数学---广东省深圳市南山区2016-2017学年高二(上)期末试卷(理)(解析版)
2016-2017深圳市南山区上学期期末考试题高二数学及答案2016-2017上 高二理数
高 二 教 学 质 量 监 测数学(理科)注意:本试卷分选择题和非选择题两部分,共150分,考试时间120分钟.1.答卷前,考生填、涂好学校、班级、姓名及座位号。
2.选择题用2B 铅笔作答;非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.设命题P :.02,2>+∈∀x R x 则P ⌝为A. 02,200>+∈∃x R x B.02,200≤+∈∃x R x C.02,200<+∈∃x R xD.02,2≤+∈∀x R x2. 等差数列{}n a 前n 项和为n S ,公差2-=d ,213=S 则1a 的值为: A. 10 B. 9 C. 6D. 53.“21cos=α”是 “3πα=”的A .充要条件B .充分不必要条件C .必要不充分条件D .不充分也不必要条件4. 已知向量(2,1,4),(1,0,2)a b →→==,且→→+b a 与→→-b a k 互相垂直,则k 的值是 A. 15. 在ABC ∆,则AC = A .1B .2C .3D .46. 若双曲线12222=-by a x 的一条渐近线经过点()4,3,则此双曲线的离心率为A. 37B.45C. 34D.357. 若b a ,均为大于1的正数,且100=ab ,则b a lg lg ⋅的最大值为A. 0B.1C. 2D.252017.01.048. 已知数列{}n a :11=a ,()++∈+=N n a a n n ,321 ,则=n a A. 321-+n B.12-nC. 12+nD.722-+n9. 已知直线022=-+by ax ()0,0>>b a 平分圆064222=---+y x y x ,的最小值是 A.22-B.12-C.223+D.223-10. 设y x ,满足约束条件,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩,则y x z 2-=的取值范围为A. ()3,3-B.[]3,3-C. [)3,3-D.[]2,2-11. 如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点,若A. 232y x =B. D. 12. 在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若223=,2a =, ABC S ∆=2,则b 的值为AB .2C .D .二、填空题(每题5分,满分20分,将答案填在答题纸上)11. 在中,0075,45,3===C A AC ,则BC 的长为.12. 已知数列{}n a 满足:()++∈=+N n a a n n ,log 1log 133,且9642=++a a a ,则)(l o g 97531a a a ++的值为.15. 设不等式()(2)0x a x a -+-<的解集为N ,若N x ∈是⎪⎭⎫⎢⎣⎡-=∈2,21M x 的必要条件,则a 的取值范围为_________C 23y x =29y x =ABC ∆16. 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为21,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若→2→22=C F AF ,则椭圆的离心率为_________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)已知正项数列{}n a 的前n 项的和为n S ,且满足:n n n a a S +=22,()+∈N n(1)求321,,a a a 的值 (2)求数列{}n a 的通项公式18.(本题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且B c a C b cos )2(cos -=. (1)求角B 的值;(2)若c b a ,,成等差数列,且3=b ,求ABC ∆面积19.(本题满分12分)已知递增的等比数列{}n a 满足:9,84132=+=⋅a a a a (1)求数列{}n a 的通项公式;(2)设数列{}())∈(122=:+N n a n b b n n n -,求数列{}n b 的前n 项的和n T20.(本题满分12分),是平面内的一个动点,直线与交于点,(1)求动点的轨迹的方程;(2)设直线与曲线交于M、N两点,当线段的中点在直线上时,求直线l的方程.21.(本题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD//EF(3)求二面角E﹣BC﹣A的余弦值.21题图 22题图22.(本题满分12分)已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(1)求动点G的轨迹方程;(2)设(1)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.P PA PB PP C1:+=kxyl C MN20x y+=高二数学理科数学参考答案: 一、选择题1—12 BBCDA DBACB BA 二、填空题13.2 14. 5- 15.25或21≥-≤a a 16. 三、解答题17. 解:(1)3,2,1321===a a a ……3分(2)22n n a S = +n a , ①1211n 2+++=∴+n n a a S ② ②-① 得 ()()0111=--+++n n n n a a a a …..5分0,01>+∴>+n n n a a a 1-1=∴+n n a a ……7分{}n a ∴是首项为1,公差为1的等差数列……..8分()n n a n =⨯-+=∴111……10分 (学生用数学归纳法做相应给分)18.解:(1)∴-=,B c a C b cos )2(cos 由正弦定理,B C A C B cos )sin sin 2(cos sin -= ∴,B AC B C B cos sin 2sin cos cos sin =+……2分 ∴,)(B A C B cos sin 2sin=+……3分 又π=++C B A ∴,B A A cos sin 2sin =……4分21cos =∴B 又B 为三角形内角 ……5分3π=∴B ……6分(2)由题意得 ,62=+=c a b ……7分 又 3π=B()acac c a ac b c a B 292221cos 2222--+=-+==∴……9分 9=∴ac ……10分 439sin 21==∴∆B ac S ABC ……12分19. 解:(1)由题意,得,84132==a a a a 又,941=+a a 所以,8,141==a a , 或 ,1,841==a a ,……3分由{}n a 是递增的等比数列,知1>q 所以,8,141==a a ,且2=q ……………4分1111221---=⨯==∴n n n n q a a ……………5分(2)由(1)得()()n n n n a n b 212122-=-=,…………………………6分 所以123123252...(21)2n n T n =⋅+⋅+⋅++-⋅ 所以23412123252...(21)2n n T n +=⋅+⋅+⋅++-⋅……………………8分所以1231122(22...2)(21)2n n n T n +-=⋅++++--…………………………10分 得()12326n n T n +=-+ .…………………………………………12分20.(11分3分6分 (2)设MN 的中点坐标为00(,)x y ………………7分得22(21)40k x kx ++=…………………………9分11分 由0020x y +=,得1k =所以直线的方程为:…………………………12分1y x =+21. 解:(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;………………………………4分(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;……………………5分由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.…………………………6分可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,……………………………………7分∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.……………………………………8分以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)…………9分设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).………………10分设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).……………………11分设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.…………………………12分22. 解:(Ⅰ)焦点F(0,1),显然直线AB的斜率存在,设AB:y=kx+1,联立x2=4y,消去y得,x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),G(x,y),则x1+x2=4k,x1x2=﹣4,所以,所以,消去k,得重心G的轨迹方程为;…………………………4分(Ⅱ)由已知及(Ⅰ)知,,因为,所以DG∥ME,(注:也可根据斜率相等得到),…………5分,……6分D点到直线AB的距离,……………………7分所以四边形DEMG的面积,………………10分当且仅当,即时取等号,………………11分此时四边形DEMG的面积最小,所求的直线AB的方程为.………………12分。
广东省深圳市南山区高二上册期末数学试卷(有答案)【精选】.doc
广东省深圳市南山区高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)设命题P:∀∈R,2+2>0.则¬P为()A.B.C.D.∀∈R,2+2≤02.(5分)等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.53.(5分)“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.不充分也不必要条件4.(5分)已知向量=(2,1,4),=(1,0,2),且+与﹣互相垂直,则的值是()A.1 B.C.D.5.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.46.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.7.(5分)若a,b均为大于1的正数,且ab=100,则lga•lgb的最大值是()A.0 B.1 C.2 D.8.(5分)已知数列{a n}:a1=1,,则a n=()A.2n+1﹣3 B.2n﹣1 C.2n+1 D.2n+2﹣79.(5分)若直线2a+by﹣2=0(a>0,b>0)平分圆2+y2﹣2﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣210.(5分)设,y满足约束条件,则=﹣2y的取值范围为()A.(﹣3,3)B.[﹣3,3]C.[﹣3,3)D.[﹣2,2]11.(5分)如图过拋物线y2=2p(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=B.y2=3 C.y2=D.y2=912.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若△ABC中,AC=,A=45°,C=75°,则BC=.14.(5分)已知数列{a n}满足:,且a2+a4+a6=9,则的值为.15.(5分)设不等式(﹣a)(+a﹣2)<0的解集为N,若∈N是的必要条件,则a的取值范围为.16.(5分)已知椭圆的左、右焦点分别为F1,F2,过F1且与轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知正项数列{a n}的前n项的和为S n,且满足:,(n∈N+)(1)求a1,a2,a3的值(2)求数列{a n}的通项公式.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a﹣c)cosB.(1)求角B的值;(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.19.(12分)已知递增的等比数列{a n}满足:a2•a3=8,a1+a4=9(1)求数列{a n}的通项公式;(2)设数列,求数列{b n}的前n项的和T n.20.(12分)已知点A(﹣,0),B(,0),P是平面内的一个动点,直线PA与PB 交于点P,且它们的斜率之积是﹣.(1)求动点P的轨迹C的方程;(2)设直线l:y=+1与曲线C交于M、N两点,当线段MN的中点在直线+2y=0上时,求直线l的方程.21.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD∥EF(3)求二面角E﹣BC﹣A的余弦值.22.(12分)已知O是坐标系的原点,F是抛物线C:2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.广东省深圳市南山区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)设命题P:∀∈R,2+2>0.则¬P为()A.B.C.D.∀∈R,2+2≤0【解答】解:命题是全称命题,则命题的否定是特称命题,即¬P:,故选:B2.(5分)等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.5【解答】解:公差d=﹣2,S3=21,可得3a1+×3×2×(﹣2)=21,解得a1=9,故选:B.3.(5分)“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.不充分也不必要条件【解答】解:当+2π时,满足但不一定成立,即充分性不成立,当时,成立,即必要性成立,则“”是“”的必要不充分条件,故选:C4.(5分)已知向量=(2,1,4),=(1,0,2),且+与﹣互相垂直,则的值是()A.1 B.C.D.【解答】解:+=(3,1,6),﹣=(2﹣1,,4﹣2),∵+与﹣互相垂直,∴3(2﹣1)++6(4﹣2)=0,解得=,故选:D.5.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC•BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.6.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a,即9(c2﹣a2)=16a2,解得=.故选:D.7.(5分)若a,b均为大于1的正数,且ab=100,则lga•lgb的最大值是()A.0 B.1 C.2 D.【解答】解:∵a>1,b>1,∴lga>0,lgb>0∴lga•lgb≤()2=()2=1当且仅当a=b=10时等号成立即lga•lgb的最大值是1故选B.8.(5分)已知数列{a n}:a1=1,,则a n=()A.2n+1﹣3 B.2n﹣1 C.2n+1 D.2n+2﹣7【解答】解:由,得a n+3=2(a n+3),+1∵a1+3=4≠0,∴数列{a n+3}是以4为首项,以2为公比的等比数列,则,∴.故选:A.9.(5分)若直线2a+by﹣2=0(a>0,b>0)平分圆2+y2﹣2﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣2【解答】解:由题意可得直线2a+by﹣2=0(a>0,b>0)经过圆2+y2﹣2﹣4y﹣6=0的圆心(1,2),故有2a+2b=2,即a+b=1.再根据+=+=3++≥3+2=2+2,当且仅当=时,取等号,故+的最小值是3+2,故选:C.10.(5分)设,y满足约束条件,则=﹣2y的取值范围为()A.(﹣3,3)B.[﹣3,3]C.[﹣3,3)D.[﹣2,2]【解答】解:由=﹣2y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=,过点C(3,0)时,直线y=的截距最小,此时最大,代入目标函数=﹣2y,得=3,∴目标函数=﹣2y的最大值是3.当直线y=,过点B时,直线y=的截距最大,此时最小,由,得,即B(1,2)代入目标函数=﹣2y,得=1﹣2×2=﹣3∴目标函数=﹣2y的最小值是﹣3.故﹣3≤≤3,故选:B11.(5分)如图过拋物线y2=2p(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=B.y2=3 C.y2=D.y2=9【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3,故选:B12.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.=,【解答】解:∵在锐角△ABC中,sinA=,S△ABC∴bcsinA=bc=,∴bc=3,①又a=2,A是锐角,∴cosA==,∴由余弦定理得:a2=b2+c2﹣2bccosA,即(b+c)2=a2+2bc(1+cosA)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若△ABC中,AC=,A=45°,C=75°,则BC=.【解答】解:∵AC=,A=45°,C=75°,B=180°﹣A﹣C=60°,∴由正弦定理,可得:BC===.故答案为:.14.(5分)已知数列{a n}满足:,且a2+a4+a6=9,则的值为﹣5.【解答】解:由,得log3(3a n)=log3a n+1,=3a n,且a n>0,∴a n+1∴数列{a n}是公比为3的等比数列,又a2+a4+a6=9,∴=35.∴=.故答案为:﹣5.15.(5分)设不等式(﹣a)(+a﹣2)<0的解集为N,若∈N是的必要条件,则a的取值范围为.【解答】解:若∈N是的必要条件,则M⊆N,若a=1时,不等式(﹣a)(+a﹣2)<0的解集N=∅,此时不满足条件.若a<1,则N=(a,2﹣a),则满足,得,此时a≤﹣,若a>1,则N=(2﹣a,a),则满足,得,此时a≥,综上,故答案为:16.(5分)已知椭圆的左、右焦点分别为F1,F2,过F1且与轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.【解答】解:如图,由题意,A(﹣c,),∵=2,∴,且C﹣c=c,得C=2c.∴C(2c,),代入椭圆,得,即5c2=a2,解得e=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知正项数列{a n}的前n项的和为S n,且满足:,(n∈N+)(1)求a1,a2,a3的值(2)求数列{a n}的通项公式.【解答】解:(1)由,取n=1,得,∵a n>0,得a1=1,取n=2,得,解得a2=2,取n=3,得,解a3=3;(2)∵+a n,①∴,②+a n)(a n+1﹣a n﹣1)=0,②﹣①得(a n+1∵a n>0,∴a n+1+a n>0,则a n+1﹣a n=1,∴{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)×1=n.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a﹣c)cosB.(1)求角B的值;(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.【解答】(本题满分为12分)解:(1)∵bcosC=(2a﹣c)cosB,∴由正弦定理sinBcosC=(2sinA﹣sinC)cosB,∴sinBcosC+cosBsinC=2sinAcosB,…(2分)∴sin(B+C)=2sinAcosB,…(3分)又A+B+C=π,∴sinA=2sinAcosB,…(4分)∴,又B为三角形内角…(5分)∴…(6分)(2)由题意得2b=a+c=6,…(7分)又,∴…(9分)∴ac=9…(10分)∴…(12分)19.(12分)已知递增的等比数列{a n}满足:a2•a3=8,a1+a4=9(1)求数列{a n}的通项公式;(2)设数列,求数列{b n}的前n项的和T n.【解答】解:(1)由题意,得a2a3=a1a4=8,又a1+a4=9,所以a1=1,a4=8,或a1=8,a4=1,由{a n}是递增的等比数列,知q>1所以a1=1,a4=8,且q=2,∴,即a n=2n﹣1;(2)由(1)得,所以所以,两式相减,得,得.20.(12分)已知点A(﹣,0),B(,0),P是平面内的一个动点,直线PA与PB 交于点P,且它们的斜率之积是﹣.(1)求动点P的轨迹C的方程;(2)设直线l:y=+1与曲线C交于M、N两点,当线段MN的中点在直线+2y=0上时,求直线l的方程.【解答】解:(1)设,由,整理得+y2=1,≠(2)设MN的中点坐标为(0,y0),联立得(22+1)2+4=0,所以,由0+2y0=0,得=1,所以直线的方程为:y=+121.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD∥EF(3)求二面角E﹣BC﹣A的余弦值.【解答】证明:(1)∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC.(2)由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角,由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF.解:(3)以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,),=(﹣2a,0,0),设平面BEC的法向量=(1,y1,1),则,取1=,则=(),设平面ABC的法向量为=(,y,),则,取y=,得,设二面角E﹣BC﹣A的平面角为θ.则cosθ===﹣,∴二面角E﹣BC﹣A的余弦值为﹣.22.(12分)已知O是坐标系的原点,F是抛物线C:2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.【解答】解:(Ⅰ)焦点F(0,1),显然直线AB的斜率存在,设AB:y=+1,联立2=4y,消去y得,2﹣4﹣4=0,设A(1,y1),B(2,y2),G(,y),则1+2=4,12=﹣4,所以,所以,消去,得重心G的轨迹方程为;(Ⅱ)由已知及(Ⅰ)知,,因为,所以DG∥ME,(注:也可根据斜率相等得到),,D点到直线AB的距离,所以四边形DEMG的面积,当且仅当,即时取等号,此时四边形DEMG的面积最小,所求的直线AB的方程为.。
广东省深圳市南山区2015-2016学年高二(上)期末数学(理)试题
