第15讲 长方体和正方体3
五年级奥数分册第15周 长方体和正方体(三)【最佳】
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
[笔记]人教版五年级下册数学第三单元《长方体和正方体的认识》知识点
第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。
可分为三组,每一组有4条棱。
还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。
每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。
正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。
每条棱的长度都相等。
正方体的长、宽、高都相等,统称棱长。
2.长方体和正方体的关系:正方体是一种特殊的长方体。
3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。
(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
五年年级下册数学课件-长方体和正方体人教版
宽,4条高组成的,(棱长之和﹣长×4﹣宽×4)÷4,即可求出 高是多少。 (52﹣6×4﹣4×4)÷4 =(52﹣24﹣16)÷4 =12÷4 =3(厘米); (4)9÷2=4(个)…1(分米) 8÷2=4(个) 7÷2=3(个)…1(分米) 4×4×3=48(个) (5)长方体的体积是长×宽×高,所以3×3×3=27,选C。
2021/9/6
旗杆高15 米 ,一个教室大约占地80 平方米,
油箱容积16 升,一本数学书的体积约是200 平方厘米,冰箱的
容积大约是220升,一个土豆的体积约是800 立方厘米。
(2)把18立方分米化成立方米数,用18除以进率1000,化成
立方厘米数,用18乘进率1000;把4.5升化成立方分米数,数
例2.填空。 (1)在横线里填上适当的单位名称。
旗杆高15()
一个教室大约占地80()
油箱容积16()
一本数学书的体积约是200()
冰箱的容积大约是220()一个土豆的体 积约是800()
(2) m3=18dm3= cm3
4.5L= dm3= m3
28m2= dm2
0.2m= cm
2021/9/6
1.选择题。 (1)下面的图形中,能按虚线折成正方体的是(
)。
A.
B.
C.
D.
(2)把3个棱长都是2分米的正方体拼成一个长方体,长方体
的表面积比原来3个小正方体的表面积和减少了( )平方
分米。
A.16 B.24
C.12
D.8
(3)用一根52厘米长的铅丝, 正好可以焊成长6厘米,宽4厘
米,高( )厘米的长方体教具。
长方体和正方体的认识
1.长方体有多少个顶点?
长方体与正方体(三) 第六周
长方体与正方体(三)课堂练习1.一个正方体棱长为10分米,如果把这个正方体切割成棱长是2.5分米的小正方体,可以切成多少个?如果将这些小正方体排成一行,有多长?2.一个集装箱,它的内尺寸是18 X 18 X18,现在有一批货箱,它的外尺寸是 1X4X9.这只集装箱能装多少只货箱?3.如图所示,从一个棱长为10厘米的正方体木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?4.如图所示,有一个棱长为12厘米的正方体木块,从它的上面、前面、左面中心分别凿穿一个边长为4厘米的正方形孔.那么,穿孔后木块的体积是多少立方厘米?5.在一个长15分米、宽12分米的长方体水箱中,有10分米深的水.如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?6.如图所示,一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深0. 5米.如图②,现在把铁块向上提起24厘米后,那么,露出水面的铁块上被水浸湿的部分长多少厘米7.燕燕买了 6盒外语听力磁带,准备送给班里的贫困生,这种磁带从外面量长12厘米、宽7厘米、高1厘米.如果要求售货员包装一下,最少需要多少包装纸?(贴粘处不计)8.一种长方体体物品长17厘米、宽7厘米、高3厘米,现要把12件这样的物品拼成个大长方体包装物.如何包装能十大长方体的表面积最小,最小是多少?9.如图,一个正方体的8个顶点被截去后,得到一个新的几何体,这个新的几何体有多少个面?多少个顶点?多少条棱?10.一个立方体的各个面上标有1-6这六个数字,现在两次掷出立方体,第一次四个侧面上的各数之和等于12,第二次掷出后,四个侧面上的各数之和是15。
