【北师版六年级数学下册导学案】1.9 圆锥的体积

合集下载

北师大版数学六年级下册第一单元《圆锥的体积》教学设计(公开课教案及导学案)

北师大版数学六年级下册第一单元《圆锥的体积》教学设计(公开课教案及导学案)
资源
随堂记录
一、复习检测 1、圆柱的体积公式(写一写)
圆柱体积公式的推导过程(和同桌说一说)
2、圆锥的特征有哪些?(小组内说一说)汇报
学习 过程
作业 检测 学后 反思
二、 提出猜想
1、提问:

2、大胆猜测。
圆锥的体积和它的( )和( )有关。
要解决圆锥的体积这个问题,我想到可以通过( )体的体积来研究,
4、提出合理的实验要求。
5、找到合适实验方法。
6、结论。
活动意图说明:通过实际操作,验证猜想,帮助学生理解等底等的高圆柱与圆锥体积之间的关系,
进一步丰富学生数学活动经验,进一步培养学生“猜测与验证”的数学学方法。
环节四:练习归纳(指向目标 1,2)
学生活动 4
1、随堂小练 P12“练一练”第 1、2 题 2、归纳概括 圆锥体积的计条高。
2、根据圆锥的特征和旧知识 的迁移,学生会想到圆锥的
(3) 大胆猜测。
体积可能与它的底和高有关
圆锥的体积和它的( )和( )有关。
系。
要解决圆锥的体积这个问题,我想到可以通过( )体的体积来研究,
因为它们的底面积都是( )。
(4) 选择实验材料。
这堆沙子大约多少立方米?(得数保留两位)
1、我理解
2、我在本节课中表现得最好的是:
( 观察 操作 思考 倾听 合作 提问 答问 评价 )
4. 课时学生实际水平
学生已经掌握了圆柱体积的推导过程和计算方法,有大量运用“转化”思想进行方法推导的理论基础 和操作经验。
5.学习过程设计
学生活动
环节一:复习检测(指向目标 1)
教师活动
学生活动 1
教师活动 1
活动 1:圆柱的体积公式是什么?怎么推导出来的? 活动 2:圆锥有什么特征?

北师大版数学六年级下册《圆锥的体积》教学设计

北师大版数学六年级下册《圆锥的体积》教学设计

北师大版数学六年级下册《圆锥的体积》教学设计一. 教材分析北师大版数学六年级下册《圆锥的体积》是小学数学的重要内容,主要让学生理解圆锥体积的概念,掌握计算圆锥体积的方法,并能够运用圆锥体积解决实际问题。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。

二. 学情分析六年级的学生已经掌握了长方体、正方体的体积计算方法,对体积的概念有一定的理解。

但是,对于圆锥体积的计算方法,学生还需要通过实例和操作来进一步理解。

此外,学生对于圆锥体积在实际生活中的应用还需要进一步拓展。

三. 教学目标1.让学生理解圆锥体积的概念,掌握计算圆锥体积的方法。

2.培养学生空间想象能力和抽象思维能力。

3.使学生能够运用圆锥体积解决实际问题。

四. 教学重难点1.圆锥体积的概念。

2.计算圆锥体积的方法。

3.圆锥体积在实际生活中的应用。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、交流等方式,掌握圆锥体积的概念和计算方法,提高学生解决实际问题的能力。

六. 教学准备1.圆锥体积的相关教学PPT。

2.圆锥体积的实例和操作材料。

3.圆锥体积的练习题。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾长方体、正方体的体积计算方法,为新课的学习做好铺垫。

同时,教师展示一些生活中的圆锥物体,如漏斗、圆锥形的沙堆等,让学生观察并思考这些物体的体积如何计算。

呈现(10分钟)教师通过PPT展示圆锥体积的概念和计算方法,引导学生思考并理解圆锥体积的定义。

同时,教师通过讲解和示范,让学生掌握计算圆锥体积的方法。

操练(10分钟)教师学生进行分组练习,让学生运用圆锥体积的计算方法解决实际问题。

教师给予学生指导,并纠正学生在计算过程中可能出现的错误。

巩固(10分钟)教师通过PPT展示一些圆锥体积的练习题,让学生独立完成并进行讲解。

教师针对学生的回答进行点评,巩固学生对圆锥体积的理解和计算方法。

(北师大版)六年级数学下册《圆锥的体积》教案设计

(北师大版)六年级数学下册《圆锥的体积》教案设计

(北师大版)六年级数学下册《圆锥的体积》教案设计圆锥的体积教学内容:义务教育新课程标准实验教科书数学六年级下册第11页一、教材内容分析本节课选自义务教育新课程标准实验教科书数学六年级下册第一单元。