高 二 教 学 质 量 监 测数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损. 之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
4.考生必须保持答题卡的整洁,不折叠,不破损,考试结束后,将答题卡交回。
5.考试不可以使用计算器.第I 卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个....选项符合题意)1.“21x >”是“1x >”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是 A .钝角三角 B .直角三角形 C .锐角三角形D .不能确定3.下列双曲线中,渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2212y x -= D .2212x y -= 4.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = A .1 B .2 C .12 D .182016.01.205. 若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=A .3B .23C .38 D .32 6. 若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于 A .2 B .3 C .4 D .57.已知命题p :|x -1|≥2,命题q :x ∈Z ,若“p 且q ”与“非q ”同时为假命题,则满足条件的x 为A .{x|x ≥3或x ≤-1,x ∈Z}B .{x|-1≤x ≤3,x ∈Z}C .{0,1,2}D .{-1,0,1,2,3}8.在C ∆AB 中,三个内角A ,B ,C 所对的边为a ,b ,c ,若C S ∆AB =6a b +=,cos cos 2cos C a b cB +A=,则c =A. B.C .4D.9. 设z x y =+,其中实数x ,y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为6,则z 的最小值为A .3-B .2-C .1-D .010. 斜率为1的直线经过抛物线24y x =的焦点,且与抛物线相交于A,B 两点,则错误!未找到引用源。
2016-2017学年高二上学期期末考试数学理试卷 Word版含答案
2016-2017高二年级第一学期期末考试数 学 (理科)本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01=+-y x 的斜率是 ( )A .1B .1-C .4π D .43π 2.方程2240x y x +-=表示的圆的圆心和半径分别为( )A .(2,0)-,2B .(2,0)-,4C .(2,0),2D .(2,0),43.若两条直线210ax y +-=与3610x y --=垂直,则a 的值为 ( )A .4B .4-C .1D .1-4.在空间直角坐标系中,点(1,2,3)P -关于坐标平面xOy 的对称点为 ( )A .(1,2,3)--B .(1,2,3)---C .(1,2,3)--D .(1,2,3)5.已知三条直线,,m n l ,三个平面,,αβγ,下面说法正确的是( )A .//αγαββγ⊥⎫⇒⎬⊥⎭B .//m l m n n l ⊥⎫⇒⎬⊥⎭C .////m l l m ββ⎫⇒⎬⊥⎭D .//m n m n γγ⎫⇒⊥⎬⊥⎭6.“直线l 的方程为)2(-=x k y ”是“直线l 经过点)0,2(”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.一个三棱锥的三视图如图所示,则三棱锥的体积为( )A .53B .103C .203D .2538.实数x ,y 满足10,1,x y x y a -+≥⎧⎪≤⎨⎪≥⎩,若2u x y =-的最小值为4-,则实数a 等于( )A .4-B .3-C .2-D .6二.填空题:本大题共6小题,每小题4分,共24分.9.双曲线2214y x -=的渐近线方程为_________.10.点P 是椭圆22143x y +=上的一点,1F 、2F 分别是椭圆的左右焦点,则∆21F PF 的周长是_________. 11.已知命题p :1x ∀>,2210x x -+>,则p ⌝是_________.12.在空间直角坐标系中,已知点)1,,0(),0,1,2(),2,0,1(a C B A ,若AC AB ⊥,则实数a 的值为_________. 13.已知点P 是圆221x y +=上的动点,Q 是直线:34100l x y +-=上的动点,则||PQ 的最小值为_________.14.如图,在棱长均为2的正三棱柱111C B A ABC -中,点M 是侧棱1AA 的中点,点P 、Q 分别是侧面11BCC B 、底面ABC 内的动点,且//1P A 平面BCM ,⊥PQ 平面BCM ,则点Q 的轨迹的长度为_________.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知圆M 过点A ,(1,0)B ,(3,0)C -. (Ⅰ)求圆M 的方程;(Ⅱ)过点(0,2)的直线l 与圆M 相交于D 、E 两点,且32=DE ,求直线l 的方程.16. (本小题满分10分)已知抛物线2:4C y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点,定点(5,0)M . (Ⅰ)若直线l 的斜率为1,求△ABM 的面积;(Ⅱ)若AMB ∆是以M 为直角顶点的直角三角形,求直线l 的方程.17. (本小题满分12分)如图,在底面是正三角形的三棱锥P ABC -中,D 为PC 的中点,1PA AB ==,PB PC ==.(Ⅰ)求证:PA ⊥平面ABC ;(Ⅱ)求BD 与平面ABC 所成角的大小; (Ⅲ)求二面角D AB C --的余弦值.18.(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)的左、右焦点分别为1F 、2F ,右顶点为A ,上顶点为B ,△12BF F 是边长为2的正三角形.(Ⅰ)求椭圆C 的标准方程及离心率;(Ⅱ)是否存在过点2F 的直线l ,交椭圆于两点P 、Q ,使得1//PA QF ,如果存在,试求直线l 的方程,如果不存在,请说明理由.高二年级第一学期期末练习参考答案数 学 (理科)阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.二.填空题:本大题共6小题,每小题4分,共24分. 9. 2y x =±10. 6 11. 1x ∃>,2210x x -+≤ 12. 1- 13. 114.43三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. 解:(Ⅰ)设圆M :220x y Dx Ey F ++++=,则3021009303F D D F E D F F ⎧+==⎧⎪⎪++=⇒=⎨⎨⎪⎪-+==-⎩⎩………………………………………………………………(3分)故圆M :22230x y x ++-=,即22(1)4x y ++= …………………………(4分)(Ⅱ)由(Ⅰ)得,(1,0)M -.设N 为DE 中点,则MN l ⊥,1||||2DN EN ==⋅=5分) 此时||1MN ==. …………………………………(6分)当l 的斜率不存在时,:0l x =,此时||1MN =,符合题意 …………(7分)当l 的斜率存在时,设:2l y kx =+,由题意1= ……………………………(8分)解得:34k =, ……………………………(9分) 故直线l 的方程为324y x =+,即3480x y -+=………………………………(10分)综上直线l 的方程为0x =或3480x y -+=16. 解:(Ⅰ)解法1:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2244401y xy y y x ⎧=⇒--=⎨=-⎩………………………………………………(2分)设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->故121244y y y y +=⎧⎨⋅=-⎩ ……………………………………………………………(3分)有12||y y -==………………………………………(4分)有121211||4||42||22AMB AMF BMF S S S y y y y ∆∆∆=+=⋅⋅+⋅⋅=⋅-=…………………………(5分)解法2:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2246101y xx x y x ⎧=⇒-+=⎨=-⎩……………………………………………(2分) 设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->126x x +=,1228AB x x =++= ……………………………………(3分) 点M 到直线AB的距离d ==4分)182ABM S ∆=⨯⨯…………………………………(5分)(Ⅱ)解法1:易得,直线l 的斜率不为零,设直线l 的方程为1x my =+2244401y xy my x my ⎧=⇒--=⎨=+⎩ ………………………………………………………(6分) 设11(,)A x y ,22(,)B x y ,由216160m ∆=+>,得121244y y my y +=⎧⎨⋅=-⎩………………………………………………………………(7分) 由0MA MB ⋅=,得1212(5)(5)0x x y y --+=, ………………(8分)即1212(4)(4)0my my y y --+=整理得:21212(1)4()160m y y m y y +-++=此时有:2(1)(4)4(4)160m m m +⋅--⋅+=,解得m =9分) 故l 的方程为15x y =+或15x y =-+即550x -=或550x -=………………………………………(10分)解法2:易知直线l x ⊥时不符合题意.可设直线l 的方程为)1(-=x k y .⎩⎨⎧=-=x y x k y 4),1(2,消去y ,可得0)42(2222=++-k x k x k . …………………………(6分) 则0)1(162>+=∆k .设11(,)A x y ,22(,)B x y ,则22142k x x +=+,121=x x . …………………………………………(7分)由0MA MB ⋅=,得1212(5)(5)0x x y y --+=,………………………(8分)即:0425)(5212121=-++-x x x x x x , 即:0425)42(512=-++-k ,解得315±=k . …………(9分) 故l 的方程为0535=--y x 或0535=-+y x .………………………………………(10分)17.解:(Ⅰ)∵ 1PA AB ==,PB =∴ PA AB ⊥ ……………………………………………(1分) ∵ 底面是正三角形 ∴ 1AC AB ==∵ PC =∴ PA AC ⊥ ……………………………………(2分) ∵ AB AC A = ,AB AC ⊂平面ABC ∴ PA ⊥平面ABC .………………………………………(3分)(Ⅱ)以A 为原点,AB 为x 轴,AP 为z 轴,平面ABC 中垂直于AB 的直线为y 轴建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,1(,22C ,(0,0,1)P …………………………………………………………………………………………(4分)所以11()42D ,31()42BD =- . ………………………………(5分)平面ABC 的法向量为1(0,0,1)n =,…………………………………(6分)记BD 与平面ABC 所成的角为θ,则1sin cos ,BD θ=<> n =12……………………………(7分) ∴ 6πθ=.…………………………(8分)(Ⅲ)设平面ABD 的法向量为2(,,)n x y z =,由2n AD ⊥ 得:11042x y z ++=, ……………………………(9分) 由2n AB ⊥得:0x =代入上式得,z y =. ………………………(10分)令2y =,则z =2(0,2,n =. …………………………………(11分)记二面角D AB C --的大小为α,则12cos |cos ,|n n α=<>= .………(12分)18. 解:(Ⅰ)由题意可得2,1a b c === ……………………………………(2分)所以椭圆C 的标准方程为22143x y +=,……………………………………(3分)椭圆的离心率12c e a ==.……………………………………………(4分)(Ⅱ)解法1:由(Ⅰ)得,1(1,0)F -,2(1,0)F ,(2,0)A ,设11(,)P x y ,22(,)Q x y显然直线l 的斜率不为零,设直线l 的方程为1x my =+,则 ……………………………(5分)222213(1)412431x y my y x my ⎧+=⎪⇒++=⎨⎪=+⎩………………(6分)整理得:22(34)690m y my ++-=,此时21441440m ∆=+>,故122122634934m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩……………………………………(7分) 注意到1111(2,)(1,)AP x y my y =-=- ,12222(1,)(2,)FQ x y my y =+=+…………………………(8分)若1//PA QF ,则1221(1)(2)my y my y -⋅=+⋅,即212y y =- ……………(9分)此时由21212122212222627234612(34)3434m y y y m m y y m m m y y y m m ⎧=-=⎧⎪⎪⎪+⇒⇒=-⎨⎨++=-⎪⎪=-+⎩⎪+⎩, ………………………(10分)故2222729(34)34m m m -=-++,解得254m =,即m =……………(11分)故l的方程为1x y =+或1x y =+,20y -=20y += …………………………………(12分)解法2: 由(Ⅰ)得1(1,0)F -,2(1,0)F ,(2,0)A . 直线l x ⊥时,212221F F AF QF PF ≠=,则1//PA QF 不成立,不符合题意..………………………………(5分)可设直线l 的方程为)1(-=x k y . .……………………………(6分)⎪⎩⎪⎨⎧=+-=134),1(22y x x k y ,消去y ,可得()01248342222=-+-+k x k x k ………………(7分) 则0)1(1442>+=∆k .设11(,)P x y ,22(,)Q x y则3482221+=+k k x x ①,341242221+-=k k x x ② .…………………(8分)),2(11y x -=,),1(221y x F +=. 若1//PA QF ,则F 1//,则0)1)(1()1)(2(1221=-+---x x k x x k .化简得03221=-+x x ③. ………………………(9分)联立①③可得3494221++=k k x ,3494222+-=k k x , ………………………(10分) 代入②可以解得25±=k . …………………………(11分) 故l20y -=20y +=. ……………(12分)。
深圳市南山区2016—2017学年度上学期高三期末统考理综(化学)试卷与答案
化学试题可能用到的相对原子量: H-1 C-12 N-14 O-16 S-32 Co-59 Cu-64 Zn-65第I 卷一、选择题:本题共7小题,每小题6分。
在每小题给出的4个选项中,只有一项是符合题目要求的。
7.化学与人类生活密切相关,下列说法不正确...的是( ) A .生物质能源是可再生能源B .浸泡过高锰酸钾溶液的硅土可用于水果保鲜C .二氧化硅是人类将太阳能转化为电能的常用材料D .地沟油可用于制取生物柴油8.设N A 为阿伏加德罗常数的值,下列说法正确..的是( ) A .常温常压下,18 g D 2O 中所含中子数为10 N A B .1 mol/L NH 4Cl 溶液中含有NH 4+ 数目小于1 N AC .熔融状态下,1 mol NaHSO 4中所含阳离子数目为2 N AD .56 g 铁粉与一定量的氯气完全反应,转移电子数≤ 3 N A 9.下列关于有机化合物的说法正确..的是( ) A .分子式为C 4H 8Cl 2的有机化合物有10种 B .可用碳酸钠溶液鉴别乙酸、乙醇和苯C .1—丙醇和2—丙醇均可与NaOH 的醇溶液共热制备1—丙烯D .CH 2=C(CH 2CH 3)CH 3 的化学名称是2-乙基-1-丙烯11.W 、X 、Y、Z 四种短周期主族元素在周期表中的相对位置如图所示,由此可知( )A .四种元素简单离子半径最小的一定是YB .四种元素最高价氧化物对应水化物酸性最强的一定是YC .若W 为金属,则常温下W 不与浓硫酸反应D .简单气态氢化物的热稳定性一定是:X>Z12.新型锂-空气电池具有能量密度高的优点,有望成为新能源汽车的电源,其结构如下图所示,其中固体电解质只允许Li +通过,下列说法正确的是( )A .放电时,负极反应式:Li-e -+OH -=LiOHB .放电时,当外电路中有1 mol e -转移时,水性电解液离子总数增加1 N AC .应用该电池电镀铜,阴极质量增加64 g ,理论上将消耗11.2 L O 2D .若把水性电解液换成固体氧化物电解质,则正极会因为生成Li 2O 而引起碳孔堵塞,不利于正极空气的吸附13.将pH均为3,体积均为V0的HA和HB溶液,分别加水稀释至体积V,pH随lg VV0的变化如图所示。
数学---广东省深圳市南山区2016-2017学年高一(上)期末试卷(解析版)
广东省深圳市南山区2016-2017学年高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁U A)∩B等于()A.{0,4} B.{0,3,4} C.{0,2,3,4} D.{2}2.函数y=1﹣2x的值域为()A.[1,+∞) B.(1,+∞)C.(﹣∞,1] D.(﹣∞,1)3.直线310x+=的倾斜角是()A.30°B.60°C.120°D.150°4.如图是一个几何体的三视图,则该几何体的体积为()A.9πB.18πC.27πD.54π5.下列函数中既是偶函数,又在(0,+∞)上单调递减的为()A.12y x-=B.y=x﹣2C.12y x=D.y=x26.已知直线l1:3x+2y+1=0,l2:x﹣2y﹣5=0,设直线l1,l2的交点为A,则点A到直线的距离为()A.1 B.3 C.D.7.方程的实数根的所在区间为()A.(3,4) B.(2,3) C.(1,2) D.(0,1)8.计算其结果是()A.﹣1 B.1 C.﹣3 D.39.已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是()A.a=2c B.d=ac C.a=cd D.c=ad10.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;④存在一个平面γ,使得γ⊥α,γ⊥β.其中可以推出α∥β的条件个数是()A.1 B.2 C.3 D.411.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1] C.[﹣2,﹣1)D.[﹣1,1)12.定义函数序列:,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A. B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.函数y=+1g(x﹣1)的定义域是.14.设函数f(x)=,则方程f(x)=2的所有实数根之和为.15.设点A(﹣5,2),B(1,4),点M为线段AB的中点.则过点M,且与直线3x+y ﹣2=0平行的直线方程为.16.下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在正方体ABCD﹣A1B1C1D1中:(Ⅰ)求证:AC∥平面A1BC1;(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.18.(12分)已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直.(Ⅰ)若,且点P在函数的图象上,求直线l的一般式方程;(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.19.(12分)已知函数(其中a为非零实数),且方程有且仅有一个实数根.(Ⅰ)求实数a的值;(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.20.(12分)研究函数的性质,并作出其图象.21.(12分)已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM 折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:BM⊥平面ADM;(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.22.(12分)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.A【考点】交、并、补集的混合运算.【解析】∵∁U A={0,3,4},∴(∁U A)∩B={0,4},故选:A【点评】本题主要考查集合的基本运算,根据集合的交集和补集的定义是解决本题的关键.2.D【考点】函数的值域.【解析】函数y=1﹣2x,其定义域为R.∵2x的值域为(0,+∞),∴函数y=1﹣2x的值域为(﹣∞,1),故选D.【点评】本题考查了值域的求法,利用了指数函数值域求解.比较基础.3.C【考点】直线的倾斜角.【解析】直线3x+y+1=0的斜率为:,直线的倾斜角为:θ,tan,可得θ=120°.故选:C.【点评】本题考查直线的斜率与倾斜角的关系,考查计算能力.4.B【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的圆锥,圆锥的底面直径为6,故底面半径r=3,圆锥的高h=6,故圆锥的体积V==18π,故选:B【点评】本题考查的知识点是圆锥的体积和表面积,简单几何体的三视图,难度中档.5.B【考点】函数单调性的判断与证明;函数奇偶性的判断.【解析】对于A:y=,函数在(0,+∞)递增,不合题意;对于B:y=是偶函数,在(0,+∞)递减,符合题意;对于C:y=,不是偶函数,不合题意;对于D:y=x2在(0,+∞)递增,不合题意;故选:B.【点评】本题考查了函数的单调性、奇偶性问题,是一道基础题.6.A【考点】点到直线的距离公式.【解析】联立,得,∴A(1,﹣2),∴点A到直线的距离为d==1.故选:A.【点评】本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.7.C【考点】二分法求方程的近似解.【解析】令f(x)=ln x﹣,易知f(x)在其定义域上连续,f(2)=ln2﹣=ln2﹣ln>0,f(1)=ln1﹣1=﹣1<0,故f(x)=ln x﹣,在(1,2)上有零点,故方程方程的根所在的区间是(1,2);故选:C.