问:在标有3的一面的对面上标着的数字是几?课后练习1.甲乙丙丁四个正方体可见部分如图①所示,图②是其中之一的表面展开图,那么它是哪个图的表面展开图?2.如图所示,有一个棱长为6厘米的正方体木块,如果把它锯成若干块棱长为2厘米的小正方体.那么,表面积增加了多少平方厘米?3.一个横截面为正方形的长方体木料,表面积为114平方厘米,锯去一个最大正方体后,表面积为54平方厘米.那么,锯下的正方体木料的表面积是多少?4.一个长方体,长是宽的2倍,把它的侧面展开正好是一个边长为12厘米的正方形,求这个长方体的体积5.一个长方体长6分米,高5分米,这个长方体的表面积是148平方分米,,这个长方体体积是多少?6.一个长方体的高缩短3.8厘米后就成为-个正方体,但表面积比原来减少45.6平方厘米.那么,原来这个长方体的表面积是多少?7.一个长方体木块刚好能截成三个一样的正方体,这样表面积增加了144平方分米.那么,这个长方体的体积是多少?8.一个长方体盒子,上底面积是108平方厘米,前表面面积是84平方厘米,左侧面面积是63平方厘米.那么,这个长方体的体积是多少? '课内练习填空题。
长方体和正方体
首页 表面积公式
长方体的表面积: 长×宽×2+长×高×2+高×宽×2 或(长×宽+长×高+高×宽)×2
S 2 a b 2 a h 2 b h
Sabahbh2
学习重难点 表面积公式1 表面积公式2
解决问题
表认面识积公升式
首页
正方体的表面积:棱长×棱长×6
S 6a2
学习重难点 表面积公式1 表面积公式2 解决问题
试一试
拿一个长方体纸盒,沿着一些棱剪 开,看看它的展开图。
试一试
拿一个长方体纸盒,沿着一些棱剪 开,看看它的展开图。
左面
上面 前面 下面
右面
后面
练一练
1、把长方体纸盒剪开,得到它的展 开图。
练一练
2、下面哪些图形沿虚线折叠后能围 成正方体?
苏教版小学数学六年级上册
练习一
练习一
1、看图说出长方体的长、宽、高各是 多少。
4 做一个长6厘米、宽5厘米、高4厘米 的长方体纸盒,至少要用硬纸板多少 平方厘米?
6㎝
这个问题就是求长方体几个面的 面积的和。你会怎么计算?
4㎝
新知讲解
4 至少要用硬纸板多少平方厘米?
4㎝ 4㎝ 4㎝
6㎝
6㎝
64×8平4方×2厘=米48(平60方平厘方米厘)米
6㎝
40平方厘米
486+×650×+24=0=601(48平(方平厘方米厘)米) 4×5×2=40(平方厘米)
练习二
3、一个长方体铁盒,长25厘米,宽20厘 米,高15厘米。做这个铁盒至少需要用 铁皮多少平方厘米?
(25×20+25×15+15×20)×2 =1175×2 =2350(平方厘米)
答:做这个铁盒至少需要用铁皮2350 平方厘米
五年级奥数分册第15周 长方体和正方体(三)-专题训练.doc
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
2023年青岛版(五年制)数学五年级上册3认识体积容积单位(3)优选课件
小芳用的杯子容量大 些,因为她倒了3杯。
小军的杯子容量大些, 杯子容量越大倒得杯 数越少。
学以致用
1、在括号里填合适的体积或容积单位
(1)一块橡皮的体积大约是10(立方厘米 )
(2)一个热水瓶大约能盛水2( 升
长度单位
面积单位
体积单位
典题精讲
2、
棱长:1厘米 体积:1立方厘米
1分米 1立方分米
1米 1立方米
探究新知
计量容积,一般就用体积单位。计量液体的 体积,通常用升或毫升作单位。容积是1立 方分米的容器,正好盛水1升。容积是1立方 厘米的容器,正好盛水1毫升。
1立方分米=1升
1立方厘米=1毫升
易错提醒
贴近教学 服务师生 方便老师
青岛版(五年制)
五年级 数学 上册
第3单元 长方体和正方体
3 认识体积容积 单位
学习目标
1.使学生通过观察、操作等活动认识 体积单位,初步具有1立方米、1立方 分米、1立方厘米的实际大小的观念。 2. 发展学生的空间观念。使学生进一 步体会图形与生活的联系,感受数学 的价值。
16个
探究新知
可以用 来计量体积。
24个 27个
探究新知
常用的面积单位有哪些?猜一猜常用的体积单位有哪些呢? 常用的面积单位:平方厘米 平方分米 平方米
常用的体积单位:立方厘米 立方分米 立方米
探究新知
1立方厘米有多大呢? 棱长为1厘米的正方体,体积是1立方厘米。
1cm
生活中哪些物体的体积大约是1立方厘米?