主要学习圆锥体积的有关内容。

本节课是在学生掌握了长方体、正方体和圆柱体积的计算方法和圆锥特点的基础上进行的,它是小学阶段学生接触到的最后一种立体图形,且在生活实际中的应用十分广泛。

探索圆锥的体积的计算方法,是以圆柱体积的计算方法为基础的。

本节课是在探索圆柱体积计算方法的基础上,渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的探索过程,从而使学生理解并掌握圆锥体积的计算方法。

本节课在多媒体网络教室实施的,4人一台计算机。

二、学习者特征分析六年级孩子能够自我发现问题,并渴望能在研究活动中探索解决自己发现的问题,从中获得成功的喜悦。

课前我进行了调查,27%的同学已经知道了圆锥体积的计算公式,但多数同学还做不到“知其然,知其所以然”。

结合学生的实际特点和教学的主要内容,本节课我着重采用“提出问题——类比猜想——验证说明”的方式引导学生学习。

三、学习目标1、知识与技能:能正确地计算圆锥的体积并能解决生活中一些简单的实际问题。

2、过程与方法:了解圆锥体积的含义,经历“类比猜想——验证说明”的探索圆锥体积计算方法的过程。

3、情感、态度与价值观学会合理猜想,提高学生的数学应用意识,在活动中培养学生的合作精神。

四、教学过程(一)创设情境,揭示课题(约3分钟)教师活动:课件出示教学情境(如右图)并提出问题:你能获得哪些数学信息?生1:小麦堆是圆锥形的。

生2:笑笑想知道这堆小麦的体积是多少。

师:那我们怎样才能帮助笑笑解决这个问题呢?生:计算这堆小麦的体积,实际上是要计算这个圆锥的体积。

【设计意图:创新是人类社会发展的不竭动力,是一个民族的灵魂。

问题意识与创新息息相关,提出问题比解决问题更加重要,培养学生提出数学问题的意识和能力也是实施数学新课标的重要组成部分。

(北师大版)六年级数学下册教案圆锥的体积

(北师大版)六年级数学下册教案圆锥的体积

(北师大版)六年级数学下册教案圆锥的体积教学目标1.了解圆锥的定义和特点;2.了解圆锥的体积计算公式;3.能够正确应用圆锥体积计算公式计算题目;4.能够将所学知识应用于解决实际问题。

教学内容圆锥圆锥,是由一个平面曲线(底面)和以这一曲线上每一点为顶点的一切射线(侧面)所围成的立体图形。

圆锥的底面为圆,侧面可以是斜面或垂直于底面的面。

圆锥的体积计算公式圆锥的体积公式为 $V = \\dfrac{1}{3} \\times \\pi \\times r^2 \\times h$,其中r表示圆锥底面半径,ℎ表示圆锥高。

计算圆锥的体积例1:已知一个圆锥的底面半径 $r=6\\mathrm{cm}$,高$h=8\\mathrm{cm}$,求圆锥的体积。

解:根据圆锥的体积计算公式可得:$$V = \\dfrac{1}{3} \\times \\pi \\times r^2 \\times h = \\dfrac{1}{3} \\times \\pi \\times 6^2 \\times 8 \\approx 301.59\\mathrm{cm}^3$$所以该圆锥的体积约为301.59立方厘米。

例2:一个圆锥的高为 $12\\mathrm{cm}$,底面半径为 $4\\mathrm{cm}$,那么它所包含的水的体积是多少?解:根据题意可知该圆锥容纳的体积即为所包含水的体积。

根据圆锥体积计算公式可得:$$V = \\dfrac{1}{3} \\times \\pi \\times r^2 \\times h = \\dfrac{1}{3} \\times \\pi \\times 4^2 \\times 12 \\approx 160.53$$所以该圆锥能够容纳约160.53立方厘米的水。

教学重点与难点1.圆锥的定义和特点;2.圆锥的体积计算公式;3.圆锥体积计算公式的应用。

教学过程1.通过示意图和实物展示向学生介绍圆锥概念和特点;2.教师引导学生通过观察和比较圆锥的侧面和底面形状,加深学生对圆锥的理解;3.讲解圆锥体积计算公式,重点强调公式中各项的含义;4.讲解示例题目,并引导学生掌握圆锥体积计算方法;5.练习题解答及讲解;6.提出实际问题,引导学生将所学知识应用于解决实际问题。