【点评】本题考查了方程的根与函数的零点的关系应用.考查计算能力.8.B【考点】对数的运算性质.【解析】原式=+﹣lg5+|lg2﹣1|=+﹣lg5﹣lg1+1=1,故选:B【点评】本题考查了对数的运算法则和指数幂的运算性质,属于基础题.9.C【考点】对数值大小的比较.【解析】b>0,3d=6,∴d=log36,∴log36•log6b=log3b,∴a=cd故选:C【点评】本题考查了对数函的运算性质,属于基础题.10.B【考点】空间中直线与平面之间的位置关系.【解析】当α、β不平行时,不存在直线a与α、β都垂直,∴a⊥α,a⊥β⇒α∥β,故①正确;对②,∵a∥b,a⊂α,b⊂β,a∥β,b∥α时,α、β位置关系不确定②不正确;对③,异面直线a,b.∴a过上一点作c∥b;过b上一点作d∥a,则a与c相交;b与d 相交,根据线线平行⇒线面平行⇒面面平行,正确对④,∵γ⊥α,γ⊥β,α、β可以相交也可以平行,∴不正确.故选B.【点评】本题考查面面平行的判定.通常利用线线、线面、面面平行关系的转化判定.11.B【考点】集合的包含关系判断及应用.【解析】集合A={x|2x≤8}={x|0<x≤3},因为A∪B=A,所以B⊆A,所以0<m2+m+1≤3,解得﹣2≤m≤1,即m∈[﹣2,1].故选:B.【点评】本题主要考查集合的基本运算,比较基础.12.A【考点】抽象函数及其应用;函数的图象.【解析】由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…f n(x)=f(f n﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.二、填空题:本大题共4小题,每小题5分,共20分.13.(1,2]【考点】函数的定义域及其求法.【解析】要使函数有意义,可得:,解得:x∈(1,2].函数y=+1g(x﹣1)的定义域是(1,2].故答案为:(1,2].【点评】本题考查函数的定义域的求法,对数的解得性质的应用,考查计算能力.14.【考点】根的存在性及根的个数判断.【解析】∵f(x)=,则方程f(x)=2∴x>0时,x=2,x=3,x≤0时,x2=2,x=,∴+3=故答案为:【点评】本题考查了运用方程思想解决函数零点问题,分类讨论的思想,计算难度不大.15.3x+y+3=0【考点】待定系数法求直线方程.【解析】M(﹣2,3),设与直线3x+y﹣2=0平行的直线方程为:3x+y+m=0,把点M的坐标代入可得:﹣6+3+m=0,解得m=3.故所求的直线方程为:3x+y+3=0.故答案为:3x+y+3=0.【点评】本题考查了中点坐标公式、相互平行的直线的充要条件,考查了推理能力与计算能力,属于中档题.16.②④【考点】命题的真假判断与应用.【解析】若log a3>log b3>0,则a<b,故①错误;函数f(x)=x2﹣2x+3的图象开口朝上,且以直线x=1为对称轴,当x=1时,函数取最小值2,无最大值,故函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);故②正确;g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)可能存在零点;故③错误;数满足h(﹣x)=﹣h(x),故h(x)为奇函数,又由=﹣e x<0恒成立,故h(x)为减函数故④正确;故答案为:②④.【点评】本题以命题的真假判断与应用为载体,考查了对数函数的图象和性质,函数的值域,函数的零点,函数的奇偶性和函数的单调性等知识点,难度中档.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.证明:(Ⅰ)因为AA1∥CC1,所以四边形ACC1A1为平行四边形,…(2分)所以AC∥A1C1,又A1C1⊂平面A1BC1,AC⊄平面A1BC1,AC∥平面A1BC1;…(Ⅱ)易知A1C1⊥B1D1,因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,…(7分)因为BB1∩B1D1=B1,所以A1C1⊥平面BB1D1D,因为A1C1⊂平面A1BC1,所以平面A1BC1⊥平面BB1D1D.…(10分)【点评】本题考查线面平行的判定、考查线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.18.解(Ⅰ)点P在函数的图象上,,即点…(2分)由x+2y+4=0,得,即直线l0的斜率为,又直线l与直线l0垂直,则直线l的斜率k满足:,即k=2,…(4分)所以直线l的方程为,一般式方程为:2x﹣y+1=0.…(6分)(Ⅱ)点P(m,n)在直线l0上,所以m+2n+4=0,即m=﹣2n﹣4,…(8分)代入mx+(n﹣1)y+n+5=0中,整理得n(﹣2x+y+1)﹣(4x+y﹣5)=0,…(10分)由,解得,故直线mx+(n﹣1)y+n+5=0必经过定点,其坐标为(1,1).…(12分)【点评】本题考查了直线相互垂直的充要条件、直线系的应用,考查了推理能力与计算能力,属于中档题.19.解(Ⅰ)由,得,又a≠0,即二次方程ax2﹣4x+4﹣a=0有且仅有一个实数根(且该实数根非零),所以△=(﹣4)2﹣4a(4﹣a)=0,解得a=2(此时实数根非零).(Ⅱ)由(Ⅰ)得:函数解析式,任取0<x1<x2,则f(x1)﹣f(x2)==,∵0<x1<x2,∴x2﹣x1>0,2+x1x2>0,x1x2>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴函数f(x)在区间(0,+∞)上单调递减.【点评】本题考查了函数的单调性的证明,考查二次函数的性质,是一道中档题.20.解:(1)函数的定义域为{x/x∈R,x≠±2}…(1分)(2)函数的奇偶性:∵∴f(x)是偶函数…(3分)(3)∵,当x∈[0,2)时,且递减;当x∈(2,+∞)时,f(x)>1,递减且以直线x=2,y=1为渐近线;又f(x)是偶函数∴f(x)当x∈(﹣2,0]时,且递增;当x∈(﹣∞,﹣2)时,f(x)>1,递增且以直线x=﹣2,y=1为渐近线;…(8分)(4)函数f(x)的图象如图所示.…(12分)【点评】本题考查的知识点是函数的图象,函数的性质,本题中的函数即为所谓的“囧函数”,要求学生掌握.21.证明:(Ⅰ)因为矩形ABCD中,AB=2,AD=1,M为CD的中点,所以,所以AM2+BM2=AB2,所以BM⊥AM.…(3分)因为平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,又BM⊂平面ABCM,且BM⊥AM,∴BM⊥平面ADM.…(6分)解:(Ⅱ)因为E为DB的中点,所以,…(8分)又直角三角形ABM的面积,梯形ABCM的面积,所以,且,…(11分)所以.…(12分)【点评】本题考查线面垂直的证明,考查两个几何体的体积的比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.22.解:(Ⅰ)由,即f(x)=x2﹣4x+2,…(1分)由题设可知g(x)=(x﹣a)2﹣4(x﹣a)+2﹣a2=x2﹣(2a+4)x+4a+2,…(2分)因为g(x)有两个零点x1,x2,且x1<4<x2,∴g(4)=16﹣4(2a+4)+4a+2<0,,又a>0,于是实数a的取值范围为.…(Ⅱ)由g(x)=x2﹣(2a+4)x+4a+2可知,其对称轴为x=a+2,…(6分)①当0<a≤2时,a+2≥2a,函数g(x)在区间[a,2a]上单调递减,最小值λ=g(2a)=﹣4a+2,最大值μ=g(a)=﹣a2+2,则,显然此时a不存在,…(8分)②当2<a≤4时,a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,又,最大值μ=g(a)=﹣a2+2,则,,又2<a≤4,此时a亦不存在,…(10分)③当a>4时,a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,又,故最大值μ=g(2a)=﹣4a+2,则,即,综上可知,实数a的取值范围为.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.。
深圳市南山区2016届高三上学期期末考试(理数)
深圳市南山区2016届高三上学期期末考试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分,考试时间120分钟。
注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损。
之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
不按要求填涂的,答案无效。
3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排。
如需改动,先划掉原来的答案,然后再写上新的答案。
不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,不折叠,不破损。
考试结束后,将答题卡交回。
5.考试不可以使用计器。
第Ⅰ卷 选择题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U =Z ,集合{}1,6A =,{}2,0,1,6A B = ,那么()U A B = ð A .∅ B .{}3,4,5 C .{}2,0 D .{}1,6 2.已知复数i z x y =+(,x y ∈R ),且有1i 1ixy =+-,则z 的值为A B C D .2 3.设,a b ∈R ,则“1a b >>”是“22a b a b -<-”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.二项式62)n x+的展开式中,若常数项为60,则22m n 的值为 A .2 B .3 C .4 D .65.实数,x y 满足条件402200,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩,则z x y =-的最小值为A .1B .1-C .12D .26.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为=0.70.35+y x ,那么表中t 的值为 A .3B .3.15C .3.5D .4.57.设α是第二象限角,且3cos 5α=-,则tan 2α= A .247- B .127- C.127D .2478.阅读如下的程序框图,运行相应的程序,则程序运行后输出的结果为A .7B .9C .10D .119.如图,在矩形ABCD 中,AB =1BC =,沿AC 将矩形ABCD 折叠,连接BD ,所得三棱锥D ABC -的正视图和俯视图如图所示,则三棱锥D ABC -的侧视图的面积为A .34B .38C .12 D 10.如图,已知12,F F 是双曲线22221(0,0)y x a b a b-=>>的下,上焦点,过2F 点作以1F 为圆心,1OF 为半径的圆的切线,P 为切点,若切线段2PF 被一条渐近线平分,则双曲线的离心率为 A .3 B .2俯视图正视图俯正DCBAC D11.在ABC ∆中,,,A B C 的对边分别为,,a b c ,10a =,b =cos ,cos ,a C b Bcos c A 成等差数列,则c =A .15B .5C .3D .2512.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A. (0,]2B.3(0,]4C.2D. 3[,1)4第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分。
广东省深圳市南山区高二数学上学期期末试卷 理(含解析)
广东省深圳市南山区2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)在△ABC中,已知a=6,A=60°,C=45°,则c=()A.2B.C.D.22.(5分)双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x3.(5分)等比数列{a n}中,任意的n∈N*,a n+1+a n=3n+1,则公比q等于()A.2 B.3 C.D.﹣4.(5分)设a>0,b>0,且a+b=2,则+的最小值为()A.1 B.2 C.4 D.4.55.(5分)设,则不等式f(x)<x2的解集是()A.(2,+∞)∪(﹣∞,0] B. R C.①求和点G的坐标;②求异面直线EF与AD所成的角;③求点C到截面AEFG的距离.20.(14分)P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:x2=8(y﹣m)(m>0)(1)求轨迹C的方程;(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.广东省深圳市南山区2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)在△ABC中,已知a=6,A=60°,C=45°,则c=()A.2B.C.D.2考点:正弦定理.专题:解三角形.分析:利用正弦定理列出关系式,把sinA,sinC以及a的值代入计算即可求出c的值.解答:解:∵在△ABC中,a=6,A=60°,C=45°,∴由正弦定理=得:c===2,故选:D.点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.2.(5分)双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x考点:双曲线的简单性质.专题:计算题.分析:根据双曲线的渐近线方程的求法,直接求解即可.解答:解:双曲线的渐近线方程是,即.故选C.点评:本题考查双曲线的渐近线方程的求法,双曲线的基本性质的应用,考查计算能力.3.(5分)等比数列{a n}中,任意的n∈N*,a n+1+a n=3n+1,则公比q等于()A.2 B.3 C.D.﹣考点:数列递推式.专题:等差数列与等比数列.分析:把n=1、2分别代入已知的式子,并利用等比数列的通项公式化简求出公比q的值.解答:解:∵等比数列{a n}中,任意的n∈N*,a n+1+a n=3n+1,∴a2+a1=32,a3+a2=qa2+qa1=33,两个式子相除可得,公比q=3,故选:B.点评:本题考查了等比数列的通项公式,以及递推公式的化简,属于基础题.4.(5分)设a>0,b>0,且a+b=2,则+的最小值为()A.1 B.2 C.4 D.4.5考点:基本不等式.专题:不等式的解法及应用.分析:由题意可得+=(+)(a+b)=(2++),由基本不等式求最值可得.解答:解:∵a>0,b>0,且a+b=2,∴+=(+)(a+b)=(2++)≥(2+2)=2当且仅当=即a=b=1时取等号,故选:B点评:本题考查基本不等式,属基础题.5.(5分)设,则不等式f(x)<x2的解集是()A.(2,+∞)∪(﹣∞,0] B. R C.,综上原不等式的解集为(2,+∞)∪(﹣∞,0].故选A点评:本题考查了不等式的解法及分段函数,考查分类讨论的思想,本题解题的关键是对于求出的范围一定要和分段函数的范围分别并起来,本是一个基础题.6.(5分)已知x,y满足,则z=2x﹣y的最大值是()A.B.C.D.2考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的四边形ABCD及其内部,再将目标函数z=2x﹣y对应的直线进行平移,可得当x=3,y=时,目标函数z取得最大值.解答:解:作出不等式组表示的平面区域,得到如图的四边形ABCD及其内部,其中A(,),B(3,),C(3,4),D(0,3)设z=F(x,y)=2x﹣y,将直线l:z=2x﹣y进行平移,当l经过点B时,目标函数z达到最大值∴z最大值=F(3,)=2×3﹣=故选:B点评:本题给出二元一次不等式组,求目标函数z=2x﹣y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.7.(5分)下列命题中的假命题是()A.∃x∈R,x3<0B.“a>0”是“|a|>0”的充分不必要条件C.∀x∈R,2x>0D.“x<2”是“|x|<2”的充分非必要条件考点:特称命题;全称命题.专题:探究型.分析:对各命题逐个进行判断.A,显然x为负数时,恒成立;B,a>0时,|a|>0,反之,a可以是负数;C,利用指数函数的性质,可知∀x∈R,2x>0;D,x<2时,|x|<2不一定成立,反之,|x|<2时,x<2成立,故可得结论.解答:解:对于A,显然x为负数时,恒成立,故A为真命题;对于B,a>0时,|a|>0,反之,a可以是负数,所以“a>0”是“|a|>0”的充分不必要条件,故B为真命题;对于C,利用指数函数的性质,可知∀x∈R,2x>0,故C为真命题;对于D,x<2时,|x|<2不一定成立,反之,|x|<2时,x<2成立,“x<2”是“|x|<2”的必要非充分条件,故D为假命题故选D.点评:本题考查命题的真假判断,考查四种条件的判断,解题时需对各命题逐个进行判断.8.(5分)某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是()小时.A.B.C.D.1考点:解三角形的实际应用.专题:应用题;解三角形.分析:设两船在B点碰头,设舰艇到达渔船的最短时间是x小时,由题设知AC=10,AB=21x,BC=9x,∠ACB=120°,由余弦定理,知(21x)2=100+(9x)2﹣2×10×9x×cos120°,由此能求出舰艇到达渔船的最短时间.解答:解:设两船在B点碰头,由题设作出图形,设舰艇到达渔船的最短时间是x小时,则AC=10,AB=21x,BC=9x,∠ACB=120°,由余弦定理,知(21x)2=100+(9x)2﹣2×10×9x×cos120°,整理,得36x2﹣9x﹣10=0,解得x=,或x=﹣(舍).故选:B.点评:本题考查解三角形在生产实际中的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.二、填空题(每小题5分,共30分)9.(5分)已知命题p:∃x∈R,x2+2x=3,则¬p是∀x∈R,x2+2x≠3.考点:命题的否定.专题:规律型.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:∵命题p:∃x∈R,x2+2x=3是特称命题,∴根据特称命题的否定是全称命题,得¬p:∀x∈R,x2+2x≠3.故答案为:∀x∈R,x2+2x≠3.点评:本题主要考查含有量词的命题的否定,要求熟练掌握含有量词命题的否定的形式,比较基础.10.(5分)焦点坐标为(0,10),离心率是的双曲线的标准方程为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的几何量a,b,c即可求出双曲线方程.解答:解:焦点坐标为(0,10),离心率是的双曲线,可得c=10,a=8,b=6,焦点坐标为(0,10),离心率是的双曲线的标准方程为:.故答案为:.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.11.(5分)函数y=的最大值为.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:由条件利用基本不等式,求得函数y=的最大值.解答:解:函数y=≤=,当且仅当2x2=1﹣2x2,即x2=时,取等号,故函数y=的最大值为,故答案为:.点评:本题主要考查基本不等式的应用,注意检验等号成立条件是否具备,属于基础题.12.(5分)在等差数列{a n}中,已知a4+a14=1,则S17=1.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的性质可得a1+a17=a4+a14,代入求和公式计算可得.解答:解:由等差数列的性质可得a1+a17=a4+a14=1,∴由求和公式可得S17==1故答案为:1点评:本题考查等差数列的性质和求和公式,属基础题.13.(5分)边长为5、7、8的三角形的最大角与最小角之和为120°.考点:余弦定理.专题:计算题;解三角形.分析:直接利用余弦定理求出7所对的角的余弦值,求出角的大小,利用三角形的内角和,求解最大角与最小角之和.解答:解:根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为:120°.点评:本题考查余弦定理的应用,三角形的边角对应关系的应用,考查计算能力.14.(5分)记max{a,b}=,f(x)=max{|x﹣m|,|x+1|},若存在实数x,使得f (x)≤1成立,则实数m的取值范围是.考点:函数的最值及其几何意义.专题:计算题;函数的性质及应用;简易逻辑.分析:存在实数x,使得f(x)≤1成立的否定是任意实数x,恒有f(x)>1成立;从而可得m<﹣3或m>1;从而求实数m的取值范围.解答:解:存在实数x,使得f(x)≤1成立的否定是任意实数x,恒有f(x)>1成立;当x>0或x<﹣2时,|x+1|>1,故f(x)>1成立;当﹣2≤x≤0时,|x+1|≤1,故|x+m|>1在上恒成立,故m<﹣3或m>1;故存在实数x,使得f(x)≤1成立时,实数m的取值范围是.故答案为:.点评:本题考查了命题的否定与分段函数的应用,同时考查了函数的最值,属于中档题.三、解答题(本题共6小题,共80分)15.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+c2﹣ac=b2.(1)求角B的大小;(2)若b=3,sinC=2sinA,求△ABC的面积.考点:余弦定理.专题:解三角形.分析:(1)利用余弦定理表示出cosB,把已知等式变形后代入计算求出cosB值,即可求出B的度数;(2)利用正弦定理化简sinC=2sinA,得到c=2a,利用余弦定理列出关系式,求出a与c的值,再利用三角形面积公式即可求出三角形ABC面积.解答:解:(1)∵△ABC中,a2+c2﹣ac=b2,即a2+c2﹣b2=ac,∴cosB==,则B=;(2)把sinA=2sinC,利用正弦定理化简得:a=2c,∵b=3,cosB=,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=4c2+c2﹣2c2,解得:c=,a=2,则S△ABC=acsinB=.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.16.(12分)已知数列{a n}的前n项和S n=,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=,设数列{b n}前n项和为G n,求证:G n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)数列{a n}的前n项和S n=,n∈N*.利用a1=S1,当n≥2时,a n=S n﹣S n﹣1,即可得出;(2)b n==,利用“裂项求和”、“放缩法”即可得出.解答:(1)解:∵数列{a n}的前n项和S n=,n∈N*.∴a1=S1==1,当n≥2时,a n=S n﹣S n﹣1=﹣=3n﹣2,当n=1时上式也成立,∴a n=3n﹣2.(2)证明:b n===,∴设数列{b n}前n项和为G n=+…+=<,∴G n.