情景导入1
体积: 50×50×20
小学五年级奥数第15讲 长方体和正方体(三)(含答案分析)
第15讲长方体和正方体(三)一、知识要点解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
二、精讲精练【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米?练习1:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习2:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?【例题3】有一个正方体,棱长是3分米。
如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?练习3:1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?【例题4】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题5】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
五年级奥数分册第15周 长方体和正方体(三)-名师推荐
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
人教版数学五下第三单元《长方体和正方体》教案
人教版数学五下第三单元《长方体和正方体》教案一、教学目标1.知识与技能:了解长方体和正方体的定义和性质,能够区分长方体和正方体,并且能够运用相关知识解决问题。
2.过程与方法:通过实例引导学生在实际问题中运用长方体和正方体的概念解决问题,培养学生的逻辑思维和数学推理能力。
3.情感态度:激发学生对数学的兴趣,培养学生对数学的自信心和学习动力。
二、教学重点1.掌握长方体和正方体的定义;2.能够判断物体是否为长方体或正方体;3.能够应用长方体和正方体的相关知识解决实际问题。
三、教学难点1.区分长方体和正方体的性质;2.运用长方体和正方体的相关知识解决复杂问题。
四、教学过程1. 导入通过展示一些长方体和正方体的图片,引导学生猜测它们的名称并简单描述它们的特点。
2. 学习长方体和正方体的定义•长方体:具有三对相对相等的面的立体称为长方体。
•正方体:六个面都是正方形的立体称为正方体。
3. 区分长方体和正方体通过比较长方体和正方体的特点,让学生能够准确区分它们,并给出相应的理由支持自己的判断。
4. 运用长方体和正方体的知识解决问题1.问题一:一个长方体的长、宽、高分别为3cm、4cm、5cm,求它的体积和表面积。
2.问题二:一个正方体的体积为64立方厘米,求它的边长。
5. 拓展练习1.请学生自行寻找周围环境中长方体和正方体的例子,并描述它们的特点。
2.出示一些复杂的问题,让学生在小组讨论的过程中运用长方体和正方体的知识进行解答。
五、课堂小结通过本节课的学习,我们学习了长方体和正方体的定义及其区分方法,能够应用相关知识解决实际问题。
希望同学们在课后能够多加练习,进一步巩固所学内容。
以上就是本节课的教学内容,希木同学们能够认真对待,取得好的学习效果。
苏教版五年级数学上册 第15讲 长方体和正方体(3)
苏教版五年级上册数学第15讲长方体和正方体(3)讲义专题解析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面积和体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新増加的表面积等于切面面积的两倍。
例1、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米?练习1、1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积増加多少平方米?3.把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例2、18个边长为2厘米的小正方体堆成如图所示的形状,求它的表面积。
练习2、1.下图是由16个棱长为2厘米的小正方体重叠而成的,求这个立体图形的表面积2.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?3.有三块完全一样的长方体积木,它们长8厘米、宽4厘米、高2厘米,现把三块积木搭成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例3、有一个正方体,棱长是3分米。
如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?练习3、1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯成多少个?这些小正方体的表面积和是多少?3.把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?例4、一个正方体的表面涂满了红色,然后如下图所示切开,切开的小正方体中:(1)三个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有儿个?练习4、1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的,两面涂红色的,三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?3.把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?例5、一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
五年级奥数分册第15周 长方体和正方体(三)-最新推荐
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
《长方体和正方体的体积》优秀ppt课件
高:0.4m =4dm=40c
m
120×70×40 =m336000(cm3) 12×7×4 =336(dm3)
答:箱子的体积是336000立方厘米,合336立方分米。
课堂练习
归纳小结 长方体的体积=长×宽×高 V=ɑ b h 正方体的体积=棱长×棱长×棱长
V=a3
底面s ɑ
长方体(或正方体)的体积=底面积×高
长方体和正方 体的体积
新知导入
长方体的体积 =长×宽×高 正方体的体积 =棱长×棱长×棱长 1、计算下面图形的体积
V=ɑ b h
V=a3
10×5×4 =200(cm3)
53 =5×5×5 =125(m3 )
新知讲解
长方体或正方体底面的面积叫做底面积。
底面
底面
底面积= 长×宽
长方体和正方体的底面积怎样求呢?
