥EF,求∠BMD的度数.20.如图,已知AB∥CD,E是直线AB上的一点,CE平分∠ACD,CF⊥CE,∠1=32°.(1)求∠ACE的度数;(2)若∠2=58°,求证:CF∥AG.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,把△ABC沿EF折叠,使点A落在点D处.(1)若DE∥AC,试判断∠1与∠2的数量关系,并说明理由;(2)若∠B+∠C=130°,求∠1+∠2的度数.22.如图,在四边形ABCD中,CE⊥AD于点E.若(),(),则().(1)从①CB=CD,②∠D+∠ABC=180°,③AC平分∠DAB中选择两个作为条件,剩下的一个作为结论,构成一个真命题,并说明理由,条件:________,________,结论:________.(2)在(1)的条件下,若AD=8,DE=2,CE=3,求△ABC的面积.五、解答题(三):本大题共2小题,每小题12分,共24分.23.已知直线a∥b,直线c和直线a,b分别相交于A,B两点,直线d和直线a,b分别相交于C,D两点.(1)如图①,当点P在线段AB上(点P不与点A,B重合)运动时,猜测∠1,∠2,∠3之间的数量关系,并说明理由;(2)如图②,当点P在线段AB的延长线上运动时,∠1,∠2,∠3之间的数量关系为________;(3)如图③,当点P在线段BA的延长线上运动时,∠1,∠2,∠3之间的数量关系为________.24.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一盏探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A射出的光束转动的速度是a°/秒,灯B射出的光束转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假设钱塘江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若灯B射出的光束先转动30秒,灯A射出的光束才开始转动,在灯B射出的光束到达BQ之前,灯A射出的光束转动几秒,两灯射出的光束互相平行?(3)两灯射出的光束同时转动,在灯A射出的光束到达AN之前,若与灯B射出的光束交于点C,过点C作CD⊥AC交PQ于点D,则两灯射出的光束在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.答案一、1.D2.C3.B4.B5.D6.C7.B8.A点拨:因为CG⊥AB,∠ACG=36°,所以∠A=90°-∠ACG=54°.所以∠ABC +∠ACB =180°-∠A =126°.因为CD 和BE 是△ABC 的角平分线,所以∠BCD =12∠ACB ,∠CBE =12∠ABC ,所以∠BCD +∠CBE =12(∠ACB +∠ABC )=63°.所以∠BFC =180°-(∠BCD +∠CBE )=117°.又因为∠DFE =∠BFC ,所以∠DFE =117°.9.B 点拨:因为BD ,CD 分别为∠ABC ,∠ACE 的平分线, 所以∠DBC =∠ABD ,∠DCE =∠ACD .因为∠ACE =∠A +∠ABC ,所以∠DCE +∠ACD =∠DBC +∠ABD +∠A .所以2∠DCE =2∠DBC +∠A .因为∠DCE =∠DBC +∠D ,所以2∠DBC +2∠D =2∠DBC +∠A .所以∠D =12∠A =12×30°=15°. 10.B 点拨:如图,连接AC 并延长,交EF 于点M .因为AB ∥CF ,所以∠3=∠1.因为AD ∥CE ,所以∠2=∠4. 所以∠BAD =∠3+∠4=∠1+∠2=∠FCE .因为∠FCE =180°-∠E -∠F =180°-80°-50°=50°.所以∠BAD =50°.故选B .11.A点拨:因为∠B=45°,∠C=73°,所以∠BAC=180°-∠B-∠C=62°.因为AE平分∠BAC,所以∠CAE=12∠BAC=31°.因为AD是BC边上的高,所以∠ADC=90°,所以∠CAD=180°-∠ADC-∠C=17°,所以∠DAE=∠CAE-∠CAD=31°-17°=14°.12.B点拨:设∠FBE=∠FEB=α,则∠AFE=∠FBE+∠FEB=2α.因为EG平分∠FEH,所以∠GEH=∠GEF.设∠GEH=∠GEF=β,则∠AEF=180°-∠GEF-∠GEH=180°-2β.因为AD∥BC,所以∠ABC+∠BAD=180°.又因为∠D=∠ABC,所以∠D+∠BAD=180°,所以AB∥CD,所以∠CEH=∠F AE.因为∠DEH=100°,所以∠CEH=180°-∠DEH=80°.所以∠F AE=80°.因为∠F AE+∠AFE+∠AEF=180°,所以80°+2α+180°-2β=180°,所以β-α=40°,所以∠BEG=∠GEF-∠FEB=β-α=40°.二、13.如果两个角相等,那么它们的余角相等14.1515.2;3(答案不唯一)16.28°17.25点拨:因为EF∥BC,所以∠EGB=∠CBG.因为BD平分∠ABC,所以∠EBG=∠CBG,所以∠EBG=∠EGB.因为∠BEG=130°,所以∠EGB=180°-130°2=25°,所以∠DGF=∠EGB=25°.18.45°或30°点拨:当A′D∥BC时,∠A′DA=∠C=90°.