点评:本题考查了数列递推式的应用、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于中档题.17.(14分)设椭圆C:过点(0,4),离心率为(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)的动直线被C所截线段的中点轨迹方程.考点:圆锥曲线的轨迹问题;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆C:过点(0,4),离心率为,知,由此能求出椭圆C的方程.(Ⅱ)设过点(3,0)的直线交椭圆于A(x1,y1),B(x2,y2),设AB的中点为M (x,y),利用点差法能够求出过点(3,0)的动直线被C所截线段的中点轨迹方程.解答:解:(Ⅰ)∵椭圆C:过点(0,4),离心率为,∴,解得a=5,b=4,c=3,∴椭圆C的方程是.(Ⅱ)设过点(3,0)的直线交椭圆于A(x1,y1),B(x2,y2),设AB的中点为M(x,y),则x1+x2=2x,y1+y2=2y,把A(x1,y1),B(x2,y2)代入椭圆16x2+25y2=400,得①﹣②,得16(x1+x2)(x1﹣x2)+25(y1+y2)(y1﹣y2)=0,∴32x(x1﹣x2)+50y(y1﹣y2)=0,∴直线AB的斜率k==﹣,∵直线AB过点(3,0),M(x,y),∴直线AB的斜率k=,∴﹣=,整理,得16x2+25y2﹣48x=0.当k不存在时,16x2+25y2﹣48x=0也成立.故过点(3,0)的动直线被C所截线段的中点轨迹方程是16x2+25y2﹣48x=0.点评:本题考查椭圆方程的求法,考查点的轨迹方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.18.(14分)已知数列{a n}中,a1=a(a>0),a n a n+1=4n(n∈N*)(1)当a=1时,求a2,a3并猜想a2n的值;(2)若数列{a n}是等比数列,求a的值及a n;(3)在(2)的条件下,设b n=na n.求数列{b n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由a1=a(a>0),a n a n+1=4n(n∈N*),可得当a=1时,a1•a2=1×a2=4,a2a3=42,解得a2,a3.由=4,可得a n+2=4a n,即可得出a2n.(2)由于数列{a n}是等比数列,设公比为q,则a•aq=4,aq•aq2=42,a>0,解得q,a.即可得出a n.(3)在(2)的条件下,b n=na n=,利用“错位相减法”、等比数列的前n项和公式即可得到.解答:解:(1)∵a1=a(a>0),a n a n+1=4n(n∈N*),∴当a=1时,a1•a2=1×a2=4,解得a2=4,由a2a3=42,解得a3=4.∵==4,∴a n+2=4a n,可得a2n=4n.(2)∵数列{a n}是等比数列,设公比为q,则a•aq=4,aq•aq2=42,a>0,解得q=2,a=.∴a n=.(3)在(2)的条件下,b n=na n=,∴数列{b n}的前n项和S n=,2S n=…+(n﹣1)×2n﹣1+n×2n],∴﹣S n=(1+2+22+…+2n﹣1﹣n×2n)==,∴S n=.点评:本题考查了递推式的应用、“错位相减法”、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.19.(14分)如图所示的多面体是由底面为ABCD的长方体被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4,若如图所示建立空间直角坐标系:①求和点G的坐标;②求异面直线EF与AD所成的角;③求点C到截面AEFG的距离.考点:点、线、面间的距离计算;空间中的点的坐标;异面直线及其所成的角.专题:空间位置关系与距离.分析:(1)由题意知A(1,0,0),B(1,4,0),E(1,4,4),F(0,4,4),由此能求出,又=,能求出G(0,0,1).(2)由=(﹣1,0,0),,能求出异面直线EF与AD所成的角.(3)求出平面AEFG的法向量,利用向量法能求出点C到截面AEFG的距离.解答:解:(1)由题意知A(1,0,0),B(1,4,0),E(1,4,4),F(0,4,4),∴=(﹣1,0,1),又∵=,设G(0,0,z),∴(﹣1,0,z)=(﹣1,0,1),解得z=1,∴G(0,0,1).(2)∵=(﹣1,0,0),,∴cos<>==,∴异面直线EF与AD所成的角为45°.(3)设平面AEFG的法向量,∵=(﹣1,0,1),=(0,4,3),∴,取z=4,得=(4,﹣3,4),∵C(0,4,0),,∴点C到截面AEFG的距离d===.点评:本题考查和点G的坐标的求法,考查异面直线EF与AD所成的角的求法,考查点C到截面AEFG的距离的求法,解题时要认真审题,注意向量法的合理运用.20.(14分)P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:x2=8(y﹣m)(m>0)(1)求轨迹C的方程;(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.考点:轨迹方程;圆锥曲线的综合.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设出N的坐标,利用中点坐标公式求出P点的坐标,代入圆的方程后整理即可得到答案;(2)将(0,1)代入x2=8(y﹣m),可得m=1,即可求曲线C1的方程;(3)在(2)的条件下,可得曲线C和曲线C1都只有一个交点的直线l方程.解答:解:(1)设N(x,y),则由中点坐标公式得P(x,2y),因为P是圆x2+y2=4上任意一点,所以x2+4y2=4,整理得,.(2)将(0,1)代入x2=8(y﹣m),可得m=1,所以曲线C1的方程为x2=8(y﹣1);(3)在(2)的条件下,曲线C和曲线C1都只有一个交点的直线l方程为y=1.点评:本题考查了轨迹方程问题,考查了代入法求轨迹方程,是中档题.。
深圳市南山区上学期期末考试题高二数学及答案上高二理数
--高 二 教 学 质 量 监 测数 学(理科)注意:本试卷分选择题和非选择题两部分,共150分,考试时间120分钟.1.答卷前,考生填、涂好学校、班级、姓名及座位号。
2.选择题用2B 铅笔作答;非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.设命题P :.02,2>+∈∀x R x 则P ⌝为A. 02,200>+∈∃x R x ﻩB. 02,200≤+∈∃x R x C . 02,200<+∈∃x R x ﻩD . 02,2≤+∈∀x R x 2. 等差数列{}n a 前n 项和为n S ,公差2-=d ,213=S 则1a 的值为:A. 10 ﻩB. 9 ﻩC. 6 D. 53.“21cos =α”是 “3πα=”的 A.充要条件 B.充分不必要条件 C.必要不充分条件 D.不充分也不必要条件4. 已知向量(2,1,4),(1,0,2)a b →→==,且→→+b a 与→→-b a k 互相垂直,则k 的值是 A. 1 ﻩC . ﻩD. 2017.01.04--5. 在AB C ∆中,若013,3,120AB BC C ==∠=,则AC =A .1ﻩ ﻩB .2ﻩ ﻩﻩﻩC.3ﻩ ﻩ D.46. 若双曲线12222=-by a x 的一条渐近线经过点()4,3,则此双曲线的离心率为 A.37 ﻩﻩB. 45ﻩC.34 ﻩ D . 357. 若b a ,均为大于1的正数,且100=ab ,则b a lg lg ⋅的最大值为A. 0 ﻩﻩﻩB. 1 ﻩ C . 2 ﻩ D.258. 已知数列{}n a :11=a ,()++∈+=N n a a n n ,321 ,则=n aA . 321-+n ﻩB. 12-n C. 12+n ﻩD.722-+n9. 已知直线022=-+by ax ()0,0>>b a 平分圆064222=---+y x y x ,则21a b+的最小值是 A.22-ﻩB.12- ﻩC.223+ ﻩD.223-10. 设y x ,满足约束条件,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩,则y x z 2-=的取值范围为A. ()3,3- ﻩB . []3,3- C. [)3,3- ﻩD. []2,2- 11. 如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点,若,且,则此抛物线的方程为1531C 2BC BF =3AF =A. 23 2y x=B.D.12. 在锐角AB C∆中,角,,A B C所对的边分别为,,a b c,,2a=, ABCS∆=2,则b的值为B.2ﻩC.ﻩﻩD.二、填空题(每题5分,满分20分,将答案填在答题纸上)11. 在中,0075,45,3===CAAC ,则BC的长为 .12. 已知数列{}na满足:()++∈=+Nnaann,log1log133,且9642=++aaa,则)(log97531aaa++的值为 .15. 设不等式()(2)0x a x a-+-<的解集为N,若Nx∈是⎪⎭⎫⎢⎣⎡-=∈2,21Mx的必要条件,则a的取值范围为_________16.已知椭圆()222210x ya ba b+=>>的左、右焦点分别为21,FF,过1F且与x轴垂直的直线交椭圆于,A B两点,直线2AF与椭圆的另一个交点为C,若→2→22=CFAF,则椭圆的离心率为_________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算23y x=29y x=ABC∆----步骤.)17.(本题满分10分)已知正项数列{}n a 的前n 项的和为n S ,且满足:n n n a a S +=22,()+∈Nn(1)求321,,a a a 的值 (2)求数列{}n a 的通项公式18.(本题满分12分)在AB C ∆中,角C B A ,,所对的边分别为c b a ,,,且B c a C b cos )2(cos -=. (1)求角B的值;(2)若c b a ,,成等差数列,且3=b ,求ABC ∆面积19.(本题满分12分)已知递增的等比数列{}n a 满足:9,84132=+=⋅a a a a (1)求数列{}n a 的通项公式;(2)设数列{}())∈(122=:+N n a n b b n n n -,求数列{}n b 的前n 项的和n T--20.(本题满分12分),是平面内的一个动点,直线与交于点,(1)求动点的轨迹的方程;(2)设直线与曲线交于M 、N 两点,当线段的中点在直线上时,求直线l 的方程.21.(本题满分12分)如图,在以A,B ,C,D ,E,F 为顶点的五面体中,面A BEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ﹣AF ﹣E与二面角C ﹣B E﹣F 都是60°.(1)证明平面ABE F⊥平面EF DC ; (2)证明:C D//EF(3)求二面角E ﹣BC ﹣A 的余弦值.P PA PB P P C 1:+=kx y l C MN 20x y +=21题图 22题图22.(本题满分12分)已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(1)求动点G的轨迹方程;(2)设(1)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.高二数学理科数学参考答案:一、选择题1—12BBCDA DBACB BA二、填空题----13.2 14. 5- 15. 25或21≥-≤a a16. 5三、解答题17. 解:(1)3,2,1321===a a a ……3分(2)22n n a S = +n a , ①1211n 2+++=∴+n n a a S ② ②-① 得 ()()0111=--+++n n n n a a a a …..5分0,01>+∴>+n n n a a a 1-1=∴+n n a a ……7分{}n a ∴是首项为1,公差为1的等差数列……..8分()n n a n =⨯-+=∴111……10分 (学生用数学归纳法做相应给分)18.解: (1)∴-=,B c a C b cos )2(cos 由正弦定理,B C A C B cos )sin sin 2(cos sin -= ∴,B A C B C B cos sin 2sin cos cos sin =+……2分∴,)(B A C B cos sin 2sin =+……3分 又π=++C B A ∴,B A A cos sin 2sin =……4分21cos =∴B 又B 为三角形内角 ……5分 3π=∴B ……6分(2)由题意得 ,62=+=c a b ……7分 又 3π=B--()acac c a ac b c a B 292221cos 2222--+=-+==∴ ……9分9=∴ac 0439sin 21==∴∆B ac S ABC ……12分19. 解:(1)由题意,得,84132==a a a a 又,941=+a a所以,8,141==a a , 或 ,1,841==a a ,……3分由{}n a 是递增的等比数列,知1>q 所以,8,141==a a ,且2=q ……………4分 1111221---=⨯==∴n n n n q a a ……………5分(2)由(1)得()()nn n n a n b 212122-=-=,…………………………6分所以123123252...(21)2nn T n =⋅+⋅+⋅++-⋅所以23412123252...(21)2n n T n +=⋅+⋅+⋅++-⋅……………………8分所以1231122(22...2)(21)2n n n T n +-=⋅++++-- 0得()12326n n T n +=-+. (2)20.--(11分3分6分 (2)设MN 的中点坐标为00(,)x y ………………7分得22(21)40k x kx ++=…………………………9分11分 由0020x y +=,得1k =所以直线的方程为:…………………………12分21. 解:(Ⅰ)证明:∵ABEF 为正方形,∴AF ⊥EF . ∵∠AF D=90°,∴AF ⊥DF , ∵DF∩EF=F,∴AF ⊥平面E FDC , ∵A F⊂平面A BEF ,∴平面AB EF ⊥平面EFD C; ………………………………4分 (Ⅰ)解:由AF ⊥D F,A F⊥EF ,1y x =+可得∠DFE为二面角D﹣AF﹣E的平面角;……………………5分由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.…………………………6分可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,……………………………………7分∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.……………………………………8分以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)…………9分设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).………………10分设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4) (1)--设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.…………………………12分22. 解:(Ⅰ)焦点F(0,1),显然直线AB的斜率存在,设AB:y=kx+1,联立x2=4y,消去y得,x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),G(x,y),则x1+x2=4k,x1x2=﹣4,所以,所以,消去k,得重心G的轨迹方程为;…………………………4分--(Ⅰ)由已知及(Ⅰ)知,,因为,所以DG∥ME,(注:也可根据斜率相等得到),…………5分,……6分D点到直线AB的距离,……………………7分所以四边形DEMG的面积,………………10分当且仅当,即时取等号,………………11分此时四边形DEMG的面积最小,所求的直线AB的方程为.………………12分--。
广东省深圳市高二上学期期末数学试题(解析版)
一、单选题1.已知点,则直线的倾斜角是( ) ()(1,0,A B AB A . B .C .D .60 120 30 150 【答案】A【分析】求出直线的斜率,根据倾斜角的范围可得答案.AB 【详解】因为点,所以,()(1,0,AB AB k ==设直线的倾斜角为,则, AB α0180α<< 所以. 60α= 故选:A.2.“”是“方程表示椭圆”的57m <<22175x y m m +=--A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【详解】 由题意,方程表示一个椭圆,则,解得且, 22175x ym m +=--705075m m m m ->⎧⎪->⎨⎪-≠-⎩57m <<6m ≠所以“”是“方程”的必要不充分条件,故选C.57m <<22175x y m m +=--点睛:本题考查了椭圆的标准方程,其中熟记椭圆的标准的形式,列出不等式组是解答关键,此类问题解答中容易忽视条件导致错解,同时注意有时椭圆的焦点的位置,做到分类讨论.75m m -≠-3.在棱长为1的正方体中,( ) 1111ABCD A B C D -1AB CB CB -+=A .1 BC D .2【答案】B【分析】根据向量的线性运算得,即可得结果.11AB CB CB AB -+=【详解】. 11AB CB CB AB BC CB AC -+=++=+ 故选:B .4.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是 ()A .B .1(1)1n n a -=-+2,0,n n a n ⎧=⎨⎩为奇数为偶数C . D .2sin2n n a π=cos(1)1n a n π=-+【答案】C【分析】令,2,3,4分别代入验证:即可得出答案.1n =【详解】解:令,2,3,4分别代入验证:可知,因此不成立. 1n =3:2C a =-故选:.C 【点睛】本题考查了数列的通项公式,考查了推理能力与计算能力,属于基础题.5.在空间四边形中,,点在上,且,为的中OABC ,,OA a OB b OC c === M OB 3OM MB =N AC 点,则( )NM =A .B .131242a b c -+- 121232a b c -++C .D .131242a b c ++ 121232a b c -+ 【答案】A【分析】利用空间向量加减法运算即可得到答案.【详解】.()()31311314242242NM OM ON OB OA OC b a c a b c =-=-+=-+=-+-故选:A6.双曲线22221(0,0)x y a b a b -=>>A .B .C .D . y =y =y =y =【答案】A【详解】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴因为渐近线方程为,所以渐近线方程为,选A.by x a=±y =点睛:已知双曲线方程求渐近线方程:.22221(,0)x y a b a b-=>22220x y by x a b a -=⇒=±7.若直线(,)平分圆,则的最小值是( ) 10ax by +-=0a >0b >()()22114x y -+-=12a b+A .2B .5C .D .【答案】C【分析】直线平分圆,得到a ,b 关系,再根据基本不等式,即可求解. 【详解】解:直线平分圆,则直线过圆心,即,1a b +=所以(时,取等号) ()1212233b a a b a b a b a b⎛⎫+=++=++≥+ ⎪⎝⎭b =故选:C.8.已知点是抛物线上不同的两点,为抛物线的焦点,且满足,弦的,M N 24y x =F 23MFN π∠=MN 中点到直线的距离记为,若不等式恒成立,则的取值范围( ) P 1:16l y =-d 22λ≥MN d λA . B . (-∞(],2-∞C . D .(,1-∞(],3-∞【答案】D【分析】令,利用余弦定理表示出弦的长,再利用抛物线定义结合梯形中位||,||MF a NF b ==MN 线定理表示出,然后利用均值不等式求解作答.d 【详解】在中,令,由余弦定理得MFN △||,||MF a NF b ==, 222||||||2||||cos MN MF NF MFNF MFN =+-⋅∠则有, 222||MN a b ab =++显然直线是抛物线的准线,过作直线的垂线,垂足分别为,如1:16l y =-24y x =,,M P N l ,,A B C 图,而为弦的中点,为梯形的中位线,由抛物线定义知,P MN PB MACN ,11||(||||)()22d PB MA NC a b ==+=+因此, 22222222||4444443222MN a b ab ab a b d a b ab a b ab b a ++=⋅=-=-≥=++++++当且仅当时取等号,又不等式恒成立,等价于恒成立,则,a b =22λ≥MN d 22MN dλ≤3λ≤所以的取值范围是. λ(,3]-∞故选:D【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.二、多选题9.若是等差数列,则下列数列中仍为等差数列的是( ) {}n a A . {}n a B .{}1n n a a +-C .(为常数) {}n pa q +,p q D . {}2n a n +【答案】BCD【分析】根据等差数列的定义逐一进行检验即可求解.【详解】对于选项A ,数列是等差数列,取绝对值后不是等差数列,故选项A 不符合题1,1,3-1,1,3意;对于选项B ,若为等差数列,根据等差数列的定义可知:数列为常数列,故{}n a 1{}n n a a +-为等差数列,故选项B 符合题意;1{}n n a a +-对于选项C ,若为等差数列,设其公差为,则为常数{}n a d 11()n n n n pa q pa q p a a pd +++--=-=列,故为等差数列,故选项C 符合题意;{}n pa q +对于选项D ,若为等差数列,设其公差为,则为常数,故{}n a d 121221n n a n a n d +++--=+为等差数列,故选项D 符合题意, {2}n a n +故选:BCD.10.圆和圆的交点为A ,B ,则有( )221:20x y x O +-=222:240O x y x y ++-=A .公共弦AB 所在直线方程为 0x y -=B .公共弦ABC .线段AB 中垂线方程为10x y +-=D .P 为圆上一动点,则P 到直线AB 2O 1+【答案】AC【分析】A 选项,两圆方程作差即可求出公共弦方程;B 选项,求出一个圆的圆心到公共弦的距离,利用垂径定理计算即可;C 选项,线段AB 的中垂线即为两圆圆心的连线,利用点斜式求解即可;D 选项,求出到公共弦的距离,加上半径即可求出最值.2O 【详解】因为圆:和圆:的交点为A ,B , 1O 2220x y x +-=2O 22240x y x y ++-=作差得,440x y -=所以圆与圆的公共弦AB 所在的直线方程为,故A 正确; 1O 2O 0x y -=因为圆心,,所在直线斜率为, 1(1,0)O 2(1,2)O -12O O 2111=---所以线段AB 的中垂线的方程为,即,故C 正确;0(1)y x -=--10x y +-=圆:的圆心为,半径,圆心到直线的距离2O 22240x y x y ++-=2(1,2)O -2r =2(1,2)O -0x y -=P 到直线AB 与圆的公共弦AB 的长d 1O 2O为B,D 错误. =故选:AC.11.