(完整word版)北师大版六年级下册数学《圆锥的体积》优秀教案教学设计

(完整word版)北师大版六年级下册数学《圆锥的体积》优秀教案教学设计

北师大版六年级下册数学《圆锥的体积》优秀教案教学设计北师大版六年级下册数学《圆锥的体积》优秀教案教学设计发布者:江志辉一、教学内容:义务教育课程标准实验教科书(北师大版)六年级下册第11~13页。

二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:◆使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:(一)创设情境,导入新课1、故事情景引发猜想电脑呈现出动画情境(伴图配音)。

炎热的夏天,小明和小强去“广场超市”的冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。

于是,他们两个为买哪一种形状的冰淇淋争执起来。

同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。

)(学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)教师:学完今天的内容后,同学们就能正确解决了!2、圆锥实物揭示课题①教师出示一筒沙,师:将这筒沙倒在桌上,会变成什么形状?(学生猜想后教师演示)②师:在这堂课上,你希望学到哪些知识呢?(生自主回答,确立学习目标)③揭题:圆锥的体积师:好,我们一起努力吧!(二)自主探索,合作交流1、直观引入直觉猜想(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?①教师鼓励学生大胆猜想。

(生说可能的情况)②师:你们是怎样理解“相应的”一词的?说说你的看法。

《圆锥的体积》(教学设计)北师大版六年级下册数学

《圆锥的体积》(教学设计)北师大版六年级下册数学
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入圆锥体积学习状态。
回顾旧知:
简要回顾上节课学习的体积的概念,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为圆锥体积新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
知识讲解:
4.题目:一个圆锥体的底面半径是3厘米,高是7厘米,求它的体积。
答案:V = (1/3)πr²h
V = (1/3)π × 3² × 7
V = (1/3)π × 9 × 7
V = 63π
V = 207.998(保留两位小数)立方厘米
5.题目:一个圆锥体的底面半径和高都是4厘米,求这个圆锥体的体积。
答案:V = (1/3)πr²h
(4)动手实践:让学生分组进行实验,制作圆锥体,并测量其体积,增强学生对圆锥体积的理解。
(5)总结与反思:让学生分享自己的学习心得和收获,总结圆锥体积的计算方法和实际应用。
3.教学媒体和资源
(1)PPT:制作精美的PPT,展示圆锥体积的计算公式、实例及实验过程,增强课堂教学的直观性。
(2)视频:播放一些与圆锥体积相关的实验或实际应用的视频,帮助学生更好地理解圆锥体积的概念。
课堂小结,当堂检测
课堂小结:
本节课我们学习了圆锥的体积,首先介绍了圆锥体积的概念,通过与圆柱体积的比较,使学生理解圆锥体积的计算公式是底面积乘以高再除以3。然后通过实例让学生掌握如何运用圆锥体积的计算公式解决实际问题。接着讲解了如何利用等底等高的圆柱和圆锥体积的关系来推导圆锥体积的计算公式。最后,通过实践操作让学生亲自动手制作圆锥体,并测量其体积,加深对圆锥体积的理解。

北师大版六年级下册数学《圆锥的体积》教学设计 (16)

北师大版六年级下册数学《圆锥的体积》教学设计 (16)

北师大版六年级下册数学《圆锥的体积》教学设计(16)一. 教材分析北师大版六年级下册数学《圆锥的体积》是小学数学课程中的一部分,主要让学生理解圆锥体积的概念,掌握圆锥体积的计算方法,并能够应用到实际问题中。

本节课的内容与学生的生活实际相联系,通过探究活动,使学生感受到数学与生活的紧密联系,培养学生的数学应用能力。

二. 学情分析六年级的学生已经掌握了长方体、正方体等立体图形的体积计算方法,具备了一定的空间想象能力和抽象思维能力。

但圆锥体积的概念和计算方法对于学生来说较为抽象,需要通过操作活动来帮助学生理解和掌握。

三. 教学目标1.让学生理解圆锥体积的概念,掌握圆锥体积的计算方法。

2.培养学生的空间想象能力和抽象思维能力。

3.培养学生运用数学知识解决实际问题的能力。

四. 教学重难点1.圆锥体积的概念。

2.圆锥体积的计算方法。

五. 教学方法采用问题驱动法、操作活动法、小组合作法、讲解法等教学方法,引导学生主动探究,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.圆锥体积课件。