由折叠的性质得∠ADE=∠A′DE,所以∠ADE=12∠A′DA=45°;当A′E∥BC时,∠A′EF=∠ABC.因为∠C=90°,∠A=30°,所以∠A′EF=∠ABC=180°-∠C-∠A=60°. 所以∠A′EA=180°-∠A′EF=120°.由折叠的性质得∠A′ED=∠AED,所以∠AED=12(360°-∠A′EA)=120°.所以∠ADE=180°-∠A-∠AED=30°.综上所述,∠ADE的度数为45°或30°.三、19.解:因为∠BAC=90°,∠C=30°,所以∠B=180°-∠BAC-∠C=60°.因为∠EDF=90°,∠E=45°,所以∠F=180°-∠EDF-∠E=45°.因为BC∥EF,所以∠MDB=∠F=45°,所以∠BMD=180°-∠B-∠MDB=75°. 20.(1)解:因为AB∥CD,所以∠DCE=∠1=32°.因为CE平分∠ACD,所以∠ACE=∠DCE=32°.(2)证明:因为CF⊥CE,所以∠FCE=90°.又因为∠ACE=32°,所以∠FCH=∠FCE-∠ACE=58°.因为∠2=58°,所以∠FCH=∠2,所以CF∥AG.四、21.解:(1)∠1=∠2,理由如下:因为∠D是由∠A翻折得到的,所以∠D=∠A.因为DE∥AC,所以∠1=∠A,∠2=∠D,所以∠1=∠2.(2)因为∠A+∠B+∠C=180°,∠A+∠AEF+∠AFE=180°,所以∠AEF+∠AFE=∠B+∠C=130°.因为△DEF是由△AEF翻折得到的,所以∠AEF=∠DEF,∠AFE=∠DFE,所以∠AED=2∠AEF,∠AFD=2∠AFE,所以∠AED+∠AFD=2(∠AEF+∠AFE)=260°.因为∠1+∠AED+∠2+∠AFD=360°,所以∠1+∠2=100°.22.解:(1)②;③;①理由:如图,在AD上取一点T,使得AT=AB,连接TC.因为AC平分∠DAB,所以∠TAC=∠CAB.在△TAC 和△BAC 中,⎩⎨⎧AT =AB ,∠CAT =∠CAB ,AC =AC ,所以△TAC ≌△BAC ,所以CB =CT ,∠ABC =∠ATC .因为∠ABC +∠D =180°,∠ATC +∠CTD =180°,所以∠D =∠CTD ,易得CT =CD ,所以CB =CD .(答案不唯一)(2)由(1)可知,CT =CD ,因为CE ⊥DT ,所以DE =TE .因为△TAC ≌△BAC ,所以AB =AT =AD -2DE =8-4=4,所以S △ABC =S △ACT =12AT •CE =12×4×3=6.五、23.解:(1)∠3=∠1+∠2,理由如下:过点P 作PE ∥a 交CD 于点E ,如图.因为PE ∥a ,a ∥b ,所以PE ∥a ∥b ,所以∠1=∠CPE,∠2=∠DPE.因为∠3=∠CPE+∠DPE,所以∠3=∠1+∠2.(2)∠1=∠2+∠3(3)∠3=∠2-∠124.解:(1)因为|a-3b|+(a+b-4)2=0,|a-3b|≥0,(a+b-4)2≥0,所以a=3b,a+b=4,所以a=3,b=1.(2)设灯A射出的光束转动t秒,两灯射出的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t-3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t-180×2=(30+t)×1,解得t=195(不合题意,舍去).综上所述,灯A射出的光束转动15秒或82.5秒,两灯射出的光束互相平行.(3)不发生变化.设灯A射出的光束转动时间为x秒,因为∠CAN=180°-3°•x,所以∠BAC=45°-(180°-3°•x)=3°•x-135°.又因为PQ∥MN,所以易得∠BCA=∠CBD+∠CAN=1°•x+180°-3°•x=180°-2°•x.因为∠ACD=90°,所以∠BCD=90°-∠BCA=90°-(180°-2°•x)=2°•x-90°,2所以∠BCD=3∠BAC.。
北师大版八年级数学上册平行线的证明知识点归纳
北师大版八年级数学上册《平行线的证明》知识点归纳北师大版八年级数学上册《平行线的证明》知识点归纳第七章平行线的证明1、为什么要证明?实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有理有据的证明。
2、定义与命题(1)定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。
(2)命题:判断一件事情的句子,叫做命题。
一般地,每个命题都由条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出的事项。
命题可以写成“如果......那么......”的形式,其中如果引出的部分是条件,那么引出的部分是结论。
(3)真命题:正确的命题称为真命题。
(4)假命题:不正确的命题称为假命题。
要说明一低点命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例,3、公理、定理公理:公认的真命题称为公理。
证明:演绎推理的过程称为证明。
定理:经过证明的真命题称为定理。
4、本书认定的真命题:(1)、两点确定一条直线。
(2)、两点之间的距离最短。
(3)、同一平面内,过一点有且只有一条直线与已知直线垂直。
(4)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(5)、过直线外一点有且只有一条直线�_ 这条直线平行。