答:它的高是1.5分米。
课堂练习
5、一个长方体的棱长总和是96厘米。它的长10厘米,宽8厘米,
它的体积是多少立方厘米,
96÷4=24(cm) 24-10-8=6(cm)
6×10×8 =480(cm3) 答:它的体积是480立方厘米。
6、一个无盖的长方体鱼缸,长8分米,宽6分米,高7分米,制
作这个鱼缸共需玻璃多少平方分米?这个鱼缸的体积是多少?
课堂练习
10、 有一块长2m,宽1.5m的长方形铁皮,将它的4个角剪去边 长为40cm的正方形,做成一个无盖的铁皮箱子。
(1)皮箱子的表面积是多少? 分析:铁皮箱子没有盖子,只有5个面。 0.4m
1.5m
长:2-0.4-0.4=1.2m
宽:1.5-0.4-0.4=0.7m 高:0.4m
2m
1.2×0.7+(1.2×0.4+0.7×0.4)×2 =0.84+0.76×2
【精品】五年级奥数分册第15周 长方体和正方体(三)
第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。
人教部编版五年级数学下册《3长方体和正方体【全单元】》精品PPT优质课件
1.一个长方体的长是7厘米,宽是6厘米, 高是5厘米,它的棱长和是多少?
(7+6+5)×4=72(厘米) 2.一个长方体的长是15厘米,宽是12厘米, 棱长总和是148厘米,它的高是多少?
148-15×4-12×4=40(厘米) 40÷4=10(厘米)
课后作业
1.从教材课后习题中选取; 2.从练习册中选取。
长方体和正方体
1.长方体和正方体的认识
第 1 课时 长方体
R·五年级下册
平 面 图 形 立 体 图 形
我们周围许多物体的形状都是长方体或 正方体(正方体也叫立方体)。
长 方 体
认识长方体的面、棱、顶点 顶点:棱和棱的交点
面
棱:面与面相 交的线段
拿几个长方体的物品来观察,并说 一说你发现了什么?
1.一个正方体的棱长是8cm,它的棱长 总和是多少厘米?
8×12=96(cm)
2.用一根长48cm的铁丝围成一个长方 体,这个长方体的长是5cm,宽是4cm, 它的高是多少厘米?
48÷4-5-4=3(cm)
3.小红为妈妈准备了一件生日礼物,下图是 这件礼物的包装盒,长、宽、高分别是15cm、 15 cm、8 cm。现在用彩带把这个包装盒捆上, 接头处长18 cm。一共需要多少厘米彩带?
面 6个面,都是正方形,6个面完全相同 棱 12条棱,长度相等 顶点 8个顶点
剪下本书附页中下面的图样做一个正 方体,再量出它的棱长是多少厘米。
棱长
想一想
长方体和正方体有哪些 相同点,有哪些不同点?