2.圆锥体积相关练习题。

3.圆锥体积操作活动材料。

七. 教学过程1. 导入(5分钟)教师通过课件展示生活中常见的圆锥形状的物体,如漏斗、沙堆等,引导学生观察并思考这些物体的体积如何计算。

从而引出圆锥体积的概念。

2. 呈现(10分钟)教师通过课件呈现圆锥体积的计算公式:圆锥体积= 1/3 × 底面积× 高。

同时,讲解公式中的各个要素:底面半径、高等。

3. 操练(10分钟)学生分组进行操作活动,教师提供圆锥体积操作活动材料。

学生通过实际操作,测量数据,计算圆锥体积,巩固对圆锥体积的理解和计算方法的掌握。

4. 巩固(10分钟)教师呈现一些关于圆锥体积的练习题,学生独立完成,教师进行讲解和答疑。

5. 拓展(10分钟)教师引导学生思考:圆锥体积在实际生活中有哪些应用?学生通过举例,体会数学与生活的紧密联系。

6. 小结(5分钟)教师引导学生总结本节课所学的圆锥体积的概念、计算方法以及实际应用。

最新北师大版六年级数学下册《圆锥的体积》 教学设计

最新北师大版六年级数学下册《圆锥的体积》 教学设计

北师大版六年级数学下册《圆锥的体积》教学设计一、教学内容:北师大版六年级数学下册第一单元《圆锥的体积》。

二、教学目标:1、知识技能目标:通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法,使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

难点:探索圆锥体积的计算公式的推导过程和计算方法。

四、教学过程:(一)温故知新,问题导入让学生回忆圆柱体积的计算公式,用字母如何表示?计算下列圆柱的体积:(连麦学生)1、底面半径4分米,高是10分米。

2、底面直径2米,高是3米。

3、底面积是5平方厘米,高是6厘米。

出示圆锥形小麦堆。

师:看,小麦堆得像小山一样,小麦丰收了。

张小虎和爷爷笑得合不拢嘴。

这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。

(二)互动新授1、提出问题。

教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?圆锥的体积与那种图形的体积有关?圆柱和圆锥之间有什么关系?学生可能会猜测:圆柱和圆锥应该是等底等高,圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。

2、实验探究。

(1)出示等底、等高的圆柱和圆锥体容器。

(2)用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。

(3)通过刚才的观察,你发现了什么?(连麦学生)(发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。

)(4)是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(PPT在演示一次)(4)总结结论结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计设计(1)一. 教材分析《圆锥的体积》是北师大版六年级下册数学的一节内容。

本节课的主要内容是引导学生探索并理解圆锥的体积公式,即圆锥的体积等于底面积乘以高除以3。

通过学习本节课,学生将对圆锥的体积有一个清晰的认识,并能运用体积公式解决一些实际问题。

二. 学情分析六年级的学生已经掌握了平行四边形、梯形等图形的面积计算方法,对体积的概念和计算方法也有了一定的了解。

但是,对于圆锥的体积公式,他们可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

三. 教学目标1.让学生掌握圆锥的体积公式,并能运用体积公式解决一些实际问题。

2.培养学生观察、操作、思考的能力,提高学生的数学思维能力。

3.培养学生合作学习的精神,提高学生的团队协作能力。

四. 教学重难点1.圆锥的体积公式的理解和运用。

2.引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

五. 教学方法1.情境教学法:通过创设情境,引导学生观察、操作、思考,激发学生的学习兴趣。

2.合作学习法:学生进行小组合作学习,培养学生的团队协作能力。

3.探究学习法:引导学生自主探究,培养学生的独立思考能力。

六. 教学准备1.课件:制作圆锥体积的公式的课件,用于引导学生观察、操作、思考。

2.学具:准备一些圆锥形状的实物,用于学生观察和操作。

3.黑板:用于板书重要的知识点和公式。

七. 教学过程1.导入(5分钟)利用课件展示一些圆锥形状的实物,引导学生观察并思考:这些实物的体积如何计算?引出圆锥的体积公式。

2.呈现(10分钟)呈现圆锥的体积公式:圆锥的体积等于底面积乘以高除以3。

引导学生理解公式中的各个要素,如底面积、高等。

3.操练(10分钟)学生进行小组合作学习,让学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生运用圆锥的体积公式解决一些实际问题,如计算一些圆锥形状物体的体积。