(6)、两边及其夹角分别相等的两个三角形全等。
(7)、两角及其夹边分别相等的两个三角形全等。
(8)、三边分别相等的两个三角形全等。
(9)、数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据。
(10、)同角(等角)的补角相等。
同角(等角)的余角相等。
(11)、三角形的任意两边之和大于第三边。
(12)、对顶角相等。
5、平行线的判定;两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(内错角相等,两直线平行)。
两条直线被第三条直线所载,如果同旁内角互补,那么这两条直线平行。
八年级数学上册第七章平行线的证明本章归纳总结教案北师大版
第七章平行线的证明本章归纳总结【知识与技能】掌握本章的重要概念,能熟练灵活地运用有关定理解决实际问题。
【过程与方法】通过整理本章知识点,经历严格的推理证明过程,培养学生逻辑思维能力.【情感态度】借助生活实际和思考探究、合作交流等形式,培养学生积极探索、多动手、多动脑的良好学习习惯.【教学重点】回顾本章知识点,构建知识结构。
【教学难点】利用本章有关定理解决实际问题。
一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示知识结构图,让学生系统地了解本章知识及它们之间的相互联系。
教学时,边回顾边引导学生画结构图。
二、释疑解惑,加深理解1。
平行线的性质和判定在运用的时候要注意:(1)判定是不知道两直线平行,是根据某些条件来判断两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.2。
三角形内角和定理及推论三角形内角和定理是有关角的问题中最常用的定理,是解决问题的基本手段.同时三角形的外角性质是证明角相等及不等问题的重要依据,必要时,可以通过添加辅助线来构造内、外角的位置关系,从而确立数量关系。
三、典例精析,复习新知例1在下列给出的条件中,不能判定AB∥DF的是()A。
∠A+∠2=180°B。
∠A=∠3 C.∠1=∠4 D.∠1=∠A【分析】判定的是AB与DF平行,则把这两条直线看做被截的两直线,去找成同位角、内错角和同旁内角关系的两角,其中D选项∠1和∠A是AC、DE被截形成的同位角,由∠1=∠A 得到的应是AC∥DE,故选D。
例2把下列命题改写成:“如果……那么"的形式,并分别指出它们的条件和结论.(1)整数一定是有理数;(2)同角的外角相等.(3)两个锐角互余.【分析】本题考查命题的概念、叙述简单的命题。
要善于分辨条件与结论,这是改写成“如果……那么……"的形式的基础.解:(1)如果一个数是整数,那么它一定是有理数.条件:一个数是整数;结论:它一定是有理数.(2)如果两个角是同一个角的外角,那么这两个角相等。
北师大版八年级数学上册第七章 平行线的证明综合测评(Word版 含答案)
第七章平行线的证明综合测评(本试卷满分100分)一、选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点2.下列命题:①等腰三角形同一边上的角平分线、中线和高重合;②周长相等的两个钝角三角形都等;③等腰三角形的底边一定比腰长;④直角都相等.其中是真命题的有()A.1个B.2个C.3个D.4个3.如图1,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的度数是()A.25°B.35°C.50°D.65°图1 图2 图3 图4 4.如图2,在△ABC中,点D在AC上,延长BC至点E,连接DE,则下列结论不成立的是()A.∠DCE>∠ADB B.∠ADB>∠DBC C.∠ADB>∠ACB D.∠ADB>∠DEC5.如图3,已知直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°6.如图4,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°7.已知直线l1∥l2,一块含30°角的直角三角尺如图5所示放置,∠1=25°,则∠2的度数为()A.30°B.35°C.40°D.45°图5 图6 图7 图8 8.如图6,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2的度数为()A.150°B.210°C.105°D.75°9.(2019年青岛)如图7,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°10.如图8,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下列说法:①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④∠HBC=∠HCB.其中正确的是()A.①②③④B.仅①②③C.仅②④D.仅①③二、填空题(本大题共8个小题,每小题3分,共24分)11.命题“如果两条平行线被第三条直线所截,那么同位角相等”的条件是,结论是.12.如图9,点D,A,E在一条直线上,要使DE∥BC,则x=.图9 图10 图11 图1213.