某颗人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,如图所示,已知它的近地F 点(离地面最近的点)距地面千米,远地点(离地面最远的点)距地面千米,并且A mB n 三点在同一直线上,地球半径约为千米,设该椭圆的长轴长、短轴长、焦距分别为F A B 、、R ,则222a b c 、、A .B .C .D .a c m R -=+a c n R +=+2a m n =+b =【答案】ABD【分析】根据条件数形结合可知,然后变形后,逐一分析选项,得到正确答案.m a c Rn a c R=--⎧⎨=+-⎩【详解】因为地球的中心是椭圆的一个焦点,并且根据图象可得 ,(*)m a c Rn a c R=--⎧⎨=+-⎩ ,故A 正确;a c m R ∴-=+,故B 正确;a c n R +=+(*)两式相加,可得,故C 不正确;22m n a R +=-22a m n R =++由(*)可得 ,两式相乘可得 m R a c n R a c +=-⎧⎨+=+⎩()()22m R n R a c ++=- ,222a c b -=,故D 正确.()()2b m R n R b ∴=++⇒=故选ABD【点睛】本题考查圆锥曲线的实际应用问题,意在考查抽象,概括,化简和计算能力,本题的关键是写出近地点和远地点的方程,然后变形化简.12.如图,棱长为2的正方体中,分别为棱的中点,为面对角线1111ABCD A B C D -,E F 111,A D AA G 上一个动点,则( )1B CA .三棱锥的体积为定值1A EFG -B .线段上存在点,使平面//平面1B C G EFG 1BDCC .当时,直线与平面134CG CB = EG ABCDD .三棱锥1A EFG -【答案】ACD【分析】A 选项,使用等体积法,面面平行进行证明; B 选项,建立空间直角坐标系,利用空间向量进行证明;C 选项,根据先求出的坐标,然后利用向量的夹角公式计算;134CG CB =G D 选项,找到外接球的球心,表达出半径,求出最大值.【详解】对于A 选项,因为平面//平面,而平面,故//平面11ADD A 11BCC B 1B C ⊂11BCC B 1B C ,11ADD A 因为点为面对角线上一个动点,故点到面距离不变,为, G 1B C G 11ADD A 2因为分别为棱的中点,故为定值,,E F 111A D AA 、1111122A EF S =⨯⨯=A 故三棱锥,而三棱锥的体积,A 选项正确;1112313G E A F F A E S V -⨯⨯==A 11A EFG G EFA V V --=对于B 选项,如图1,以为坐标原点,所在直线为轴,所在直线为轴,所在直D DA x DC y 1DD 线为轴建立空间直角坐标系,z 则,,,,,设(),()2,2,0B ()0,0,0D ()10,2,2C ()1,0,2E ()2,0,1F (),2,G m m 02m ≤≤平面的法向量为,则,令,则,,则1BDC ()1111,,n x y z = 1111111220220n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩11y =11x =-11z =-,()1111n ,,=--设平面的法向量,则,令,则EFG ()2222,,n x y z = ()()222222202210n EF x z n FG m x y m z ⎧⋅=-=⎪⎨⋅=-++-=⎪⎩ 21x =,, 21z =2322my -=所以, 2321,,12m n -⎛⎫= ⎪⎝⎭若平面//平面,则存在,使得,即,解得:,EFG 1BDC k 12n kn = ()321,1,11,,12m k -⎛⎫--= ⎪⎝⎭1k =-,52m =因为,故不合题意,02m ≤≤所以线段上不存在点,使平面//平面,B 选项错误;1B C G EFG 1BDC 对于C 选项,,,,若,即,解得(),2,G m m (0,2,0)C 1(2,2,2)B 134CG CB = ()()3,0,2,0,24m m =, 32m =此时,又,,显然平面的一个法向量,33,2,22G ⎛⎫⎪⎝⎭()1,0,2E 11,2,22EG ⎛⎫=- ⎪⎝⎭ ABCD (0,0,1)a =设直线与平面所成角为,则C 选项正确;EG ABCD θsin cos ,a θ=对于D 选项,如图2,连接,交EF 于点J ,则为EF 的中点,1A D J 1A J =的外接球球心的投影为,1A EFG -J 过点作于点,则平面,,找到球心位置,连接,则G 1GH A D ⊥H GH ⊥11ADD A 2GH =O 1,OA OG 为外接球半径,1OA OG =过点作于点,则,,设(),O OK GH ⊥K OK JH =OJ HK =OK JH a ==0a ≤≤,OJ HK h ==由勾股定理得:,,从而2222211OA OJ A J h =+=+()2222OG h a =-+()22222h h a +=-+,解得:,2724a h +=要想半径最大,则只需最大,即最大,当最大为,此时半径的最大值为h 2a a =h2,故D 正确. =故选:ACD三、双空题13.已知数列的通项公式为:,则的最小值为_____,此时的值为_____. {}n a 103n a n =-n a n 【答案】133【分析】分类讨论去绝对值,即可根据通项公式的单调性判断求值.【详解】,已知先减后增,且. 10,4103103,43n n n a n n n ⎧-<⎪⎪=-=⎨⎪-≥⎪⎩n a 3413a a =<故的最小值为,此时的值为3.n a 13n 故答案为:;3.13四、填空题14.在等差数列中,前n 项和记作,若,则______. {}n a n S ()15265k S a a a =++k =【答案】16【分析】根据等差数列前项和公式及下标和性质以及通项公式计算可得; n 【详解】解:因为,所以,即()15265k S a a a =++()()115261552k a a a a a +=++,所以,所以()82615252k a a a a ⨯=++8263k a a a a =++,所以;()()()()826111113375151k a a a a a d a d a d a d a k d =-+=+-+++=+=+-16k =故答案为:1615.已知,分别是双曲线的左、右焦点,过的直线与双曲线E 的左、1F 2F ()222:103x yE a a -=>1F 右两支分别交于A ,B 两点,若,则的面积为__________. 22::5:12:13BF AB AF =2ABF△【答案】##2.4 125【分析】根据双曲线的定义以及焦点三角形即可根据勾股定理求解,由直角三角形的面积公22a =式即可得解. 【详解】如图,因为,所以. 22::5:12:13BF AB AF =2AB BF ⊥设,,得,25BF x =12AB x =213AF x =由,得 1221BF BF AF AF -=-1112||513||x AF x x AF +-=-所以,则,13AF x =115BF x =由,得,2221212BF BF F F +=222504x c =又 ,所以,,, 12221023BF BF x a c a ⎧-==⎨=+⎩22a =25c =2225x =故的面形. 2ABF △221123025S AB BF x ===故答案为:125五、双空题16.已知数列满足,,则数列的通项公式为_____________,若数{}n a 14a =()121n n na n a +=+{}n a 列的前项和,则满足不等式的的最小值为_____________.{}(1)(2)na n n ++n n S 30n S ≥n 【答案】 612n n a n +=⋅【分析】根据给定递推公式变形构造新数列即可得解;利用裂项相消法求出,再借助数列单调性n S 计算得解.【详解】在数列中,,由得:,而, {}n a 14a =()121n n na n a +=+121n n a a n n +=⋅+141a=于是得数列是以4为首项,2为公比的等比数列,则,即,{}n a n 142n n a n-=⋅12n n a n +=⋅所以数列的通项公式为;{}n a 12n n a n +=⋅显然,,121212(1)2(2)222(1)(2)(1)(2)(1)(2)21n n n n n n a n n n n n n n n n n n +++++⋅+⋅-+⋅===-++++++++则,324354121222222222222))))2324354121(((((2n n n n n n S n n n n n ++++-+-+-++-+-=+=-+++ 由得:,即,令,则,即数列是递增30n S ≥222302n n +-≥+22322n n +≥+222n n b n +=+12(2)13n n b n b n ++=>+{}n b 数列,由,得,而,因此,,从而得,, 22322n n +≥+32n b ≥632b =6n b b ≥6n ≥min 6n =所以满足不等式的的最小值为6.30n S ≥n 故答案为:;612n n a n +=⋅六、解答题17.已知直线,.()():12360m a x a y a -++-+=:230n x y -+=(1)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程;0a =l m n l (2)若坐标原点O 到直线的距离为1,求实数的值.m a 【答案】(1)或,120x y -+=370x y -=(2)或 1a =132a =-【分析】(1)先求出直线与的交点,然后设出直线的方程,求出直线在两坐标轴上的截距,m n l l 由截距相反列方程可求出直线的斜率,从而可求出直线的方程;l (2)利用点到直线的距离公式列方程可求出实数的值.a 【详解】(1)当时,直线, 0a =:360m x y -++=由,解得, 360230x y x y -++=⎧⎨-+=⎩219x y =-⎧⎨=-⎩所以直线与的交点为,m n (21,9)--由题意可知直线的斜率存在,设直线的方程为,l l 9(21)y k x +=+当时,,0x =219y k =-当时,, 0y =921x k=-因为直线在两坐标轴上的截距相反,l 所以,即, 9219210k k-+-=271030k k -+=解得或, 1k =37k =所以直线的方程为或, l 921y x +=+39(21)7y x +=+即或,120x y -+=370x y -=(2)因为坐标原点O 到直线的距离为1,直线,m ()():12360m a x a y a -++-+=,1=化简得,解得或. 2211130a a +-=1a =132a =-18.如图在边长是2的正方体中,E ,F 分别为AB ,的中点.1111ABCD A B C D -1AC(1)求异面直线EF 与所成角的大小.1CD (2)证明:平面. EF ⊥1ACD 【答案】(1);(2)证明见解析.60︒【分析】(1)通过建立空间直角坐标系,利用可得解; 111cos ,EF CD EF CD EF CD ⋅= (2)利用和,可证得线线垂直,进而得线面垂直. 10EF DA ⋅= 0EF DC ⋅= 【详解】据题意,建立如图坐标系.于是:,,,,,(0,0,0)D 1(2,0,2)A (0,2,0)C (2,1,0)E (1,1,1)F 1(0,0,2)D ∴,,,.(1,0,1)EF =- 1(0,2,2)CD =- 1(2,0,2)DA = (0,2,0)DC = (1), 11cos ,2EF CD = ∴1,60EF CD ︒= ∴异面直线EF 和所成的角为.1CD 60︒(2)11200120EF DA ⋅=-⨯+⨯+⨯= ∴,即1EF DA ⊥ 1EF DA ⊥,1002100EF DC ⋅=-⨯+⨯+⨯=∴即.EF DC ⊥ EF DC ⊥又∵,平面且1DA DC ⊂1DCA 1DA DC D ⋂=∴平面. EF ⊥1ACD 19.记为数列的前项和,. n S {}n a n 1122n n n S a --=()*n N ∈(1)求;1n n a a ++(2)令,证明数列是等比数列,并求其前项和.2n n n b a a +=-{}n b n n T 【答案】(1);(2)证明见解析,. 12n -11122n n T +=-【分析】(1)运用数列的递推式:时,,时,,化简变形可得1n =11a S =2n ≥1n n n a S S -=-,进而得到所求答案. 1112n n n a a --+=-(2)由(1)的结论,将n 换为n +1,两式相减,结合等比数列的定义和求和公式,即可得到答案.【详解】(1)由,可得时,,即; 1122n n n S a --=1n =1121S a -=11a =当时,,2n ≥1n n n a S S -=-由,, 1122n n n S a --=112122n n n S a ----=两式相减可得:,即:. 11211222n n n n n a a a ----+=-1112n n n a a --+=-即有. 112n n na a ++=-(2)由(1)可得,即有, 112n n n a a ++=-21112n n n a a ++++=-两式相减可得,即. 2112n n n a a ++-=112n n b +=则,可得数列是首项为,公比为的等比数列. 1122122n n n n b b +++=={}n b 1412所以. 1111114212212n n n T +⎛⎫- ⎪⎝⎭==--【点评】本题考查数列的递推式的运用,考查等比数列的定义、通项公式和求和公式的运用,考查方程思想和化简运算能力,属于中档题.20.已知:圆过点,,,是直线上的任意一点,直线C ()0,1D ()2,1E -(F -P 1:2l y x =-与圆交于、两点.2:1=+l y x C A B(1)求圆的方程;C (2)求的最小值.22PA PB +【答案】(1);(2).22210x y x ++-=13【分析】(1)设圆的一般方程为,即可根据题意列出三个方程,解出C 220x y Dx Ey F ++++=,即可得到圆的方程; ,,D E F C (2)联立直线的方程和圆的方程可得、两点的坐标,设,再根据两点间的距离公2l C A B (),P x y 式表示出,消去,可得关于的二次函数,即可求出最小值. 22PA PB +y x 【详解】(1)设圆的一般方程为,依题意可得,C 220x y Dx Ey F ++++=.1025030E F D E F D F ⎧++=⎪-+++=⎨⎪-+==⎩2,0,1D E F ⇒===-所以圆的方程为:.C 22210x y x ++-=(2)联立或, 221002101y x x x y x y ⎧--==⎧⇒⎨⎨++-==⎩⎩21x y =-⎧⎨=-⎩不妨设,,则,(0,1),(2,1)A B --(),P x y 2y x =-∴. 222222221||||(1)(2)(1)44144132PA PB x y x y x x x ⎛⎫+=+-++++=-+=-+ ⎪⎝⎭故的最小值为.22PA PB +13【点睛】本题主要考查圆的方程的求法,直线与圆的交点坐标的求法,以及两点间的距离公式的应用,意在考查学生的数学运算能力,属于基础题.21.如图,在三棱锥中, ,为的中点,. A BCD -AB AD =O BD OA CD ⊥(1)证明:平面平面;ABD ⊥BCD(2)若是边长为1的等边三角形,点在棱上,,三棱锥OCD A E AD 2DE EA =B ACD -,求平面BCD 与平面BCE 的夹角的余弦值.【答案】(1)证明见解析【分析】(1)根据线面垂直的判定定理先证明平面BCD ,又平面ABD ,从而由面面垂OA ⊥OA ⊂直的判定定理即可得证;(2)取的中点,因为为正三角形,所以,过作与交于点OD F OCD A CF OD ⊥O //OM CF BC M ,则,又由(1)知平面BCD ,所以,,两两垂直,以点为坐标原OM OD ⊥OA ⊥OM OD OA O 点,分别以,,为轴,轴,轴建立空间直角坐标系,然后求出所需点的坐标,进OM OD OA x y z 而求出平面的法向量,最后根据向量法即可求解.【详解】(1)证明:因为,为的中点,AB AD =O BD 所以,又且,OA BD ⊥OA CD ⊥BD CD D ⋂=所以平面BCD ,又平面ABD , OA ⊥OA ⊂所以平面平面; ABD ⊥BCD(2)解:由题意,, 1112OCD S =⨯⨯=A BCD S =A 由(1)知平面BCD ,OA ⊥所以,所以OA =2, 1133B ACD A BCD BCD V V S OA --=⋅⋅==A 取的中点,因为为正三角形,所以,OD F OCD A CF OD ⊥过作与交于点,则,所以,,两两垂直,O //OM CF BC M OM OD ⊥OM OD OA以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示,O OM OD OA x yz则,,,,,1,,A (0,0,2),, (0B 1-0)1,0)2C (0D 0)14(0,,)33E 因为平面,所以平面的一个法向量为, OA ⊥BCD BCD (0,0,1)m = 设平面的法向量为,又, BCE (,,)n x y z =344,0),(0,,)233BC BE == 所以由,得,令,, 00n BC n BE ⎧⋅=⎨⋅=⎩30244033x y y z +=⎪+=⎪⎩x =1y =-1z =所以,1,1)n =-所以 |||cos ,|||||m n m n m n⋅<>= 所以平面BCD 与平面BCE22.在平面直角坐标系中,椭圆2. ()2222:10x y C a b a b +=>>(1)求椭圆C 的方程;(2)动直线A 、B 两点,D 是椭圆C 上一点,直线OD 的斜率为,且:l y mx =n 12mn =.T 是线段OD 的半径为,OP ,OQ 是的两条切T A DT T A 线,切点分别为P ,Q ,求的最大值.QOP ∠【答案】(1); 22132x y +=(2)最大值为.QOP ∠3π【分析】(1)根据焦距易得; 1c =(2)将直线与椭圆联立得到方程组,利用弦长公式得到的表达式,再利用AB |||DT AB =,则可得到,即圆半径的表达式,根据,则,则将直线的方程与椭圆方程DT r 12mn =12n m =OD 联立,得到的表达式,利用,将上述表达式代入,利用换元法结合二次函OD sin2||QOP r r OD ∠=+数最值得到的最值,最终得到的最大值. sin 2QOP ∠QOP ∠【详解】(1)由题意得,, 22c =1c =又c e a = a ∴=b ∴=椭圆方程为:. ∴22132x y +=(2)设,, ()11,A x y ()22,B x y 联立,22132x y y mx ⎧+=⎪⎪⎨⎪=⎪⎩()2281290m x +--=,()2227203681211522880m m m ∆=++=+>, 12x x +=129128x x m -=+2||AB x -==, |r AB =,直线的方程为:, 12n m=∴OD 12yx m =联立得,,2213212x y y x m ⎧+=⎪⎪⎨⎪=⎪⎩2222483m x m =+22683y m =+ ||OD ==,1sin ||2||1QOP r OD r OD r ∠==++,OD r ==令,,且, 223m t +=()2123m t =-2t>110,2t ⎛⎫∈⎪⎝⎭则ODr==1=≥=当且仅当,,即,时等号成立, 1114t =14t =22314m +=2m =±,因此, 1sin 22QOP ∠≤π26QOP ∠≤的最大值为, QOP ∴∠π3综上所述,的最大值为,此时. QOP ∴∠π32m =±【点睛】本题第二问计算量与思维量较大,对于弦长公式要做到熟练运用,角度最值转化为在一定角度范围内的角的正弦值的最值,最终结合换元法,配方法等求解函数表达式的最值,从而得到角度的最值.。
2016-2017学年广东省高二上学期期末质量检测数学(理)试题Word版含答案