长方体和正方体都 有 6 个面、 8 个
顶点……
正方体的棱长度 都 相等,长方体相 对 的棱长度 相等。
(6)长方体有__8__个顶点。
五年级下册数学《长方体和正方体体积》教案3篇
五年级下册数学《长方体和正方体体积》教案3篇Teaching plan of Volume 2 mathematics cuboid and cube volu me五年级下册数学《长方体和正方体体积》教案3篇前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:五年级下册数学《长方体和正方体体积》教案2、篇章2:五年级下册数学《长方体和正方体体积》教案3、篇章3:五年级下册数学《长方体和正方体体积》教案篇章1:五年级下册数学《长方体和正方体体积》教案教学目标:1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;2.培养学生实际操作能力,同时发展他们的空间观念;3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:探索长方体体积的计算方法。
教学难点:理解长方体和正方体体积公式的推导过程.教具准备:课件,若干个1立方厘米小正方块学具准备:1立方厘米的正方体16块教学过程:一、激情导入1、复习引入师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。
请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
五年级奥数专题讲义-第15讲长方体和正方体(三)通用版(含答案)
第 15 讲长方体和正方体(三)基础卷1.下图是把 19 个棱长为 1cm 的正方体堆放起来.其中有一些正方体看不见,那么这个立体图形的表面积是多少?表面积:9× 2+10× 2+8× 2=54(平方厘米).2.一个长方体和一个正方体的棱长之和相等,已知长方体的长是6dm,宽是 4dm,高是 2dm。
求正方体的表面积和体积。
长方体的棱长和(也就是正方体的棱长和)(6+4+2)×4=48dm所以正方体的棱长是 48÷12=4dm正方体的体积是 4×4×4=64立方分米正方体的表面积是 4×4×6=96dm²3.有一个棱长 1m 的正方体,沿长、宽、高分别切 3 刀、 4 刀、5 刀后成为 120 个小长方体,这 120个小长方体的表面积总和是多少?棱长1米的正方体,每个面的面积是1平方米,每切一刀增加2个面,总共切了3+4+5=12刀,总共增加了24个面,加上正方体原来的6个面,总共有30个面,所以这120个小长方体的表面积总和是30平方米. 1²×[(3+4+5)×2+6]=1×30=30.这120个小长方体的表面积的总和是30平方米.4.把一根长 64dm 的粗铁丝截成几段,焊成二个长方体框架,再用铁皮包上各个面,要使做成的带盖的长方体铁皮箱尽量能装棱长为 1dm 的正方体木块,做这个长方体铁皮箱需要多大面积的铁皮?64÷4=16(分米)16=5+5+6(5×5+5×6+5×6)×2=(25+30+30)×2=(55+30)×2=85×2=170(平方分米5.一个正方体木块,表面积是 96cm2,把它锯成体积相等的 8 个正方体小木块,求每个小木块的表面积。
96÷6=16(cm2),大木块的棱长:4cm小正方体表面积:2×2×6=24(cm2)6.把若干体积相等的小正方体拼成一个大正方体,然后在大正方体的表面涂上红色.已知一面涂色的小正方体有 96 个,那么.两面涂色的小正方体有多少个?答:1面涂色的小正方体在每个面的中间,不靠边上96÷6=16个每个面有16个=4×4则每个面有(4+2)×4+2)=36个小正方形涂两面的小正方体在棱边上,但不在顶角上每条棱边有4个,共12条棱边所以:共有48个小正方体两面涂色提高卷1.如图所示,各个面上均涂有蓝色,按图上的方法切割成小正方体,切下的小正方体中,两面、三面均涂色的有多少块?两面17、三面102.有三个长、宽、高分别为 7cm、 9cm、 11cm; 5cm、 7cm、 9cm;3cm、 5cm、 7cm 的长方体,分别将其表面涂上红色,然后将它们分割成棱长为 1cm 的小正方体,其中至少有一面是红色的小正方体有多少个?其中至少有一面是红色的小正方体有678个3.将一个长 9cm、宽 8cm、高 3cm 的长方体木块锯成若干个小正方体,然后再拼成一个大正方体,求大正方体的表面积。
几何15长方体与正方体
如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 2】 如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【巩固】(2008年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【例3】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【巩固】用10块长5厘米,宽3厘米,高7厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【例4】(05年清华附培训试题)将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【例5】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【例6】有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是________.【例7】如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多______ 块.【例8】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?【例9】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________.【例10】棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少?【例11】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【例12】一个长方体的长是12厘米,宽10厘米,高也是整厘米数,在它的表面涂满颜色后,截成棱长是1厘米的小正方体,其中一面有色的小正方体有448个.求原来长方体的体积与表面积.【例13】将一个棱长为整数分米的长方体6个面都涂上红色,然后把它全部切成棱长为1分米的小正方体.在这些小正方体中,6个面都没有涂红色的有12块,仅有两个面涂红色的有28块,仅有一个面涂红色的有块,原来长方体的体积是立方分米.【例14】右图是由27块小正方体构成的3⨯3⨯3的正方体.如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的.这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍.问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?【例15】有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体最多有多少个?【例16】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【例17】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【例18】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【巩固】把正方体的六个表面都划分成4个相等的正方形.用红色去染这些小正方形,要求有公共边的正方形不能同时染上红色,那么,用红色染的正方形最多有多少个?