如图10,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是.14.如图11,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=.15.如图12,下列说法:①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.其中正确的有.(填序号)16.如图13,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A的度数为.三、解答题(共52分)17.(6分)先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)绝对值相等的两个数互为相反数;(2)一个角的补角一定是钝角.18.(6分)请把下列证明过程补充完整(括号内填写相应的理由)已知:如图14,点E在BC的延长线上,AE交CD于点F,AD∥BC,∠1=∠2,且∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠CAD=∠1().∵∠1=∠2(已知),∴∠2= (等量代换).∵∠3=∠4(已知),∴∠3+∠CAF=∠4+∠CAF(等式的性质),即=∠CAD.∴∠2= (等量代换)∴AB∥CD().19.(8分)如图15,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.图13图14图1520.(10分)如图16,在△ABC中,∠BAC=90°,∠ABC=∠ACB,∠D=∠BCD,∠1=∠2,求∠D 的度数.图1621.(10分)如图17,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.图1722.(12分)(1)如图18-①,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG;(2)如图18-②,已知AB∥CD,∠AEF与∠CFE的平分线交于点G.猜想∠G的度数,并证明你的猜想;(3)如图18-③,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度数.图18附加题(20分,不计入总分)23.(1)探究与发现:如图19-①所示的图形,像我们常见的学习用品——圆规.我们不妨把这种图形叫做“规形图”,那么在这个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:观察“规形图”,试探究∠BPC与∠A,∠B,∠C之间的关系,并说明理由;(2)迁移运用:请你直接利用以上结论,解决以下问题:①如图19-②,已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为.②如图19-③,在△ABC中,∠A=80°,点O是∠ABC,∠ACB平分线的交点,点P是∠BOC,∠OCB 平分线的交点,若∠OPC=100°,则∠ACB的度数为.③如图19-④,若点D是△ABC内任意一点,BP平分∠ABD,CP平分∠ACD.写出∠BDC,∠BPC,∠A之间的等量关系,并说明理由.图19第七章平行线的证明综合测评一、1.C 2.A 3.A 4.A 5.C 6.C 7.B 8.A 9.C10.B提示:根据等底等高的三角形的面积相等可判断①正确;由∠ABD+∠BAD=90°,∠BAD+∠CAD=90°,可得∠ABD=∠CAD,由∠AFG=∠ABD+∠BCF,∠AGF=∠CAD+∠ACG,∠BCF=∠ACG,得∠AFG=∠AGF,即②正确;由∠FAG+∠ABD=90°,∠ACD+∠CAD=90°,∠ABD=∠CAD,得∠FAG=∠ACD.又∠ACD=2∠ACF,所以∠FAG=2∠ACF,即③正确;根据条件无法判断出④正确.二、11.两条平行线被第三条直线所截同位角相等12.64°13.50°14.120 15. ①③④16.10三、17.解:(1)条件是如果两个数的绝对值相等,那么这两个数互为相反数.是假命题;反例:如2与2的绝对值相等,但2与2相等,不是互为相反数.(2)如果一个角是另一个角的补角,那么这个角一定是钝角.是假命题;反例:设∠1=60°,∠2=120°,∠1是∠2的补角,但∠1不是钝角.18.两直线平行,内错角相等∠CAD ∠BAE ∠BAE 同位角相等,两直线平行19.解:因为∠1=∠3+∠C,∠1=100°,∠C=80°,所以∠3=20°.因为∠2=12∠3,所以∠2=10°.所以∠ABC=180°-100°-10°=70°.因为BE平分∠ABC,所以∠ABE=35°.因为∠4=∠2+∠ABE,所以∠4=45°.20.解:因为∠BAC=90°,∠ABC=∠ACB,所以∠ACB=45°.因为∠D=∠BCD,∠BCD=∠ACB+∠2,所以∠D=∠BCD=45°+∠2.因为∠1=∠2,所以∠D=45°+∠1.因为∠D+∠BCD+∠1=180°,所以2(45°+∠1)+∠1=180°,解得∠1=30°. 所以∠D=45°+30°=75°.21.证明:因为∠1+∠4=180°(补角的定义),∠1+∠2=180°(已知),所以∠2=∠4(同角的补角相等).所以EF∥AB(内错角相等,两直线平行).所以∠3=∠ADE(两直线平行,内错角相等).又因为∠B=∠3(已知),所以∠ADE=∠B(等量代换).