(北师大版)六年级数学下册教案圆锥的体积

(北师大版)六年级数学下册教案圆锥的体积

(北师大版)六年级数学下册教案:圆锥的体积教学目标1.学习圆锥的定义和性质。

2.掌握求圆锥体积的方法。

3.能够应用所学知识解决实际问题。

教学重点1.圆锥体积的求解。

2.实际问题的解决方法。

教学难点1.如何理解和应用圆锥的定义和性质。

2.如何将所学知识应用于实际问题的解决。

教学内容圆锥的定义和性质1.圆锥的定义:一条射线以定点为端点,在平面上绕着该点旋转一周,所形成的图形叫做圆锥。

2.圆锥的性质:–圆锥的底面是一个圆。

–圆锥的侧面是由顶点到圆心连线上的点和底面上的点围成的区域。

–圆锥的侧面积为圆锥母线长乘以底面周长的一半。

–圆锥的母线是顶点到底面任一点的直线段。

–圆锥的高是顶点到底面的距离。

圆锥体积的求解1.圆锥体积公式:$V = \\dfrac{1}{3}\\pi r^2 h$–其中,r为圆锥底面半径,ℎ为圆锥高。

2.求解圆锥体积的步骤:–确定圆锥的底面半径和高。

–将已知数值代入公式计算体积。

–以合适的单位表示结果。

实际问题的解决方法1.将实际问题转化为数学问题,确定需要求解的未知数。

2.根据所学知识建立数学模型,列出方程或不等式。

3.解决方程或不等式,求得未知数的解。

4.验证解是否符合实际情况。

5.对解进行分析和解释,得出结论。

教学过程1.导入新知识:介绍圆锥的定义和性质。

2.引入圆锥体积的求解,讲解圆锥体积公式和求解步骤。

3.设计练习题,让学生理解和掌握所学知识。

4.引入实际问题的解决,讲解实际问题的解决方法。

5.设计练习题,让学生应用所学知识解决实际问题。

6.总结本节课的内容。

教学评价1.学生的练习题完成情况。

2.学生的课堂表现和问题解决能力。

3.学生的课后习题完成情况。

教学资源1.教材:北师大版第六年级数学下册。

2.工具:黑板、彩色粉笔、计算器等。

参考资料1.北师大版第六年级数学下册。

2.李俊杰,许能龙,《数学概念与方法(四年级)》。

六年级数学下册教案-圆锥的体积北师大版

六年级数学下册教案-圆锥的体积北师大版

六年级数学下册教案圆锥的体积北师大版教学目标1. 知识与技能:使学生理解圆锥体积的概念,掌握圆锥体积的计算方法,并能够运用该方法解决实际问题。

2. 过程与方法:通过观察、实验、推理等活动,培养学生空间想象能力、逻辑思维能力和问题解决能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生合作交流、积极探索的学习态度。

教学内容1. 圆锥的体积概念:介绍圆锥体积的定义,解释圆锥体积与圆柱体积的关系。

2. 圆锥体积的计算方法:讲解并推导圆锥体积的计算公式,通过实例演示如何应用公式进行计算。

3. 实际应用:引导学生运用圆锥体积的计算方法解决实际问题,如计算沙堆、谷堆的体积等。

教学重点与难点1. 重点:使学生掌握圆锥体积的计算方法,并能够应用于实际问题。

2. 难点:理解圆锥体积与圆柱体积的关系,正确运用公式进行计算。

教具与学具准备1. 教具:圆锥体、圆柱体模型,多媒体课件。

2. 学具:圆锥体积计算练习册,计算器。

教学过程1. 导入:通过展示生活中的圆锥形物体,如沙堆、谷堆等,引入圆锥体积的概念。

2. 探究:引导学生观察圆锥与圆柱的关系,推导圆锥体积的计算公式。

3. 实践:通过实例演示,教授学生如何运用公式计算圆锥体积。

4. 练习:布置练习题,让学生独立完成,巩固所学知识。

5. 讨论与交流:分组讨论,分享解题过程和心得,互相学习。

板书设计1. 圆锥的体积2. 提纲:圆锥体积的概念、计算方法、实际应用3. 重点:圆锥体积的计算公式及其应用4. 难点:圆锥体积与圆柱体积的关系作业设计1. 书面作业:完成练习册上的相关习题。

2. 实践作业:观察生活中的圆锥形物体,尝试计算其体积。

课后反思1. 教学方法:通过观察、实验、推理等多种教学方法,使学生更好地理解和掌握圆锥体积的计算方法。

2. 学生反馈:关注学生的学习情况和反馈,及时调整教学方法和进度。

3. 教学效果:通过课后作业和测验,评估学生对圆锥体积计算方法的掌握程度。

(北师大版)六年级数学下册教案 圆锥的体积-word文档

(北师大版)六年级数学下册教案 圆锥的体积-word文档

(北师大版)六年级数学下册教案圆锥的体积教学目标1.理解求圆锥体积的计算公式。

2.会运用公式计算圆锥的体积。

3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。

教学重点圆锥体体积计算公式的推导过程。

教学难点正确理解圆锥体积计算公式。

教学过程一、铺垫孕伏1.提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。

(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式1.教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法。