【例 19】 (第九届“迎春杯”决赛)把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成 个小正方体.【巩固】(第九届“祖冲之杯”数学邀请赛)有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米,宽4厘米,高3厘米的长方体木块.最多可放 块.444433333【例 20】 有甲、乙、丙3种大小的正方体木块,棱长比是1:2:3.如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?【例 21】 用112⨯⨯、113⨯⨯、122⨯⨯三种小木块拼成333⨯⨯的正方体.现有足够多的122⨯⨯ 的小木块,还有14块113⨯⨯的小木块,如果要拼成10个333⨯⨯的正方体,则最少需要112⨯⨯的小木块________块.【例 22】 把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图2【例23】(第五届走进美妙数学花园六年级初赛试题)如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体.这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比:::【例24】(第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?【巩固】(第七届“祖冲之杯”数学邀请赛)现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【例25】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【例26】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了块木块.【巩固】右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?【例 27】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?A【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?33223323322323111111【例 28】 如下图,用若干块单位正方体积木堆成一个立体,小明正确地画出了这个立体的正视图、俯视图和侧视图,问:所堆的立体的体积至少是多少?正视图俯视图侧视图【例29】(第十二届全国“华罗庚金杯”少年数学邀请赛)用一些棱长是1的小正方体码放成一个立体图形,从上向下看这个立体图形,如下图a,从正面看这个立体图形,如下图b,则这个立体图形的表面积最多是________.a b【例30】(2009年“希望杯”二试六年级)用棱长为1的小立方体粘合而成的立体,从正面、侧面、上面看到的视图均如下图所示,那么粘成这个立体最多需要块小立方体.【例31】(第十届华杯赛)第9届华罗庚金杯少年数学邀请赛总决赛于2004年5月10日在潮州举行,北京的选手们用N个大小相同的小正方体木块粘贴成了一个从正面看是2004,从左面看是9的模型(如图).问:N最大为多少?N最小为多少?【例32】(日本第七届算术奥林匹克)有很多白色或黑色的棱长是1cm的小正方体.取其中的27个,拼成一个棱长是3cm的大正方体,每一面都各用2个黑色的小正方体拼成了相同的图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲长方体和正方体(三)
一、知识要点
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
二、精讲精练
【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米
的正方体若干块,表面积增加多少厘米?
【思路导航】把棱长为6厘米的正方体锯成棱长为2厘米的正方体,
可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的
面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积
增加432平方厘米。
练习1:
1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?
2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?
3.把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?
【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?
【思路导航】把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习2:
1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?
2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?
3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?
【例题3】有一个正方体,棱长是3分米。
如果按下图把它切成棱
长是1分米的小正方体,这些小正方体的表面积的和是多少?
想一想:在切的过程中,每切一切,就会增加两个3×3平方分米的
面,你能用这种思路来计算所求问题吗?
练习3:
1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?
2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?
3.把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?
【例题4】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:
(1)三个面涂有红色的有几个?
(2)二个面涂有红色的有几个?
(3)一个面涂有红色的有几个?
(4)六个面都没有涂色的有几个?
【思路导航】按题中的要求切,切成的小正方体一共有3×3×3=27个。
(1)三个面涂有红色的小正方体在大正方体的顶点处,共有8个;
(2)二个面涂有红色的小正方体在大正方体的棱上,共有1×12=12个;
(3)一个面涂有红色的小正方体在大正方体的六个面上,共有1×6=6个;
(4)六个面都没有涂色的在大正方体的中间,有27-(8+12+6)=1个。
练习4:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及
六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
3.把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?
【例题5】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
【思路导航】这个长方体原来的表面积是(6×5+6×4+5×4)×2=148平方厘米,每切割一刀,增加2个面。
切成三个体积相等的小长方体要切2刀,一共增加2×2=4个面。
要求表面积和最大,应该增加4个6×5=30平方厘米的面。
所以,三个小长方体表面积和最大是148+6×5×4=268平方厘米。
练习5:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把8个同样大小的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?
3.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?。