所以DE∥BC(同位角相等,两直线平行)所以∠AED=∠C(两直线平行,同位角相等).22.(1)证明:如图1,过点G作GH∥AB.所以∠EGH=∠AEG.因为AB∥CD,所以GH∥CD.所以∠FGH=∠CFG.所以∠EGH+∠FGH=∠AEG+∠CFG,即∠EGF=∠AEG+∠CFG;(2)解:猜想:∠G=90°.证明:由(1)中的结论得∠G=∠AEG+∠CFG.因为EG,FG分别平分∠AEF和∠CFE,所以∠AEF=2∠AEG,∠CFE=2∠CFG.因为AB∥CD,所以∠AEF+∠CFE=180°.所以2∠AEG+2∠CFG=180°.所以∠AEG+∠CFG=90°.所以∠G=90°.(3)解:因为EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,所以∠AEG=∠GEH=∠HEF=13∠AEF,∠CFH=∠HFG=∠EFG=13∠CFE.由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH.所以∠G=13∠AEF+23∠CFE=95°.因为AB∥CD,所以∠AEF+∠CFE=180°.所以13(∠AEF+∠CFE)+13∠CFE=95°.所以∠CFE=105°.所以∠AEF=75°.所以∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.24.解:(1)∠BPC=∠BAC+∠B+∠C.理由:如图2,连接AP并延长至点F.根据三角形内角和定理的推论,得∠BPF=∠BAP+∠B,∠CPF=∠C+∠CAP.又因为∠BPC=∠BPF+∠CPF,∠BAC=∠BAP+∠CAP,所以∠BPC=∠BAC+∠B+∠C.(2)①∠BPC=90°+12∠A.提示:因为BP平分∠ABC,CP平分∠ACB,所以∠PBC=12∠ABC,∠PCB=12∠ACB.所以∠BPC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.②60°提示:设∠BCP=∠PCO=x,∠BOP=∠COP=y.因为∠P=100°,所以x+y=80°.所以2x+2y=160°.所以∠OBC=180°-160°=20°.因为BO平分∠ABC,所以∠ABC=40°.因为∠A=80°,所以∠ACB=180°-40°-80°=60°.③2∠BPC=∠BDC+∠A.理由:由(1)的结论可知∠BDC=∠A+∠ABD+∠ACD①,∠BPC=∠A+∠ABP+∠ACP.因为BP平分∠ABD,CP平分∠ACD,所以∠ABP=12∠ABD,∠ACP=12∠ACD.所以∠BPC=∠A+12∠ABD+12∠ACD②.②×2,得2∠BPC=2∠A+∠ABD+∠ACD.③③-①,得2∠BPC-∠BDC=∠A,即2∠BPC=∠BDC+∠A.。
八年级数学上册 第七章 平行线的证明 1 为什么要证明 如何通过推理的方法证明结论?素材 北师大版(
八年级数学上册第七章平行线的证明1 为什么要证明如何通过推理的方法证明结论?素材(新版)北师大版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第七章平行线的证明1 为什么要证明如何通过推理的方法证明结论?素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第七章平行线的证明 1 为什么要证明如何通过推理的方法证明结论?素材(新版)北师大版的全部内容。
如何通过推理的方法证明结论?
【问题】二、如何通过推理的方法证明结论?
难易度:★★★★★
关键词:推理证明
答案:
运用以学习过定理定义进行证明,得出结论。
【举一反三】
典题:当n为任意整数时,(n+1)2-(n—1)2的值一定是4的倍数。
思路导引:根据分解因式的知识,将式子化为几个因式积的形式,再看因式中是否有“4”,得出结论.
标准答案:解:(n+1)2-(n—1)2=(n+1+n—1)(n+1-n+1)=2n×2=4n,
所以当n为任意整数时,(n+1)2-(n—1)2的值一定是4的倍数。
北师大版八年级数学上第七章 平行线的证明
初中数学试卷
第七章 平行线的证明
7.1 为什么要证明
一、选择题
1.通过观察你能肯定的是( )
A .图形中线段是否相等
B .图形中线段是否平行
C .图形中线段是否相交
D .图形中线段是否垂直
2.下列问题你不能肯定的是( )
A .一支铅笔和一瓶矿泉水的体积大小问题
B .三角形与矩形的面积关系
C .三角形的内角和
D .n 边形的外角和
3.下列说法中正确的是( )
A .经验、观察或实验完全可以判断一个数学结论的正确与否
B .推理是科学家的事,与我们没有多大的关系
C .对于自然数n ,372
++n n 一定是质数 D .有10个苹果,将它们放入9个筐中, 则至少有一个筐中的苹果树不少于2个
二、解答题
4.先观察再验证:(如图)
(1)图(1)中黑色的边是直的还是弯曲的?
(2)图(2)中两条线a与b哪一条更长?
(3)图(3)中的直线AB与直线CD平行吗?
5.判断下列说法是否正确,并说明理由.
(1)小红的数学成绩一向很好,因而后天的竞赛考试中她必然能获一等奖.
(2)因为阴天,所以今天一定会下雨.
(3)小李买“天天彩”中了奖.大家纷纷劝说小李最近千万不要再买了,因为“天天彩”的中奖率是千分之一,他已经中了一次,最近是不可能中奖的.