老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。

实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。

倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?2.学生分组实验。

学生汇报实验结果:①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

4.引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。

板书:5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:。

6.思考:要求圆锥的体积,必须知道哪两个条件?7.反馈练习圆锥的底面积是5,高是3,体积是()。

圆锥的底面积是10,高是9,体积是()。

(二)算一算学生独立计算,集体订正。

说说解题方法。

三、全课小结通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)。

《圆锥的体积》(教案)六年级下册数学北师大版

《圆锥的体积》(教案)六年级下册数学北师大版

《圆锥的体积》(教案)六年级下册数学北师大版教案《圆锥的体积》教学目标知识与能力目标:1.理解圆锥的定义,并能从图形中判断哪些图形是圆锥。

2.学会计算圆锥的体积,掌握计算公式。

3.能够通过简单实例的训练掌握圆锥的体积计算方法。

过程与方法目标:1.通过观察、提问、讨论等方式,引导学生主动参与课堂,积极思考。

2.引导学生主动思考、探索、发现,培养学生解决问题、创新的能力。

情感态度价值目标:1.引导学生关注现实生活中的问题,明确数学知识的实用性。

2.培养学生良好的学习态度,提高自信心。

教学重难点:1.圆锥的概念和计算公式的掌握。

2.圆锥的应用,如解决问题。

教学准备:1.教师准备圆锥、削笔刀和刻尺等实物。

2.教师准备黑板和粉笔。

教学过程一、导入(5分钟)1.教师引导学生回忆圆柱的体积计算方法。

2.教师出示一些图形,让学生从中判断哪些图形是圆锥。

二、新内容的引入(15分钟)1.介绍圆锥的定义及基本要素,如底面圆、侧面、直母线、高等。

2.通过黑板或投影仪展示圆锥的示意图,让学生了解圆锥的形状。

3.教师讲解圆锥的体积计算公式。

4. 教师示范如何使用刻尺测量一个圆锥的底面半径和高,然后用公式计算出圆锥的体积。

5.教师通过一些实例讲解计算方法。

三、数学分组活动(20分钟)1.将学生分成小组,每组分别在桌面上画出一个圆锥形,然后测量圆锥的底面半径和高。

2.每个小组计算自己的圆锥体积,并与其他小组分享自己的做法。

3.教师巡视课堂,给予指导和帮助。

四、归纳(10分钟)1.请学生归纳圆锥的体积计算公式。

2.请学生告诉大家如何计算圆锥的体积,并提供几个实例。

五、作业布置(5分钟)1.让学生完成课本上有关圆锥的练习题。

2.布置相关作业,如画一张圆锥的示意图并计算它的体积。

教学总结:1.通过本课的学习,学生了解了圆锥的概念和计算公式,掌握了基本的计算方法。

2.学生通过小组的分组活动,积极参与讨论,加深了对圆锥的理解。

3.课后,学生将进一步巩固所学知识,熟练掌握计算圆锥的体积的方法,并能成功解决实际问题。

北师版六年级下册数学圆锥的体积教案

北师版六年级下册数学圆锥的体积教案

第6课时圆锥的体积教材第11~12页相关内容。

1.通过具体情景观察、实物感知等活动,感受物体体积的大小,发展空间观念。

2.经历“猜想与验证”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,能运用圆锥体积计算方法解决一些简单的实际问题。

使学生掌握圆锥的体积的计算方法,并能根据公式解决实际问题。

圆锥体积公式的推导过程。

一、复习导入师:什么是圆锥?圆锥有什么特征?学生回答,教师点评。

师:圆柱的体积公式是什么?指名学生回答。

师:那么怎样计算圆锥的体积呢?这节课我们共同来探讨这个问题,板书课题。

二、自主探究1.师:圆锥的体积该怎样求呢?能否通过学过的图形来求呢?先让学生讨论,教师指出:我们可以通过试验的方法得到圆锥的体积计算公式。

2.分组实验。

(1)学生分6组操作实验,教师巡回指导。

(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个。

)(2)同组的学生做完实验后,进行交流,并把实验结果写在黑板上。

(3)全班交流。

3.交流汇报。

生1:圆柱和圆锥的底面积相等,高也相等,圆锥形容器装满往圆柱形容器里倒,倒了三次,正好将圆柱形容器倒满。

生2、生3、生4也得到同样的结果。

生5:圆柱和圆锥既不等底又不等高,圆锥形容器装满沙往圆柱形容器里倒,倒了五次,正好倒满。

生6:我倒了八次,才正好倒满。

4.引导学生讨论发现。

圆柱的体积等于和它等底等高的圆锥形体积的3倍或圆锥的体积是和它等底等高的圆柱体积的13。

板书:圆锥的体积=13×圆柱的面积请两名学生上台示范试验,验证结果。

5.知道圆锥的体积公式:圆锥的体积=13×底面积×高用字母表示:V =13×S ×h13×πr 2×h6.思考:要求圆锥的体积,你觉得需要哪些条件?7.课堂练习教材第11页下面的问题。