2016-2017学年广东省高二上学期期末质量检测数学(理)试题一、选择题1.命题“”的否定是()A. B. C. D.【答案】B【解析】命题“”的否定是“”.故选B.2.若直线经过第一、二、三象限,则系数满足的条件为()A. 同号B. ,C. ,D. ,【答案】B【解析】因为直线经过第一、二、三象限,所以,将化成,则,即,.故选B.3.已知直线平面,直线平面,下面有三个命题:①;②;③.则真命题的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】若直线平面,,则直线平面,又因为直线平面,所以,故①正确;若直线平面,,则或直线平面,则可能平行、相交或异面,故②错误;若直线平面,,则直线平面,又因为直线平面,所以,故③正确;故选C.4.“”是“表示的曲线是双曲线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】“表示的曲线是双曲线”的充要条件是“”,即“或”,则“”是“表示的曲线是双曲线”的充分不必要条件.故选A.点睛:处理四种条件(充分条件、必要条件、必要条件、既不充分也不必要条件)的判定时,往往转化为数集间的包含关系,利用“小范围是大范围的充分不必要条件”进行判定.5.若圆关于直线对称,则直线的斜率是()A. 6B.C.D.【答案】A【解析】将化为,因为圆关于直线对称,所以直线过圆心,则,解得,则直线的斜率是.故选D.6.如图,空间四边形中,,点在上,且是的中点,则()A. B.C. D.【答案】B【解析】试题解析:根据向量的减法可知,因为点在上,且是的中点,所以,,所以,故选B.【考点】向量的线性运算.【方法点睛】本题主要考查了向量的线性运算,考查了共线向量定理与平面向量基本定理及向量加法、减法的三角形法则和平行四边形法则,属于中档题.题目给出了空间的一个基底,要求用基向量表示向量,先根据向量减法的三角形法则表示为,再根据共线向量定理和三角形的中线向量表达式表示出,最后用基向量表示出式中各向量即可.7.下列命题中正确的是()A. 若为真命题,则为真命题;B. 若直线与直线平行,则C. 若命题“”是真命题,则实数的取值范围是或D. 命题“若,则或”的逆否命题为“若或,则”【答案】C【解析】若为真命题,则至少有一个为真命题,则不一定真命题,即选项A错误;若直线与直线平行,则,即,即选项B错误;若命题“”是真命题,则,解得或,即选项C正确;命题“若,则或”的逆否命题为“若且,则”,即选项D错误;故选C.8.一个几何体的三视图如图所示,则这个几何体的表面积为()A. B. C. D.【答案】B【解析】由三视图可知,该几何体是由半个圆锥与一个四棱锥组合而成(如图所示),其中圆锥的底面半径为1,高为,母线长为2,四棱锥的底面是边长为2的正方形,高为,取的中点,连接,则该几何体的表面积为 .故选B.9.圆上到直线的距离等于1的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】圆的圆心到直线的距离,且圆的半径为3,所以圆上到直线的距离等于1的点有3个.故选C.点睛:处理圆上的点与某条直线间的位置关系或直线与圆的位置关系时,一般先研究该圆的圆心到该直线的距离问题.10.如图,三棱锥中,,,点分别是中点,则异面直线,所成的角的余弦值为()A. B. C. D.【答案】A【解析】试题分析:连结ND,取ND的中点E,连结ME,则ME∥AN,∴∠EMC是异面直线AN,CM所成的角,∵AN=,∴ME==EN,MC=,又∵EN⊥NC,∴,∴cos∠EMC=,∴异面直线AN,CM所成的角的余弦值为.【考点】异面直线所成角11.过抛物线的焦点的直线与抛物线交于两点,以为直径的圆的方程为,则()A. 1B. 2C. 3D. 4【答案】B【解析】设过抛物线的焦点的直线与抛物线交于两点,则,又因为以为直径的圆的方程为,所以,解得.故选B.点睛:涉及过抛物线的焦点的弦的长度问题,往往要借助抛物线的定义转化为抛物线上的点到准线的距离,比联立方程利用弦长公式进行求解减少了计算量.12.在棱长为6的正方体中,是中点,点是面所在的平面内的动点,且满足,则三棱锥的体积最大值是()A. 36B.C. 24D.【答案】B【解析】试题分析:因平面,则,同理平面,则,,则,,则,下面研究点在面的轨迹(立体几何平面化),在平面直角坐标系内设,设,因为,所以,化简得:,该圆与的交点纵坐标最大,交点为,三棱锥的底面的面积为18,要使三棱锥体积最大,只需高最大,当在上切时,棱锥的高最大,,.,本题应选,与原答案有出入.【考点】1.直线与平面垂直的性质定理;2.三棱锥的体积;二、填空题13.一个长方体的各顶点均在同一球面上,且同一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为__________.【答案】【解析】设该球的半径为,则,所以此球的表面积为.14.已知两圆和相交于两点,则直线的方程是__________.【答案】【解析】将化为,两圆方程相减得,即,即直线的方程是.15.是经过双曲线焦点且与实轴垂直的直线,是双曲线的两个顶点,若在上存在一点,使,则双曲线离心率的最大值为__________.【答案】【解析】由题意,设,则,因为在上存在一点,使,所以关于的方程有实数根,即关于的方程有实数根,则,解得,即,即双曲线离心率的最大值为.16.已知抛物线,为其焦点,为其准线,过任作一条直线交抛物线于两点,分别为在上的射影,为的中点,给出下列命题:①;②;③;④与的交点在轴上;⑤与交于原点.其中真命题是__________.(写出所有真命题的序号)【答案】①②③④⑤【解析】因为在抛物线上,由抛物线的定义,得,又分别为在上的射影,所以,即①正确;取的中点,则,所以,即②正确;由②得平分,所以,又因为,所以,即③正确;取轴,则四边形为矩形,则与的交点在轴上,且与交于原点,即④⑤正确;故填①②③④⑤.点睛:要注意填空题的一些特殊解法的利用,可减少思维量和运算量,如本题中的特殊位置法(取轴).三、解答题17.设命题:实数满足,其中;命题:实数满足.(1)若且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)命题是一元二次不等式,解得,即.命题是分数不等式,解得,为真,也就是这两个都是真命题,故取它们的交集得;(2)是的充分不必要条件,则是的必要不充分条件,即是的真子集,故,即.试题解析:(1)由得,又,所以,当时,1<,即为真时实数的取值范围是1<.为真时等价于,得,即为真时实数的取值范围是.若为真,则真且真,所以实数的取值范围是.(2)是的充分不必要条件,即,且, 等价于,且,设A=, B=, 则B A;则0<,且所以实数的取值范围是.【考点】一元二次不等式、含有逻辑连接词命题真假性的判断.18.已知圆,直线,过的一条动直线与直线相交于,与圆相交于两点.(1)当与垂直时,求出点的坐标;(2)当时,求直线的方程.【答案】(1);(2)或.【解析】试题分析:(1)先利用与垂直得出直线的斜率和方程,再联立直线与的方程进行求解;(2)设出直线方程,利用直线和圆的弦长公式和圆心到直线的距离公式进行求解.试题解析:(1)由题意,直线的方程为,联立得,所以.(2)当直线与轴垂直时,易知符合题意;当直线与轴不垂直时,设直线的方程为,由,得,解得.故直线的方程为或.点睛:在解决平面解析几何问题时,合理设出直线方程往往是关键的第一步,在设直线方程时要注意该直线是否存在斜率,如本题中斜率不存在时也符合题意.19.如图,直三棱柱中,,为中点,.(1)求证:平面;(2)若,求三棱锥的体积.【答案】(1)详见解析;(2).【解析】试题分析:(1)先利用平面几何知识证得线线垂直,再利用线面垂直的判定定理进行证明;(2)利用线面平行合理转化点到直线的距离,再利用几何体的体积公式进行求解.试题解析:(1)证明:在矩形中,为的中点,且,∴,,∴,∴.又,,∴平面.(2)∵,面,面,∴面,∴.由(1)知面,∴,又,且,∴平面,又,∴,,∴.点睛:在求三棱锥的体积,往往可以合理转化顶点和底面,再作出顶点到底面的垂线,如本题中的.20.已知曲线上的任意一点到点的距离与到直线的距离相等,直线过点,且与交于两点.(1)求曲线的方程;(2)若为中点,求三角形的面积.【答案】(1);(2).【解析】试题分析:(1)由抛物线的定义进行求解;(2)利用点差法求出直线的的斜率和直线方程,再联立直线和抛物线方程,利用弦长公式、点到直线的距离公式和三角形的面积公式进行求解.试题解析:(1)设曲线上任意一点,由抛物线定义可知,曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)设,,则,,所以,因为为中点,所以,所以直线的斜率为,所以直线方程为,即,此时直线与抛物线相交于两点.设为与轴交点,则,由消去得,所以,,所以三角形的面积为.21.如图,已知四棱锥中,平面,,且,是边的中点.(1)求证:平面;(2)求二面角的余弦值大小.【答案】(1)详见解析;(2).【解析】试题分析:(1)先利用三角形的中位线和平行四边形及平行公理证明线线平行,再利用线面平行的判定定理进行证明;(2)建立适当的空间直角坐标系,求出两个半平面的法向量,利用空间向量进行求解.试题解析:(1)证明:取中点,连接,,∵是边的中点,∴,且,又∵,∴,又∵,即,∴,且,∴四边形是平行四边形,∴,又面,面,∴面.(2)解:在底面内过点作直线,则,又平面,以,,所在直线分别为轴,建立空间直角坐标系,如图,则,,,,,则,,,,设面的一个法向量为,则,即,令,则,∴.同理可求面的一个法向量为,,由图可知,二面角是钝二面角,所以其平面角的余弦值为.22.如图,在平面直角坐标系中,已知是椭圆上的一点,从原点向圆作两条切线,分别交椭圆于,.(1)若点在第一象限,且直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,求的值;(3)试问是否为定值?若是,求出该值.【答案】(1);(2);(3)36.【解析】试题分析:(1)圆的半径,直线,互相垂直,且和圆相切, 所以,即,又点在椭圆上,适合椭圆的方程,联立方程组,解之求出圆心坐标即可;(2)写出直线的方程,由圆心到直线的距离等于半径,,化简、整理得,又点适合椭圆的方程,代入化简即可;(3)由(2)知,从而可得,将,代入椭圆方程求得,,代入得,并可求得,即可求得.(1)由圆的方程知圆的半径,因为直线,互相垂直,且和圆相切,所以,试题解析:即①又点在椭圆上,所以②联立①②,解得,所以,所求圆的方程为.(2)因为直线和都与圆相切,所以,,化简得,因为点在椭圆上,所以,即,所以.(3)方法一(1)当直线、不落在坐标轴上时,设,,由(2)知,所以,故,因为,,在椭圆上,所以,,即,,所以,整理得,所以,所以.方法(二)(1)当直线,不落在坐标轴上时,设,,联立,解得,所以.同理,得,由(2),得.所以.(2)当直线、落在坐标轴上时,显然有.综上:.【考点】1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系.。
南山区期末考高二数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列函数中,是奇函数的是()A. y = x^2 - 1B. y = x^3C. y = |x|D. y = x^2 + x2. 已知函数f(x) = 2x + 1,则函数f(-x)的图像是()A. 向左平移1个单位B. 向右平移1个单位C. 向上平移1个单位D. 向下平移1个单位3. 下列不等式中,正确的是()A. |x| > 2B. x^2 < 4C. x > 2 或 x < -2D. x^2 > 44. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10为()A. 95B. 100C. 105D. 1105. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角θ的余弦值cosθ为()A. 1/2B. 1/3C. 2/3D. 16. 下列方程中,无实数解的是()A. x^2 - 2x + 1 = 0B. x^2 + 2x + 1 = 0C. x^2 - 4x + 4 = 0D. x^2 + 4x + 4 = 07. 已知函数f(x) = x^2 - 4x + 4,则函数f(x)的图像的对称轴为()A. x = 2B. x = -2C. y = 2D. y = -28. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第10项an为()A. 19B. 20C. 21D. 229. 已知函数f(x) = log2(x + 1),则函数f(x)的定义域为()A. x > -1B. x ≥ -1C. x < -1D. x ≤ -110. 已知直线l的方程为3x - 4y + 12 = 0,则直线l与x轴的交点坐标为()A. (4, 0)B. (-4, 0)C. (0, 3)D. (0, -3)二、填空题(本大题共5小题,每小题5分,共25分)11. 已知函数f(x) = x^2 - 3x + 2,则f(2)的值为______。
广东省深圳市南山区2017-2018学年高三上学期期末数学试卷(理科) Word版含解析
2017-2018学年广东省深圳市南山区高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=Z,集合A={1,6},A∪B={2,0,1,6},那么(∁U A)∩B=()A.∅B.{3,4,5}C.{2,0}D.{1,6}2.已知复数z=x+yi(x、y∈R),且有,则|z|=()A.5 B.C.3 D.3.设a,b∈R,则“a>b>1”是“a﹣b<a2﹣b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.二项式的展开式中,若常数项为60,则m2n2的值为()A.2 B.3 C.4 D.65.实数x、y满足条件,则z=x﹣y的最小值为()A.1 B.﹣1 C.D.26.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方=0.7x0.35t7.设α是第二象限角,且,则tan2α=()A.B.C.D.8.阅读如下程序框图,运行相应的程序,则程序运行后输出i的结果为()A.7 B.8 C.9 D.109.如图,在矩形ABCD中,,BC=1,沿AC将矩形ABCD折叠,连接BD,所得三棱锥D﹣ABC的正视图和俯视图如图所示,则三棱锥D﹣ABC的侧视图的面积为()A.B.C.D.10.如图,已知F1,F2是双曲线的下,上焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为()A.3 B.2 C.D.11.在△ABC中,A,B,C的对边分别为a,b,c,a=10,,且acosC,bcosB,ccosA 成等差数列,则c=()A.15 B.5 C.3 D.2512.已知椭圆E: +=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.(0,] B.(0,]C.[,1)D.[,1)二、填空题:本大题共4小题,每小题5分.13.设随机变量X服从正态分布N(1,σ2),且P(X≤a2﹣1)=P(X>a﹣3),则正数a=.14.设a>0,a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R 上是增函数”的条件.(在“充分不必要条件”、“必要不充分”、“充分必要”、“既不充分有不必要”中选一个填写)15.已知数列{a n}满足,a1=1,S n是数列{a n}的前n项和,则S2015=.16.函数f(x)=cos(2x+φ)(|φ|<)的图象向左平移个单位后关于原点对称,则当函数f(x)在[0,]上取得最小值时,x=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知{a n}是一个单调递增的等差数列,且满足是a2,a4的等比中项,a1+a5=10.数列{b n}满足.(1)求数列{a n}的通项公式a n;(2)求数列{b n}的前n项和T n.18.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示,其中样本数据分组区间为[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)试估计全市学生参加汉字听写考试的平均成绩;(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上(含80分)的概率;(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为X,求X的分布列及数学期望.(注:频率可以视为相应的概率)19.如图所示,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB ∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一点,且CE=2PE.(1)求证:AE⊥平面PBC;(2)求二面角A﹣PC﹣D的大小.20.如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.(Ⅰ)若点O到直线l的距离为,求直线l的方程;(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.21.已知函数f(x)=lnx﹣ax+,其中a为常数.(Ⅰ)若f(x)的图象在x=1处的切线经过点(3,4),求a的值;(Ⅱ)若0<a<1,求证:;(Ⅲ)当函数f(x)存在三个不同的零点时,求a的取值范围.请考生在22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲]22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(1)求证:.(2)求AD•AE的值.[选修4-4:极坐标系与参数方程]23.在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.[选修4-5:不等式选讲]24.设函数f(x)=|2x﹣a|.(1)当a=3时,解不等式,f(x)<|x﹣2|.(2)若f(x)≤1的解集为[0,1], +=a(m>0,n>0),求证:m+2n≥4.2015-2016学年广东省深圳市南山区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=Z,集合A={1,6},A∪B={2,0,1,6},那么(∁U A)∩B=()A.∅B.{3,4,5}C.{2,0}D.{1,6}【考点】交、并、补集的混合运算.【分析】直接利用补集和交集的运算进行求解即可得到答案【解答】解:全集U=Z,集合A={1,6},A∪B={2,0,1,6},∴集合B⊆A∪B,并且一定有0,2,∴∁U A也一定有0,2,∴(∁U A)∩B={0,2}.故选:C.2.已知复数z=x+yi(x、y∈R),且有,则|z|=()A.5 B.C.3 D.【考点】复数求模.【分析】利用复数的乘法运算法则化简复数,通过复数相等求出结果即可.【解答】解:复数z=x+yi(x、y∈R),且有,x=1+y+(y﹣1)i,解得y=1,x=2,|z|=|2+i|=.故选:B.3.设a,b∈R,则“a>b>1”是“a﹣b<a2﹣b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:设p:a>b>1;则a﹣b>0,q:a﹣b<a2﹣b2化简得(a﹣b)<(a+b)(a﹣b),又∵a,b∈R,∴p⇒q,q推不出p,∴P是q的充分不必要条件,即“a>b>1”是“a﹣b<a2﹣b2”的充分不必要条件,故选:A.4.二项式的展开式中,若常数项为60,则m2n2的值为()A.2 B.3 C.4 D.6【考点】二项式系数的性质.【分析】根据二项展开式的通项公式T r+1,求出常数项的表达式,即可求出m2n2的值.【解答】解:(x+)6的二项展开式的通项公式为:T r+1=••=••n r•x6﹣3r,令6﹣3r=0,解得r=2;所以展开式中的常数项为:•m2•n2=15m2n2=60,解得m2n2=4.故选:C.5.实数x、y满足条件,则z=x﹣y的最小值为()A.1 B.﹣1 C.D.2【考点】简单线性规划.【分析】由题意作出其平面区域,将z=x﹣y化为y=x﹣z,﹣z相当于直线y=x﹣z的纵截距,由几何意义可得.【解答】解:由题意作出其平面区域,将z=x﹣y化为y=x﹣z,﹣z相当于直线y=x﹣z的纵截距,则过点(0,1)时,z=x﹣y取得最小值,则z=0﹣1=﹣1,故选B.6.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()【考点】回归分析的初步应用.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.7.设α是第二象限角,且,则tan2α=()A.B.C.D.【考点】二倍角的正切.【分析】根据题意,利用同角三角函数的基本关系算出sinα,可得tanα,再由二倍角的正切公式加以计算,可得tan2α的值.【解答】解:∵,∴sin2α=1﹣cos2α=.又∵α是第二象限角,得sinα>0,∴sinα=,由此可得tanα=﹣,因此tan2α==.故选:D.8.阅读如下程序框图,运行相应的程序,则程序运行后输出i的结果为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=lg,不满足退出循环的条件,i=3;再次执行循环体后,S=,不满足退出循环的条件,i=5;再次执行循环体后,S=,不满足退出循环的条件,i=7;再次执行循环体后,S=,不满足退出循环的条件,i=9;再次执行循环体后,S=,满足退出循环的条件,故输出的i值为9,故选:C9.如图,在矩形ABCD中,,BC=1,沿AC将矩形ABCD折叠,连接BD,所得三棱锥D﹣ABC的正视图和俯视图如图所示,则三棱锥D﹣ABC的侧视图的面积为()A.B.C.D.【考点】简单空间图形的三视图.【分析】由题意知平面ABD⊥平面BCD,三棱锥A﹣BCD侧视图为等腰直角三角形,两条直角边分别是过B和D向AC所做的垂线,求出直角边的长度,即可得侧视图的面积.【解答】解:由正视图和俯视图可知平面ABD⊥平面BCD,三棱锥A﹣BCD侧视图为等腰直角三角形,两条直角边分别是过A和C向BD所做的垂线,由面积相等可得直角边长为=,∴侧视图面积为S△=×=.故选:C.10.如图,已知F1,F2是双曲线的下,上焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为()A.3 B.2 C.D.【考点】双曲线的简单性质.【分析】由已知F2(0,c),直线PF2:y﹣c=﹣,过F2点作以F1为圆心,|OF1|为半径的圆的方程为x2+(y+c)2=c2,联立,求出P,从而求出M,由此能求出双曲线的离心率.【解答】解:∵F1,F2是双曲线的下,上焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,∴F2(0,c),|F1F2|=2c,|PF1|=c,∴直线PF2的斜率k=﹣,∴直线PF2:y﹣c=﹣,过F2点作以F1为圆心,|OF1|为半径的圆的方程为x2+(y+c)2=c2,联立,得P(,﹣c),∴M(,),∵切线段PF2被一条渐近线平分,∴M(,)在渐近线y=上,∴,∴b=,∴c2=a2+b2=4a2,c=2a,∴双曲线的离心率为e=.故选:B.11.在△ABC中,A,B,C的对边分别为a,b,c,a=10,,且acosC,bcosB,ccosA 成等差数列,则c=()A.15 B.5 C.3 D.25【考点】余弦定理的应用;三角形中的几何计算.【分析】先根据等差数列的性质,以及正弦定理和两角和的正弦公式求出B=60°,再根据余弦定理即可求出c的值.【解答】解、∵acosC、bcosB、ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理==,∴2sinBcosB=sinAcosC+sinCcosA,即2sinBcosB=sin(A+C)=sinB,∵A,B,C为△ABC的内角,∴sinB≠0,∴cosB=,∴B=60°,由余弦定理,可得b2=a2+c2﹣2accosB,a=10,,∴c2﹣10c﹣15=0,解得c=15,故选:A.12.已知椭圆E: +=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.(0,] B.(0,]C.[,1)D.[,1)【考点】直线与圆锥曲线的关系.【分析】如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0,b),由点M到直线l的距离不小于,可得,解得b≥1.再利用离心率计算公式e==即可得出.【解答】解:如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.取M(0,b),∵点M到直线l的距离不小于,∴,解得b≥1.∴e==≤=.∴椭圆E的离心率的取值范围是.故选:A.二、填空题:本大题共4小题,每小题5分.13.设随机变量X服从正态分布N(1,σ2),且P(X≤a2﹣1)=P(X>a﹣3),则正数a=﹣3或2.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据正态曲线关于x=1对称,得到两个概率相等的区间关于x=1对称,得到关于a 的方程,解方程即可.【解答】解:∵随机变量X服从正态分布N(1,σ2),且P(X≤a2﹣1)=P(X>a﹣3),∴a2﹣1+a﹣3=2,∴a=﹣3或2,故答案为:﹣3或2.14.设a>0,a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R 上是增函数”的充分不必要条件.(在“充分不必要条件”、“必要不充分”、“充分必要”、“既不充分有不必要”中选一个填写)【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数f (x )=a x 在R 上是减函数求出a 的范围,代入函数g (x )=(2﹣a )x 3,分析函数的增减性,然后根据函数g (x )=(2﹣a )x 3在R 上是增函数,求出a 的范围,判断函数f (x )=a x 在R 上是否为减函数.