第七章平行线的证明7.1 为什么要证明
1.C 2.B 3.D
4.(1)图(1)中黑色的边是直的
(2)图(2)中两条线a与b一样长
(3)图(3)中的直线AB与直线CD平行
5.(1)错误,理由略(2)错误,理由略(3)错误,理由略。
北师大版初中数学八年级(上)第七章平行线的证明7-1为什么要证明 教学详案
第七章平行线的证明1为什么要证明教学目标1.了解推理的意义,知道要判断一个数学结论是否正确,必须进行推理;2.会用实验验证、举出反例、推理等方法简单地验证一个数学结论是否正确.教学重难点重点:了解推理的意义,知道要判断一个数学结论是否正确,必须进行推理.难点:会用实验验证、举出反例、推理等方法简单地验证一个数学结论是否正确.教学过程导入新课1.图中的四边形是正方形吗?2.左图中间的圆圈大还是右图中间的圆圈大?(1题) (2题)3.线段AB和CD长度完全相等,虽然它们看起来相差很大!人的视觉有时候受到周围环境和自身经验的影响,会引导我们做出错误的判断.只有通过科学的方法推理论证,做出的判断才是正确的.你能肯定你的答案吗?怎样来验证你的结论呢?快来学习本节知识吧!探究新知活动一:试试你的感知——直观感觉1.如图中两条线段a与b的长度相等吗?(1题) (2题)2.如图中三条线段a 、b 、c ,哪一条线段与线段d 在同一直线上?即:1.通过测量得 a 与b 的长度相等.2. 通过三角尺或直尺得线段b 与线段d 在同一直线上.判断一个数学结论是否正确,仅观察、猜想、实验还不够,必须经过一步一步有根有据的推理.活动二:体会猜想得到的结论不一定可靠,需要细致计算、推理论证.在地球仪上,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大?(地球看成球形)能放进一个红枣吗?能放进一个拳头吗?【解】设赤道周长为c ,铁丝与地球赤道之间的间隙为110.16()2π2π2πc c +-=≈米, 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.通过以上两个活动让学生经历“观察→猜想→验证→归纳”的探究过程,体会猜想得到的结论不一定可靠,需要细致计算、推理论证.观察和猜想得到的结论不一定可靠,那么归纳得到的结论可靠吗?活动三:22结论:对于所有自然数n ,代数式n 2-n +11的值不一定都是质数.拓展延伸:费马的失误(课本P163的读一读)这个故事告诉我们:1.大数学家也有失误,学习欧拉的求实精神与严谨的科学态度.2.没有严格的推理,仅由若干特例归纳、猜测的结论可能潜藏着错误,未必正确.3.要证明一个结论是错误的,举反例就是一种常用方法.例1 当n 为正整数时,代数式(n 2-5n +5)2的值都等于1吗?【解】当n =1时,(n 2-5n +5)2=12=1;当n =2时,(n 2-5n +5)2=(-1)2=1;当n =3时,(n 2-5n +5)2=(-1)2=1;当n =4时,(n 2-5n +5)2=12=1;当n =5时,(n 2-5n +5)2=52=25≠1.所以当n 为正整数时,(n 2-5n +5)2不一定等于1.验证特例是判断一个结论错误的最好方法.例2 如图,从点O 出发作出四条射线OA ,OB ,OC ,OD ,已知OA ⊥OC ,OB ⊥OD .(1)若∠BOC=30°,求∠AOB和∠COD的度数;(2)若∠BOC=54°,求∠AOB和∠COD的度数;(3)由(1)(2)你发现了什么?(4)你能肯定上述的发现吗?【解】(1)∵OA⊥OC,OB⊥OD,∴ ∠AOC=∠BOD=90°.∵ ∠BOC=30°,∴ ∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)(2)可发现,∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴ ∠AOB+∠BOC=∠BOC+∠COD.∴ ∠AOB=∠COD.检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.课堂练习1.小明和小华在手工制作课上用铁丝制作楼梯模型,如图,那么他们两个人用的铁丝()A.小华用的多B.小明用的多C.两人用的一样多D.不能确定谁用的多2.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是()A.甲B.乙C.丙D.丁3.下列说法中,①锐角都相等;②大于90°且小于平角的角是钝角;③互为相反数的两数和为0;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中正确的有()A.①②B.②③C.③④D.②④4.八年级(1)班的四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人只猜对一半,那么甲、乙、丙、丁的名次顺序为()A.甲、乙、丙、丁B.甲、丙、乙、丁C.甲、丁、乙、丙D.甲、丙、丁、乙5.有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且:(1)红箱子盖上写着:“苹果在这个箱子里”;(2)黄箱子盖上写着:“苹果不在这个箱子里”;(3)蓝箱子盖上写着:“苹果不在红箱子里”.已知(1)(2)(3)中只有一句是真的,苹果在哪个箱子里?参考答案1.C2.C3.B4.B5.解:我们发现(1)与(3)互相矛盾,可两件矛盾的事不能都是真的,必有一假;题设真话只有一句.这样(2)必是假话,从而苹果在黄箱子里.课堂小结(学生总结,老师点评)1.推理的意义2.检验数学结论的常用方法布置作业习题7.1第2,3题板书设计第七章 平行线的证明1 为什么要证明⎩⎪⎨⎪⎧推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法⎩⎪⎨⎪⎧实验验证举出反例推理证明。