北师大版小学六年级数学下册圆锥的体积教案

北师大版小学六年级数学下册圆锥的体积教案

北师大版小学六年级数学下册《圆锥的体积》精品教案学习内容:北师大版六年级数学下册第一单《圆锥的体积》第11~12页学习目标:1、通过探讨与发觉,推导出圆锥体积计算方式,并能解决简单的实际问题。

2、经历探讨圆锥有关知识的进程,进一步进展空间观念。

3、在观看与实验、猜想与验证、交流与反思等活动中,体会数学知识的产生进程,体验数学活动充满着探讨与制造,初步了解并把握一些数学思想方式。

学习重点:初步把握圆锥体积的计算方式并解决一些实际问题。

学习难点:探讨圆锥体积的计算方式和推导进程。

学具预备:等底等高、等底不等高、等高不等底的圆锥和圆柱共八套,沙、米,实验报告单;带有刻度的直尺,绳索等。

学法指导:先由学生自学讲义,经历自主探讨总结的进程,并独立完成自主学习部份,通过独立试探及小组合作,推导出圆锥体积的计算方式,并能解决简单的实际问题。

并独立完成导学案,然后学习小组讨论交流展现,小组间相互点评,关于有疑问的题目教师点拨、拓展。

导学进程:一、创设情境生成问题①前面,咱们学习过哪些立体图形的体积计算?课件出示②课件出示圆锥体,指出图中圆锥的底面、侧面和高.圆锥是由两部份组成的。

③回忆:圆柱体与圆锥体的特点有哪些相同的地址?都是在推到圆柱体体积计算公式的进程中,咱们运用了什么数学思想方式?把转换成。

④观看:将圆柱体形状的一筒沙慢慢倒在桌上,会变成什么形状的沙?⑤猜想:那个圆锥形沙堆的体积如何计算呢?设计用意:创设情境使学生进入了有序的思维境界,捕抓课堂问题的生成,让学生自己提问题,自己解决问题,激发学生的学习欲望,为探讨新课做好辅垫。

【评析:圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的最大体的立体图形。

由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,是进展学生空间观念的需要。

从已学过的立体图形的体积计算公式入手,让学生回忆相关的知识及在学习进程中把握的数学思想方式,以唤醒学生的大体活动体会,为学生将要进行的自主探讨活动提供了思维的方向和活动的方式。

最新北师大版六年级下册数学《圆锥的体积》教学设计

最新北师大版六年级下册数学《圆锥的体积》教学设计

最新北师大版六年级下册数学《圆锥的体积》教学设计北师大版六年级数学下册第一单元教案圆锥的体积年级学科课题六数学圆锥的体积教学目标1.使学生探索并初步掌握圆锥体积的计算方法和推导过程;使学生会应用公式计算圆锥的体积并解决一些实际问题。

2.提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3.培养学生的合作意识和探究意识;使学生获得成功的体验,体验数学与生活的联系。

重点使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

难点探索圆锥体积方法和推导过程。

教具不同型号的等底等高的圆柱、圆锥容器若干套;水、沙、米、多媒体课件一套。

教学过程一、创设情境,导入新课1.故事情景,渗透转化。

师:你知道《曹冲称象》的故事吗?(多媒体屏幕显示画面或让知道这个故事的学生讲,或教师讲。

)师:这个故事中曹冲把大象转化成什么来称的?在数学中经常利用转化的方法来解决问题。

2.圆锥实物,揭示课题。

(1)教师出示一筒米(或沙),师:将这筒米倒在桌上,会变成什么形状?(学生猜想后教师演示)这堆米的体积是多少呢?要求这堆米的体积,也就是求什么的体积?(板书课题:圆锥的体积)(2)怎样计算圆锥的体积呢?现在我们就来研究。

二、自主探究。

1.直观引入,直觉猜想。

(1)教师出示圆柱形铅笔头①问?这是什么形状?把一支圆柱形铅笔的笔头削成圆锥形。

②把铅笔削成圆锥形:师:请大家仔细看,老师把圆柱形铅笔削成什么形状?(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?(教师鼓励学生大胆猜想)2.实验探索,发现规律。