【解答】解:由函数f (x )=a x 在R 上是减函数,知0<a <1,此时2﹣a >0,所以函数g (x )=(2﹣a )x 3在R 上是增函数,反之由g (x )=(2﹣a )x 3在R 上是增函数,则2﹣a >0,所以a <2,此时函数f (x )=a x 在R 上可能是减函数,也可能是增函数,故“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2﹣a )x 3在R 上是增函数”的充分不必要的条件.故答案为充分不必要.15.已知数列{a n }满足,a 1=1,S n 是数列{a n }的前n 项和,则S 2015= ﹣1 .【考点】数列递推式.【分析】由数列{a n }满足,a 1=1,可得a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k﹣1=﹣1,a 4k =1,k ∈N *.即可得出.【解答】解:∵数列{a n }满足,a 1=1,∴a 2=﹣1,a 3=﹣1,a 4=1,a 5=1…,∴a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k ﹣1=﹣1,a 4k =1,k ∈N *.即数列各项的值呈周期性出现 ∴S 2015=503×(1﹣1﹣1+1)+(1﹣1﹣1)=﹣1. 故答案为:﹣1.16.函数f (x )=cos (2x +φ)(|φ|<)的图象向左平移个单位后关于原点对称,则当函数f (x )在[0,]上取得最小值时,x=.【考点】函数y=Asin (ωx +φ)的图象变换.【分析】由条件根据函数y=Acos (ωx +φ)的图象变换规律,余弦函数的图象的对称性可得+φ=k π+,k ∈z ,由此根据|φ|<求得φ的值.得到函数解析式即可得解.【解答】解:函数f (x )=cos (2x +φ)(|φ|<)的图象向左平移个单位后得到的函数解析式是:y=cos [2(x +)+φ]=cos (2x ++φ),∵函数图象关于原点对称,∴可得+φ=k π+,k ∈z ,∵|φ|<,∴可解得:φ=,即有:f (x )=cos (2x +).由题意x∈[0,],得2x+∈[,],∴cos(2x+)∈[﹣1,],即有当2x+=π即x=时,函数f(x)=cos(2x+)在区间[0,]的取最小值为﹣1.故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知{a n}是一个单调递增的等差数列,且满足是a2,a4的等比中项,a1+a5=10.数列{b n}满足.(1)求数列{a n}的通项公式a n;(2)求数列{b n}的前n项和T n.【考点】数列的求和.【分析】(1)设等差数列{a n}的公差为d,运用等比数列的中项的性质和等差数列的通项公式即可得出;(2)利用数列的求和方法:“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)设等差数列{a n}的公差为d,则依题知d>0.由2a3=a1+a5=10,又可得a3=5.由是a2,a4的等比中项,可得a2a4=21,得(5﹣d)(5+d)=21,可得d=2.∴a1=a3﹣2d=1.可得a n=2n﹣1(n∈N*);(2)由(1)得=(2n﹣1)•()n,∴T n=1•+3•+5•+…+(2n﹣1)•()n,①∴T n=1•+3•+5•+…+(2n﹣1)•()n+1,②①﹣②得,T n=+2(++…+()n)﹣(2n﹣1)•()n+1=+2•﹣(2n﹣1)•()n+1,∴T n=3﹣.18.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示,其中样本数据分组区间为[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)试估计全市学生参加汉字听写考试的平均成绩;(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上(含80分)的概率;(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为X,求X的分布列及数学期望.(注:频率可以视为相应的概率)【考点】频率分布直方图;离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(Ⅰ)根据频率分布直方图,计算数据的平均数即可;(Ⅱ)计算被抽到的同学考试成绩在80(分)以上的概率;(Ⅲ)得出X可能的取值,求出X的分布列与期望E(X).【解答】解:(Ⅰ)估计全市学生参加汉字听写考试的平均成绩为:0.1×55+0.2×65+0.3×75+0.25×85+0.15×95=76.5;…(Ⅱ)设被抽到的这名同学考试成绩在80(分)以上为事件A.P(A)=0.025×10+0.015×10=0.4;∴被抽到的这名同学考试成绩在80(分)以上的概率为0.4;…(Ⅲ)从参加考试的同学中随机抽取1名同学的成绩在80(分)以上的概率为P=;X可能的取值是0,1,2,3;∴P(X=0)=••=;P(X=1)=•=;P(X=2)=••=;P(X=3)=••=;X所以E(X)=0×+1×+2×+3×=;…(或X~B(3,),∴E(X)=np=3×=.19.如图所示,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB ∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一点,且CE=2PE.(1)求证:AE⊥平面PBC;(2)求二面角A﹣PC﹣D的大小.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)先证BC⊥平面PAC,可得AE⊥BC,再用勾股定理的逆定理证AE⊥PC,由此能证明AE⊥平面PBC.(2)设AC中点为O,CE中点为M,连DO,OM,DM,由三垂线逆定理知DM⊥PC,∠OMD为二面角A﹣PC﹣D的平面角,由此能求出二面角A﹣PC﹣D的大小.【解答】证明:(1)∵PA⊥平面ABCD,BC⊂平面ABCD,∴BC⊥PA,∵底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,∴AC=BC==,∴AC2+BC2=AB2,∴AC⊥BC,∵AC∩PA=A,∴BC⊥平面PAC,∴AE⊥BC,PC==,∵E是棱PC上一点,且CE=2PE,∴PE=,CE=,∴PA2﹣PE2=AC2﹣CE2,∴AE⊥PC,∵BC∩PC=C,∴AE⊥平面PBC.解:(2)设AC中点为O,CE中点为M,连DO,OM,DM,则OM∥AE,DO⊥平面PAC,由(1)知AE⊥PC,∴OM⊥PC,由三垂线逆定理知DM⊥PC,∠OMD为二面角A﹣PC﹣D的平面角,∵,,∴∠OMD=60°,∴二面角A﹣PC﹣D的大小60°.20.如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.(Ⅰ)若点O到直线l的距离为,求直线l的方程;(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.【考点】直线与圆锥曲线的关系;抛物线的标准方程.【分析】法一:(Ⅰ)抛物线的焦点F(1,0),当直线l的斜率不存在时,即x=1不符合题意.当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),所以,由此能求出直线l的方程.(Ⅱ)直线AB与抛物线相切.设A(x0,y0),则.因为|BF|=|AF|=x0+1,所以B(﹣x0,0),由此能够证明直线AB与抛物线相切.法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,设A(x0,y0),则.设圆的方程为:由此能够证明直线AB与抛物线相切.【解答】解法一:(Ⅰ)抛物线的焦点F(1,0),…当直线l的斜率不存在时,即x=1不符合题意.…当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),即kx﹣y﹣k=0.…所以,,解得:.…故直线l的方程为:,即.…(Ⅱ)直线AB与抛物线相切,证明如下:…(法一):设A(x0,y0),则.…因为|BF|=|AF|=x0+1,所以B(﹣x0,0).…所以直线AB的方程为:,整理得: (1)把方程(1)代入y2=4x得:,…,所以直线AB与抛物线相切.…解法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,证明如下:…设A(x0,y0),则.…设圆的方程为:,…当y=0时,得x=1±(x0+1),因为点B在x轴负半轴,所以B(﹣x0,0).…所以直线AB的方程为,整理得: (1)把方程(1)代入y2=4x得:,…,所以直线AB与抛物线相切.…21.已知函数f(x)=lnx﹣ax+,其中a为常数.(Ⅰ)若f(x)的图象在x=1处的切线经过点(3,4),求a的值;(Ⅱ)若0<a<1,求证:;(Ⅲ)当函数f(x)存在三个不同的零点时,求a的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的单调性.【分析】(Ⅰ)求出原函数的导函数,得到f'(1)=1﹣2a,又,得1﹣2a=2,求得a=;(Ⅱ)求出,构造函数,由导数求得得答案;(Ⅲ)求出原函数的导函数,然后分a≤0,a,0三种情况讨论f(x)的零点的个数.【解答】解:(Ⅰ)∵f(x)=lnx﹣ax+,∴,∴f'(1)=1﹣2a,又,∴1﹣2a=2,a=;(Ⅱ),令,则,∴x∈(0,1)时,g'(x)<0,g(x)单调递减,故x∈(0,1)时,,∴当0<a<1时,;(Ⅲ)∵,①当a≤0时,在(0,+∞)上,f'(x)>0,f(x)递增,∴f(x)至多只有一个零点,不合题意;②当a时,在(0,+∞)上,f′(x)≤0,f(x)递减,∴f(x)至多只有一个零点,不合题意;③当0时,令f′(x)=0,得,此时,f(x)在(0,x1)上递减,(x1,x2)上递增,(x2,+∞)上递减,∴f(x)至多有三个零点.∵f(x)在(x1,1)递增,∴f(x1)<f(1)=0,又∵,∴,使得f(x0)=0,又,∴恰有三个不同零点:,∴函数f(x)存在三个不同的零点时,a的取值范围是.请考生在22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲]22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(1)求证:.(2)求AD•AE的值.【考点】与圆有关的比例线段.【分析】(1)由弦切角定理推导出△PAB~△PCA,由此能证明.(2)由切割线定理得PA2=PB•PC,由AE是∠BAC的角平分线,得△AEC~△ABD,由此能求出AD•AE的值.【解答】证明:(1)∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB~△PCA,∴解:(2)∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴,,∵AE是∠BAC的角平分线,且∠AEC=∠ABD,∴△AEC~△ABD,∴,∴.[选修4-4:极坐标系与参数方程]23.在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)利用cos2α+sin2α=1消参数得到C1的普通方程,将极坐标方程左侧展开即可得到直角坐标方程;(II)利用C1的参数方程求出P到C2的距离,根据三角函数的性质求出距离的最小值.【解答】解:(I)由得cosα=,sinα=y.∴曲线C1的普通方程是.∵,∴ρsinθ+ρcosθ=8.即x+y﹣8=0.∴曲线C2的直角坐标方程时x+y﹣8=0.(II)设P点坐标(,sinα),∴P到直线C2的距离d==,∴当sin(α+)=1时,d取得最小值=3.[选修4-5:不等式选讲]24.设函数f(x)=|2x﹣a|.(1)当a=3时,解不等式,f(x)<|x﹣2|.(2)若f(x)≤1的解集为[0,1], +=a(m>0,n>0),求证:m+2n≥4.【考点】不等式的证明.【分析】(1)对不等式两边平方、整理,再由二次不等式的解法即可得到;(2)求出f(x)≤1的解集,由题意解得a=1,即,再运用乘1法和基本不等式即可得证.【解答】解:(1)当a=3时,不等式变形为|2x﹣3|<|x﹣2|,两边平方整理得3x2﹣8x+5<0,解得,所以不等式的解集为(2)证明:由f(x)≤1得,由f(x)≤1的解集为[0,1],可得=0,=1,解得a=1,则,所以,当且仅当m=2n=2,取得等号.2016年7月30日。
广东省深圳市南山区高二数学上学期期末考试试题 理 新人教A版
广东省深圳市南山区2013-2014学年高二数学上学期期末考试试题理 新人教A 版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 注意事项: 1、答卷前,考生首先检查答题卡是否整洁无缺损.之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点.2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3、非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排、如需改动,先划掉原来的答案,然后再写上新的答案、不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁,不折叠,不破损、考试结束后,将答题卡交回.5、考试不可以使用计算器.第Ⅰ卷(选择题共50分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上................... 1、若p :x>1;q :x ≥1,则p 是q 的A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件 2、设a ,b ,c ,d ∈R ,且a>b ,c>d ,则下列结论中正确的是 A 、ac>bd B 、a -c>b -d C 、a+c>b+d D 、a b d c> 3、设等比数列{a n }的公比q=2,前n 项和为S n ,则42S a = A 、2 B 、4 C 、8.5 D 、7.54、与椭圆22x y 14+=共焦点且过点P(2,1)的双曲线方程是 A 、22x y 14-= B 、22x y 12-= C 、22x y 133-= D 、22y x 12-= 5、设x>1,则1y x x 1=+-的最小值是A 、1B 、2C 、3D 、4 6、在△ABC 中,a=2bcosC ,则这个三角形一定是A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰或直角三角形7、若双曲线2222x y 1a b-=(a>0,b>0)的渐近线与圆(x -2)2+y 2=1相切,则双曲线的离心率为A 、43 BC 、2 D8、在R 上定义运算⊗:x y x(1y)⊗=-,若不等式(x a)(x a)1-⊗+<,对任意实数都成立,则a 的取值范围为A 、-1<a<1B 、0<a<2C 、13a 22-<< D 、31a 22-<<第Ⅱ卷(非选择题共100分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.......... 9、已知命题p :∀x ∈R ,都有sinx ≤1,则命题┐p 是_______________. 10、不等式x 2-4x+3<0的解集为_______. 11、已知抛物线C :x 2=4y 上一点P 到定点A(0,1)的距离是2,则点P 到x 轴的距离为________. 12、已知a (211)=-,,,b (m 11)=-,,,若a //b ,则m=_____. 13、已知数列{a n }是等差数列,a 1=1,公差d ≠0, 若a 1,a 2,a 5成等比数列,则a 8=______.14、已知nn 1a ()3=,把数列{a n }的各项排列成如下的三角形状,记A(m ,n)表示第m行的第n 个数,则A(10,12)=______.三、解答题:本大题共6小题,共80分,解答应写出文字说明或演算步骤、15、(本小题满分12分)设命题p :关于x 的方程x 2+2ax -2a=0无实根;命题q :关于x 的方程x 2+ax+4>0的解集为R. 如果命题“p ∧q ”为假命题,“┐q ”为假命题,求实数a 的取值范围.16、(本小题满分12分)在锐角△ABC 中,a ,b ,c 是角A ,B ,C=2csinA . (1)求角C 的度数; (2)若c =△ABC的面积为2,求a+b 的值.17、(本小题满分14分)已知实数x ,y 满足不等式:x y 201x 2y 2-+≥⎧⎪≤≤⎨⎪≥⎩.(1)求yx的取值范围;(2)不等式xy ≤ax 2+2y 2恒成立,求实数a 的取值范围.a 1a 2 a 3 a 4a 5 a 6 a 7 a 6 a 9…………………………………………………………18、(本小题满分14分)如图,在底面为直角梯形的四棱锥P-ABCD 中,AD ∥BC ,∠ABC=90o ,PA ⊥平面ABCD ,PA=3,AD=2,AB =BC=6,请建立适当的空间直角坐标系解决: (1)求证:BD ⊥平面PAC ; (2)求二面角P-BD-A 的大小.19、(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点B(0,4),离心率e=0.6. (1)求椭圆C 的方程;(2)若O(0,0),P(2,2),试探究在椭圆C 内部是否存在整点Q(平面内横、纵坐标都是整数的点为整点),使得△OPQ 的面积S △OPQ =4?若存在,请指出共有几个这样的点(不必具体求出这些点的坐标);否则,说明理由.20、(本小题满分14分)已知S n 为数列{a n }的前n 项和,且有a 1=1,S n +1= a n+1 (n ∈N*). (1)求数列{a n }的通项公式; (2)若n nnb =4a ,求数列{b n }的前n 项和T n ; (3)是否存在最小正整数m ,使得不等式nk=1k k k +2<m S (T +k +1)⋅∑对任意正整数n 恒成立,若存在,求出m 的值;若不存在,说明理由.高二数学(理)参考答案及评分标准2014、01、8一、选择题:(8×5′=40′)题号1 2 3 4 5 6 7 8 答案A C DBC A B C 二、填空题:(6×5′=30′)9、∃x 0,sin x 0>1;10、(1,3);11、1;12、-2;13、15; 14、931()3. 三、解答题:(80′)15、(本小题满分12分)解: ∵方程程x 2+2ax -2a=0无实根,∴△=4a 2+8a<0,解得-2<a<0, ∴p :-2<a<0. ……3分 又∵不等式x 2+ax+4>0的解集为R ,∴△=a 2-16<0,解得-4<a<4, ∴q :-4<a<4. ……6分 ∵命题“p ∧q ”为假命题,“┐q ”为假命题,∴p 为假命题,q 为真命题, ……8分 ∴a 04a 4≥⎧⎨-<<⎩或a 24a 4≤-⎧⎨-<<⎩, ……10分∴-4<a≤-2或0≤a<4. ……12分 16、(本小题满分12分)=2sinCsinA , ……3分∵A , C 为锐角,∴sinC =2,C =3π.……6分(2) 1S =absinC =2,∴ab=6, ……9分 由余弦定理的:c 2=a 2+b 2-2abcosC=(a+b)2-3ab ,∴(a+b)2=25,a+b=5. ……12分 17、(本小题满分14分)解:(1)在直角坐标系中作出(x ,y)的可行域: ……4分 由y y 0x x 0-=-,可知y x是(1)的可行域 内(x ,y)与(0,0)连线的斜率,……6分 结合图形得:y[13]x∈,. ……8分 (2)由题意得:222xy 2y y y a 2()x x x -≥=-⋅2y 112()x 48=-⋅-+,……11分此时,2max y 11[2()]1x 48-⋅-+=-,在y1x=时取得; ……13分 ∴a≥-1 ……14分18、(本小题满分14分)(1)证明:由题可知,AB 、AD 、AP 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图的空间直角坐标系,则A(0,0,0),B(2300),,,C(2360),,,D(0,2,0),P (0,0,3), ……4分∴AP (003)=,,,AC (2360)=,,,BD (20)=-, ∴BD AP 0⋅=,BD AC 0⋅=,∴BD ⊥AP ,BD ⊥AC ,又PA ∩AC=A ,∴BD ⊥平面PAC. ……7分显然平面ABD 的一个法向量为m (001)=,,,设平面PBD 的法向量为n (x y z)=,,,则n BD 0⋅=,n BP 0⋅=,(2)由(1)知,BP (03)=-,∴2y 03z 0⎧-+=⎪⎨-+=⎪⎩,……11分∴y z 3⎧=⎪⎨=⎪⎩令x = 则n (332)=,,, ……13分 ∴m n 1cos m n 2|m ||n |⋅<>==,. ……14分19、(本小题满分14分)解:(1)设椭圆C 的方程为2222x y +=1a b(a>b>0), ……1分依题意得,b=4,c 3=a 5,又a 2=b 2+c 2, ……3分∴a=5,b=4,c=3, ……4分所以椭圆C 的方程为22x y +=12516. ……5分 (2)依题意得,|OP |=OP 的方程为 y=x , ……6分因为ΔOPQ S =4,点Q 到直线OP 的距离为 ……7分 所以点Q 在与直线OP 平行且距离为l 上, ……8分设l :y=x+m ,则= 解得m=±4, ……10分 当m=4时,由22y =x +4x y +<12516⎧⎪⎨⎪⎩,消元得41x 2+200x<0,即200x 041-<<,x ∈Z ,∴x=―4,―3,―2,―1,相应的y 也是整数,此时满足条件的点Q 有4个, ……13分 当m=-4时,由对称性,同理也得满足条件的点Q 有4个.综上,存在满足条件的点Q ,这样的点有8个. ……14分 20、(本小题满分14分)解:(1)当n=1时,a 2= S 1+1= a 1+1=2; ……1分 当n≥2时,S n +1= a n+1,S n-1+1= a n ,兩式相减得,a n+1=2a n , ……2分 又a 2=2a 2,所以{a n }是首项为1,公比为2的等比数列,所以a n =2n-1. ……4分(2)由(1)知a n =2n-1,所以n n 1n+1n n n nb ==4a 422-=⋅, 所以n 234n+1123n T =...2222++++,n 345n+1n+21123n 1nT = (222222)-+++++,两式相减得,n 234n+1n+211111n T =...222222++++-2n n+2n+211(1)n 1n +222=122212--=-- 所以n n+2n +2T 12=-(或写成n n n 1T 1(1)22=-+⋅或n n n+11nT 122=--均可给至8分). ……8分(3)k k k k k+1k+1k +2k +21k +21S (T +k +1)(21)(1+k +1)(21)(1)22==⋅-⋅--⋅- k+1k k+1k k+12112()(21)(21)2121==--⋅---, ……11分 所以n nk k+1k+1k=1k=1k k k +2111=2()2(1)2S (T +k +1)212121-=-<⋅---∑∑,若不等式nk=1k k k +2<m S (T +k +1)⋅∑对任意正整数n 恒成立,则m≥2,所以存在最小正整数m=2,使不等式nk=1k k k +2<m S (T +k +1)⋅∑对任意正整数n 恒成立. ……14分。