甘肃省靖远县北湾乡北湾初级中学八年级数学上册7.3为什么它们平行导学案(无答案)(新版)北师大版
为什么它们平行学习目标:证明平行线的其他两个判定使学生在证明过程中积极投入,全力以赴,享受合作的快乐。
重点:使学生会证明平行难点:会书写证明过程预习指导:1先精读一遍教材P172-P173用红笔进行勾画知识点。
在学案上独立完成课本两个例题。
2找出自己疑惑和需要讨论的问题,随时记录在预习案上,以便上课讨论:学习环节:一。
自学导航证明定理:内错角相等,两直线平行证明定理:同旁内角相等,两直线平行二.合作探究证明:如果两条直线都和第三条直线垂直,那么这两条直线平行总结证明命题的步骤三.学以致用1、下列说法错误的是()A、同位角不一定相等B、内错角都相等C、同旁内角可能相等D、同旁内角互补则两直线平行2、在同一平面内,直线l与两条平行线a,b的位置关系是()A. l一定与a,b都平行B. l可能与a平行,与b相交C. l一定与a,b都相交D. l与a,b都平行或都相交3、四边形ABCD中,若∠B+∠C=180º,则AB与CD的关系是()A.相交B.平行C.垂直D.垂合4、同一平面内,下列说法:①过两点有且只有一条直线;②两直线不平行,则一定相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且仅有一条直线与已知直线平行,其中正确的个数是()A.1个B.2个C.3个D.4个5、如图,下列条件能证明A D∥BC的是()A. ∠A=∠CB. ∠B=∠DC. ∠B=∠CD. ∠A+∠B=180º6、如图,直线AB,CD与EF相交于G,H,下列条件:①∠1=∠2;②∠3=∠6;③∠2=∠8;④∠5+∠8=180º,其中能判定AB∥CD的是()A. ①③B. ①②④C. ①③④D. ②③④7、(1)∵∠1=∠A(已知)∴∥,();(2)∵∠3=∠4(已知),∴∥,();(3)∵∠2=∠5(已知),∴∥,();(4)∵∠ADC+∠C=180(已知)∴∥,().8、如图,(1)∵∠ABD=∠BDC(已知),∴∥,();(2)∵∠DBC=∠ADB(已知),∴∥,();(3)∵∠CBE=∠DCB(已知),∴∥,();(4)∵∠CBE=∠A,(已知),∴∥,();(5)∵∠A+∠ADC=180º(已知),∴∥,();(6)∵∠A+∠ABC=180º(已知),∴∥,(). 四.反思回顾五.当堂检测1.如图,∠1=∠2,AC平分∠DAB,求证DC∥AB.。
甘肃省靖远县北湾乡北湾初级中学八年级数学上册 第七
平行线的证明2.了解定义、命题、公理和定理的含义.3.平行线的性质定理和判定定理.4.三角形的内角和定理及推论.5.使学生在证明过程中积极投入,全力以赴,享受合作的快乐。
重点:1.平行线的性质定理和判定定理的应用.2.三角形内角和定理及其推论的应用.3.证明的步骤及书写格式.难点:证明过程的书写.一.梳理本章的知识结构图.(举例说明)本章重点:证明一个命题是真命题的基本步骤是:(1)根据题意,(2)根据条件、结论,结合图形,(3)经过分析,找出由已知推出求证的途径,专题研究:1.下列语句中,是命题的为( ).A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗判断的依据是 .2.下列命题中是真命题的为( ).A.两锐角之和为钝角B.两锐角之和为锐角C.钝角大于它的补角D.锐角大于它的余角3.下列四个命题中,真命题有( ).(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个角的余角一定小于这个角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个解题方法:4.“两条直线相交,有且只有一个交点”的题设是( ).A.两条直线B.交点C.两条直线相交D.只有一个交点5.“同角的余角相等”的题设是__________,结论是__________。
解题方法:。
6.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为( ).A.45°,45°,90° B.30°,60°,90°C.25°,25°,130° D.36°,72°,72°应用的知识点有:。
7.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是( ).A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定应用的知识点是:8.补充理由:如图所示,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗?解:E F∥GH,理由如下Θ∠1+∠2=180°()∴AB∥_______()又Θ∠1=∠3()∴∠2+∠________=180°()∴E F∥GH()9.如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC.解题技巧:要求两直线平行,需找。