(1)为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体的容器。

你们小组比比看,这两个形体有什么相同的地方?(学生得出:底面积相等,高也相等。

)师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(2)既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)为什么?(因为圆锥体的体积小)(3)小组讨论:圆锥的体积与和它等底等高圆柱体积之间到底有什么联系呢?请四人小组讨论怎样找到它们的联系。

新编新北师大版小学六年级下册数学《圆锥的体积》导学案

新编新北师大版小学六年级下册数学《圆锥的体积》导学案

新编新北师大版小学六年级下册数学《圆锥的体积》导学案
新编新北师大版小学六年级下册数学《圆锥的体积》导学案
学习内容圆锥的体积(一)
学习目标 1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

学习重点圆锥体体积计算公式的推导过程
学习难点正确理解圆锥体积计算公式.
学习准备课件实验用具
集体备课二度备课



程温故互查:
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:圆锥的体积怎样计算呢?
合作探究:
1、老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?



程 2、学生分组实验。

汇报点评:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它
等底等高圆柱体积的。

巩固练习:
如果小麦堆的底面半径为2米,高为1.5米。

小麦堆的体积是多少立方米?。

最新北师大版小学数学六年级下册《圆锥的体积》精编导学案_教学设计

最新北师大版小学数学六年级下册《圆锥的体积》精编导学案_教学设计

最新北师大版小学数学六年级下册《圆锥的体积》精编导学案_教学设计课题圆锥的体积课型新授课设计说明本课时是在学生已经认识了圆锥的特征、掌握了圆柱的体积计算公式的基础上进行教学的,圆锥的体积计算公式的推导是本课时的教学难点。

为了让学生直观地感知圆锥的体积与同它等底等高的圆柱的体积的关系,基于“引导学生主动建构知识”的新课标理念,结合学生的学情实际,本课时在教学设计上有以下特色:1.引导猜测。

本设计先通过复习唤醒学生已有的知识经验,帮助学生建立新旧知识间的联系,使学生感受到新知的亲切;再引导学生猜测,激发学生学习新知的欲望,使学生积极、主动地参与到教学活动中来。

2.实验验证。

本设计为学生提供充分的实验、交流空间,积极引导学生通过实验突破教学难点,使学生在主动参与实验的同时,自主完成对自己猜测结果的验证,使学生真正成为课堂的主人。

3.合作总结。

本设计让学生经历知识的“再创造”过程,抓住关键,有效地引导学生对实验结果进行概括总结,使学生在合作学习的过程中,顺利地把在实验中获得的感性认识提高到理性认识,自主得出:在等底等高的前提下,圆锥的体积=圆柱的体积×=底面积×高×。

4.应用提高。

练习的设计由易到难,通过对例题及相关问题的探讨和解决,让学生在学以致用的过程中,实现对已学知识的巩固、内化,达到进一步催化学生对知识的建构目的,提高学生解决问题的能力。

课前准备教师准备:多媒体课件等底等高的圆柱、圆锥模型不等底不等高但体积相等的圆柱、圆锥模型学生准备:等底等高的圆柱形和圆锥形容器沙子直尺教学过程教学环节教师指导学生活动效果检测一、复习导入。

(5分钟)1.组织学生结合圆柱、圆锥的模型回忆圆柱、圆锥的特征。

2.引导学生回忆圆柱的体积计算公式。

3.观察:将圆柱形容器中装满沙子并慢慢倒在桌上,会变成什么形状的沙堆?4.猜想:这个圆锥形沙堆的体积怎样计算呢?1.结合圆柱、圆锥模型回忆相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)将圆锥形容器装满沙,再倒入空圆柱形容器内,()次可以倒满。实验说明,圆锥的体积等于和它等底等高的圆柱体积的(),所以圆锥的体积V=()。
心中
有数
4.通过预习,我知道了圆锥的体积=()×()×()。
5.求下面圆锥的体积。
温馨
提示
知识准备:圆柱和圆锥的联系。
学具准备:等底等高的圆柱形和圆锥形容器各一个。
参考答案:
1.底面积高
2.它的底面积和高
3.(2)3 Sh
4. 底面积高
5.10.8m375.36dm3200.96cm3
9圆锥的体积
项目
内容
1.圆柱的体积=()×()。
2.根据圆柱的体积想一想圆锥的体积和什么有关。
3.这堆小麦的体积是多少?
分析与解答:圆锥的体积能不能用“底面积×高”计算?
直接用“底面积×高”得到的是圆柱的体积,圆锥的体积应该是等底等高的圆柱体积的……
(1)准备等底等高的圆柱形容器和圆锥形容器各一个。
相关文档
最新文档