八年级数学上册 第七章《平行线的证明》单元测试(扫描版)(新版)北师大版
平行线的证明第七章 平行线的证明一、选择题:1. A2. B3. A4. C5. D6.A7. B 8. C 9. D 10 . B 11.A 12.B二、填空题:13. 如果正比例函数 y =kx 中,k >0,那么正比例函数的图象经过一、三象限. 14. 2115.140° 16.100°三、解答题:17. 两直线平行,同位角相等;MFQ ;FQ ;同位角相等,两直线平行.18.解:∵AC∥BD, ∴∠ABE=∠1=64°.∴∠BAC=180°﹣∠1=180°﹣64°=116°.∵AE 平分∠BAC, ∴∠BAE=∠BAC=58°.∴∠2=∠BAE+∠ABE=58°+64°=122°.19. 证明:∵BF 、DE 分别是∠ABC ,∠ADC 的角平分线,∴∠CDE=∠ADC ,∠2=∠ABC ,∵∠ABC =∠ADC ,∴∠CDE =∠2,∵∠1=∠2,∴∠1=∠CDE ,∴DC ∥AB .20. (1)证明:∵BO、CO 分别是∠ABC 和∠ACB 的平分线∴∠ABO =∠CBO, ∠ACO =∠BCO∵EF ∥BC ∴∠EOB =∠CBO, ∠FOC =∠BCO∴∠ABO=∠EOB, ∠ACO=∠FOC ∴OE=BE,OF=CF∵EF=OE+OF ∴EF=BE+CF(2)解:∵∠ABC=52°,∠ACB=60°,BO 、CO 分别是∠ABC 和∠ACB 的平分线, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(52°+60°)=56°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣56°=124°.21.解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(30°+62°)=180°﹣92°=88°,∵CE 平分∠ACB,∴∠ECB=∠ACB=44°,∵CD⊥AB 于D ,∴∠CDB=90°,∴∠BCD=90°﹣∠B=90°﹣62°=28°,∴∠ECD=∠ECB ﹣∠BCD=44°﹣28°=16°,∵DF⊥CE 于F ,∴∠CFD=90°,∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.22.证明:(1)∵AE ⊥CE , ∴∠AEC =90°, ∴∠2+∠3=90°且∠1+∠4=90°.又∵EC 平分∠DEF , ∴∠3=∠4, ∴∠1=∠2, ∴EA 平分∠BEF .(2)∵AE⊥CE,∴∠AEC=90°,∴∠1+∠4=90°.∵∠1=∠A,∠4=∠C,∴∠B+∠D=180°-2∠1+180°-2∠4=360°-2(∠1+∠4)=180°,∴AB∥CD.23.解:(1)∠F=(∠B+∠D);理由如下:∵∠DHF是△DEH的外角,∠EHC是△FCH的外角,∠DHF=∠EHC,∴∠D+∠1=∠3+∠F①同理,∠2+∠F=∠B+∠4 ②又∵∠DEA,∠BCA的平分线EF、CF相交于F,∴∠1=∠2,∠3=∠4;∴①﹣②得:∠B+∠D=2∠F,即∠F=(∠B+∠D).(2)∵∠B:∠D:∠F=2:4:x,∴设∠B=2α,则∠D=4α,∴∠F=(∠B+∠D)=3α,又∠B:∠D:∠F=2:4:x,∴x=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明
一、填空题
1.命题“任意两个直角都相等”的条件是________, 结论是___________,
它是________(真或假)命题.
2.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.
二、选择题
1.下列语言是命题的是( )
A.画两条相等的线段
B.等于同一个角的两个角相等吗?
C.延长线段AO 到C ,使OC =OA
D.两直线平行,内错角相等.
2.下列语句错误的是( )
A.同角的补角相等
B.同位角相等
C.同垂直于一条直线的两直线平行
D.两条直线相交只有一个交点
三、解答题
1.如图AD 、BE 、CF 为△ABC 的三条角平分线,求∠1+∠2+∠3的度数
2.已知,如图AB ∥CD ,BC ∥DE ,求∠B +∠D 的度数
3.已知,如图AB ∥CD ,若∠ABE =130°,∠CDE =152°, 求∠BED 的度数
4.如图6-80,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于( )
5.已知,如图6-81,AE ∥BD ,∠1=3∠2,∠2=26°,求21
∠C.
2
四、证明题
图1 图2
1.已知,如图6-82,AD ⊥BC ,EF ⊥BC ,∠4=∠C.
求证:∠1=∠2.
2.已知,如图6-83,△ABC 中,∠C >∠B ,AD ⊥BC 于D ,AE 平分∠BA C.
求证:∠DAE =21
(∠C -∠B ).
3.举例说明“两个锐角的和是锐角”是假命题.。