2016-2017学年广东省高二上学期期末考试数学(理)试题Word版含答案
2016-2017学年广东省高二上学期期末考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间之间坐标系中,平面α内有(),2,1M m -和()0,,3N m 两点,平面α的一个法向量为()3,1,2N =,则m 等于( )A .2-B .2C .3D .3-2.某几何体的三视图如图所示,则俯视图的面积为( )A .53B .532 C .5 D .52 3.已知0,2πθ⎛⎫∈ ⎪⎝⎭,若直线cos 210x y θ++=与直线sin 230x y θ--=垂直,则sin θ等于( )A .13B .23C .12D .144.已知双曲线()220mx y m m -=>的一条渐近线的倾斜角是直线30x y -=倾斜角的2倍,则m 等于( )A .3B .3 C.2 D .25.已知命题:p x R ∃∈,320x -≤.若()p q ⌝∧是假命题,则命题q 可以是( )A .椭圆22342x y +=的焦点在x 轴上B .圆222410x y x y +---=与x 轴相交 C.若集合A B A ⋃=,则B A ⊆ D .已知点()1,2A 和点()3,0B ,则直线230x y +-=与线段AB 无交点6.空间四边形OABC 中,OA a = ,OB b = ,OC c = ,点M 在OA 上,且2OM MA =,N 为BC 中点,则MN等于( )A .211322a b c -++B .121232a b c -+ C.221332a b c +- D .112223a b c +-7.“11m -≤≤”是“圆()221x m y ++=与圆()2224x y -+=有公共点”的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.已知α,β是两个不同平面,m ,n 是两条不同直线,给出下列命题,其中正确的命题的个数是( ) (1)若m α⊥,m β⊂,则αβ⎰;(2)若m α⊂,n α⊂,m β∥,n β∥,则a β∥;(3)如果m α⊂,n α⊄,m ,n 是异面直线,那么n 与α相交; (4)若m αβ⋂=,n m ∥,且n α⊄,n β⊄,则n α∥且n β∥. A . B . C. D .9.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是矩形,且3PA AD ==,6CD =,E 、F 分别是AB 、PD 的中点,则点F 到平面PCE 的距离为( )A .324 B .2 C.334 D .3210.已知直线:0l ax y b ++=与圆22:4O x y +=相交于A 、B 两点,()3,1M -,且23OA OB OM +=,则3ab 等于( )A .3-B .4- C.3 D .411.一个几何体的三视图如图所示,则该几何体的体积为( )A .143B .6 C.7 D .8 12.已知点A 是抛物线()2:20M y px p =>与圆()222:4C x y a +-=在第一象限的公共点,且点A 到抛物线M 焦点F 的距离等于a .若抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,O 为坐标原点,则直线OA 被圆C 所截得的弦长为( ) A .2 B .23 C.723 D .726第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.底面半径为3的圆柱的侧面积是圆柱表面积的12,则该圆柱的高为 . 14.在平面直角坐标系中,正方形ABCD 的中心坐标为()1,0,其一边AB 所在直线的方程为10x y -+=,则边CD 所在直线的方程为 .15.椭圆()222210x y a b a b +=>>的右顶点和上顶点分别为A 和B ,右焦点为F .若AF 、AB 、3BF 成等比数列,则该椭圆的离心率为 .16.在正方体1111ABCD A B C D -中,E 是11A B 上一点,若平面EBD 与平面ABCD 所成锐二面角的正切值为322,设三棱锥11A A D E -外接球的直径为a ,则a AB= . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在平面直角坐标系中,()1,1A -,()1,3B ,点C 在直线10x y -+=上. (1)若直线AC 的斜率是直线BC 的斜率的2倍,求直线AC 的方程; (2)点B 关于y 轴对称点为D ,若以DC 为直径的圆M 过点A ,求C 的坐标.18. (本小题满分12分)已知双曲线()22103x y m m -=>的离心率为e ,经过第一、三象限的渐近线的斜率为k ,且2e k ≥. (1)求m 的取值范围;(2)设条件:2p e k ≥;条件()()2:2220q m a m a a -+++≤.若p 是q 的必要不充分条件,求a 的取值范围.在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是一直角梯形,90BAD ∠=︒,AD BC ∥,AB BC a ==,233PA a =,2AD a =.(1)若AE PD ⊥,E 为垂足,求异面直线AE 与CD 所成角的余弦值; (2)求平面PAB 与平面PCD 所成的锐二面角的正切值.20. (本小题满分12分)已知过点()4,0A -的动直线l 与抛物线()2:20G x py p =>相交于B 、C 两点.当直线l 的斜率是12时,4AC AB = .(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.如图,四边形ABCD 是矩形,MD ⊥平面ABCD ,NB MD ∥,且2AD =,1NB =,3CD MD ==. (1)过B 作平面BFG ∥平面MNC ,平面BFG 与CD 、DM 分别交于F 、G ,求AF与平面MNC 所成角的正弦值;(2)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值.22. (本小题满分12分)已知()1,0F c -、()2,0F c 分别是椭圆()222:104x y G a a +=>的左、右焦点,点M 是椭圆上一点,且212MF F F ⊥,1243MF MF a -=.(1)求椭圆G 的方程;(2)若斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.2016-2017学年广东省高二上学期期末考试数学(理)试题答案一、选择题1.C 由题意得n MN ⊥,则0n MN = ,即3240m m -+++=,解得3m =.2.B 由三视图可知,俯视图是一个直角梯形,上、下底和高分别为2、3和3,其面积为()15323322⨯+⨯=. 3.D 由题意得cos 2sin 2cos 4sin cos 0θθθθθ-=-=,0,2πθ⎛⎫∈ ⎪⎝⎭,1sin 4θ∴=.4.A 由已知得双曲线()2210y x m m-=>的渐近线y mx =的倾斜角为60︒,则tan 603m =︒=,得3m =. 5.D 易判断命题p 是假命题,若()p q ∧是假命题,则q 为假命题,选项A 、B 、C 均正确,对于D ,作图知直线230x y +-=与线段AB 有交点,所以选D . 6.A 211211322322MN MO ON OA OB OC a b c =+=-++=-++.7.A 若圆()221x m y ++=与圆()2224x y -+=有公共点,则21221m -++≤≤,解得53m --≤≤或11m -≤≤,故选A .8.B 根据面面垂直的判定定理可知命题(1)正确;若m α⊂,n α⊂,m β∥,n β∥,则α与β平行或相交,故命题(2)错误;如果m α⊂,n α⊄,m ,n 是异面直线,那么n 与α相交或平行,故命题(3)错误;由线面平行的性质定理可知命题(4)正确.故正确命题有2个,故选B .9.A 建立如图所示的空间直角坐标系,则6,0,32EP ⎛⎫=- ⎪ ⎪⎝⎭,6,3,02EC ⎛⎫= ⎪ ⎪⎝⎭. 设平面PCE 的法向量为(),,n x y z =, 则0,0,n EP n EC =⎧⎨=⎩ 即630,2630.2x z x y ⎧-+=⎪⎪⎨⎪+=⎪⎩取1y =-,得()6,1,1n =-.又330,,22PF ⎛⎫=- ⎪⎝⎭,故点F 到平面PCE 的距离为333222422PF n d n --=== .10.B 23OA OB OM += ,∴直线l 与直线OM 垂直,且圆心O 到直线l 的距离为122233OM ⨯=,即23,2,31a b a ⎧=-⎪⎨=⎪+⎩,作图知0b >,解得3,4.3a b ⎧=-⎪⎨=⎪⎩则34ab =-. 11.D 该几何体的直观图如图所示.连接BD ,则该几何体由直三棱柱BCD EFG -和三棱锥E ABD -组合而成,其体积为1112232238232⨯⨯⨯+⨯⨯⨯⨯=.12.C 抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,又2CA AF a +=,C ∴、A 、F 三点共线,且A 是线段CF 的中点,()0,4C ,,02p F ⎛⎫ ⎪⎝⎭,,24p A ⎛⎫∴ ⎪⎝⎭,则42224p p p =⇒= ,32422p p a ∴=+=, 圆心C 到直线:22OA y x =的距离为04433-=,∴所求的弦长为24722233a ⎛⎫-=⎪⎝⎭. 二、填空题13.3 设高为h ,则由题意得()166292h h πππ=+⨯,解得3h =. 14.30x y --= 直线10x y -+=上的点()1,0-关于点()1,0对称点为()3,0,设直线CD 的方程为0x y m -+=,则直线CD 过()3,0,解得3m =-,所以边CD 所在直线的方程为30x y --=.15.352- AF a c =- 、22AB a b =+、33BF a =,∴由23AF BF AB = 得()223a b a a c +=-,222b a c =- ,2230c ac a ∴-+=,则2310e e -+=,解得352e -=或352e +=(舍去). 16.193过E 作1EF AA ∥交AB 于F ,过F 作FG BD ⊥于G ,连接EG ,则EGF ∠为平面EBD 与平面AB CD -所成锐二面角的平面角,32tan 2EGF ∠=,322EF FG ∴=,设3AB =,则3EF =,2FG ∴=,则12BF B E ==,11A E ∴=,则三棱锥11A A D E -外接球的直径19919a =++=,193a AB ∴=. 三、解答题17.解:(1) 点C 在直线10x y -+=上,∴可设点()(),11C x x x +≠, 直线AC 的斜率是直线BC 的斜率的2倍, ()2131111x x x x +-++∴=--,解得6x =, 则点()6,7C , ∴直线AC 方程为171161y x ++=--,即85130x y --=. (2) 点B 关于y 轴对称点D ,()1,3D ∴-, 以DC 为直径的圆M 过点A , 1AD AC k k ∴=- ,即11311111x x +++=---- , 解得5x =-,即()5,4C --, ∴圆M 的圆心坐标为13,2⎛⎫-- ⎪⎝⎭.18.解:(1)由已知得:43m e +=,3m k =,2e k ≥,3233m m +∴≥,解得3m ≤,0m >,03m ∴<≤,即m 的取值范围(]0,3.(2)()()2222m a m a a -+++ ≤0,()()20m a m a ∴---≤,即2a m a +≤≤,p 是q 的必要不充分条件, 0,23,a a ⎧∴⎨+⎩>≤ 解得01a <≤,即a 的取值范围为(]0,1.19.解:法一:(1)过点E 作EM CD ∥交PC 于M ,连接AM ,则AE 与ME 所成角即为AE 与CD 所成角. 在Rt PAD ∆中,90PAD ∠=︒,由3ADPA=得30PDA ∠=︒, 433PD a ∴=.sin 30AE AD a ∴=︒= . 2223333433a PA PE a PD a ⎛⎫⎪ ⎪⎝⎭=== ,2CD a =.32234433a a CD PE ME a PD a ∴=== . 连接AC . 在ACD ∆中,2AD a =,2AC a =,2CD a =,222AD AC CD ∴=+, 90ACD ∴∠=︒,CD AC ∴⊥,ME AC ∴⊥.又PA ⊥ 底面ABCD ,PA CD ∴⊥,ME PA ∴⊥.ME ∴⊥平面PAC .MA ⊂ 平面PAC ,ME AM ⊥ .∴在Rt AME ∆中,2cos 4ME MEA AE ∠==.∴异面直线AE 与CD 所成角的余弦值为24.法二:(1)如图建立空间直角坐标系A xyz -,则()0,0,0A ,(),0,0B a ,130,,22E a ⎛⎫ ⎪ ⎪⎝⎭,(),,0C a a ,()0,2,0D a ,230,0,3P a ⎛⎫ ⎪ ⎪⎝⎭,130,,22AE a a ⎛⎫= ⎪ ⎪⎝⎭,(),,0CD a a =-. 设AE 与CD 所成角为θ,则()()2222221300222cos 4130022a a a a AE CDAE CDa a a a θ⨯-++===⎛⎫⎛⎫++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴异面直线AE 与CD 所成角的余弦值为24. (2)易知,CB AB ⊥,CB PA ⊥,则CB ⊥平面PAB .∴平面PAB 的一个法向量为()0,,0BC a =. 设平面PCD 的一个法向量为(),,m x y z =,则m PC ⊥,m CD ⊥.而23,,3PC a a a ⎛⎫=- ⎪ ⎪⎝⎭,(),,0CD a a =-,∴由0m PC = ,0m CD = . 得230,30.ax ay az ax ay ⎧+-=⎪⎨⎪-+=⎩,3.x y z y =⎧⎪∴⎨=⎪⎩令1y =,()1,1,3m ∴=. 设向量BC 与m 所成角为α, 则()222222011035cos 5500113BC ma a BC ma a α⨯+⨯+⨯====++++.tan 2α∴=.∴平面PAB 与平面PCD 所成锐二面角的正切值为2.20.解:(1)设()11,B x y ,()22,C x y ,当直线l 的斜率是12时,l 的方程为()142y x =+,即24x y =-. 由22,24,x py x y ⎧=⎨=-⎩得()22880y p y -++=, 12124,8.2y y py y =⎧⎪∴⎨++=⎪⎩①② 又4AC AB = ,214y y ∴=,③由①②③及0p >得:11y =,24y =,2p =, 即抛物线G 的方程为24x y =.(2)易知l 的斜率存在,且不为0,设():4l y k x =+,BC 的中点坐标为()00,x y ,由()24,4x y y k x ⎧=⎪⎨=+⎪⎩得24160x kx k --=,④022C B x x x k +∴==,()200424y k x k k =+=+. ∴线段BC 的中垂线方程为()21242y k k x k k--=--, ∴线段BC 的中垂线在y 轴上的截距为()2224221b k k k =++=+.对于方程④,由216640k k ∆=+>得0k >或4k -<,()2,b ∴∈+∞.21.解:(1)当1CF MG ==时,平面BFG ∥平面MNC .证明:连接BF ,FG ,GB ,1BN GM == ,BN GM ∥,∴四边形BNMG 是平行四边形,BG NM ∴∥,CD MD = ,CF MG =,FG CM ∴∥,BG FG G = ,∴平面BFG ∥平面MNC ,以D 为原点,DA ,DC ,DM 所在直线分别为x ,y ,z 轴,建立空间直角坐标系(如图),则()2,0,0A ,()0,3,0C ,()0,2,0F ,()0,0,3M ,()2,3,1N ,()2,2,0AF ∴=-,()2,3,2MN =-,()0,3,3MC =-, 设平面MNC 的一个法向量(),,n x y z =,则2320,330,x y z y z +-=⎧⎨-=⎩令2y =,则2z =,1x =-,()1,2,2n ∴=-,设AF 与平面MNC 所成角为θ, 则242sin cos ,2223AF n θ+===⨯. (2)设(),,E a b c ,ME MN λ=,则ME MN λ=, (),,3ME a b c =- ,()2,3,2MN =-,∴点E 的坐标为()2,3,32λλλ-,AD ⊥ 平面MDC ,AD MC ∴⊥,欲使平面ADE ⊥平面MNC ,只要AE MC ⊥,()22,3,32AE λλλ=-- ,()0,3,3MC =-,()93320λλ∴--=,得35λ=, 35ME MN ∴=. 22.解:(1)1243MF MF a -=,122MF MF a +=, 153MF a ∴=,23a MF =, 212MF F F ⊥ ,2221212MF MF F F ∴=+. 即22225499a a c =+,则2223c a =, 224c a =- ,212a ∴=,∴椭圆22:1124x y G +=. (2)设直线l 的方程为y x m =+.由221124y x m x y =+⎧⎪⎨+=⎪⎩得22463120x mx m ++-=.① 设A 、B 的坐标分别为()11,x y 、()()2212,x y x x <,AB 的中点为()00,E x y , 则120324x x m x +==-,004m y x m =+=. 因为AB 是等腰PAB ∆的底边,所以PE AB ⊥.所以PE 的斜率241334mk m -==--+,解得2m =. 此时方程①为24120x x +=,解得13x =-,20x =,所以11y =-,22y =,所以32AB =. 此时,点()3,2P -到直线:20AB x y -+=的距离3223222d --+==, 所以PAB ∆的面积1922S AB d == .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年广东省深圳市南山区高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)设命题P:∀x∈R,x2+2>0.则¬P为()A.B.C.D.∀x∈R,x2+2≤02.(5分)等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.53.(5分)“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分也不必要条件4.(5分)已知向量=(2,1,4),=(1,0,2),且+与k﹣互相垂直,则k的值是()A.1 B.C.D.5.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2C.3 D.46.(5分)若双曲线的一条渐近线经过点(3,4),则此双曲线的离心率为()A.B.C.D.7.(5分)若a,b均为大于1的正数,且ab=100,则lg a•lg b的最大值是()A.0 B.1 C.2 D.8.(5分)已知数列{a n}:a1=1,,则a n=()A.2n+1﹣3 B.2n﹣1C.2n+1 D.2n+2﹣79.(5分)若直线2ax+by﹣2=0(a>0,b>0)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣210.(5分)设x,y满足约束条件,则z=x﹣2y的取值范围为()A.(﹣3,3)B.[﹣3,3] C.[﹣3,3)D.[﹣2,2] 11.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x 12.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若△ABC中,AC=,A=45°,C=75°,则BC=.14.(5分)已知数列{a n}满足:,且a2+a4+a6=9,则的值为.15.(5分)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是的必要条件,则a的取值范围为.16.(5分)已知椭圆的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知正项数列{a n}的前n项的和为S n,且满足:,(n∈N+)(1)求a1,a2,a3的值(2)求数列{a n}的通项公式.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且b cos C=(2a﹣c)cos B.(1)求角B的值;(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.19.(12分)已知递增的等比数列{a n}满足:a2•a3=8,a1+a4=9(1)求数列{a n}的通项公式;(2)设数列,求数列{b n}的前n项的和T n.20.(12分)已知点A(﹣,0),B(,0),P是平面内的一个动点,直线P A与PB 交于点P,且它们的斜率之积是﹣.(1)求动点P的轨迹C的方程;(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.21.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD∥EF(3)求二面角E﹣BC﹣A的余弦值.22.(12分)已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.参考答案一、选择题1.B【解析】命题是全称命题,则命题的否定是特称命题,即¬P:,故选:B2.B【解析】公差d=﹣2,S3=21,可得3a1+×3×2×(﹣2)=21,解得a1=9,故选:B.3.C【解析】当+2kπ时,满足但不一定成立,即充分性不成立,当时,成立,即必要性成立,则“”是“”的必要不充分条件,故选:C4.D【解析】+=(3,1,6),k﹣=(2k﹣1,k,4k﹣2),∵+与k﹣互相垂直,∴3(2k﹣1)+k+6(4k﹣2)=0,解得k=,故选:D.5.A【解析】在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC•BC cos C,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.6.D【解析】∵双曲线的一条渐近线经过点(3,4),∴b=a,∴c==a,可得e==.故选:D.7.B【解析】∵a>1,b>1,∴lg a>0,lg b>0,∴lg a•lg b≤()2=()2=1,当且仅当a=b=10时等号成立,即lg a•lg b的最大值是1,故选B.8.A【解析】由,得a n+1+3=2(a n+3),∵a1+3=4≠0,∴数列{a n+3}是以4为首项,以2为公比的等比数列,则,∴.故选:A.9.C【解析】由题意可得直线2ax+by﹣2=0(a>0,b>0)经过圆x2+y2﹣2x﹣4y﹣6=0的圆心(1,2),故有2a+2b=2,即a+b=1.再根据+=+=3++≥3+2=2+2,当且仅当=时,取等号,故+的最小值是3+2,故选:C.10.B【解析】由z=x﹣2y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=,过点C(3,0)时,直线y=的截距最小,此时z最大,代入目标函数z=x﹣2y,得z=3,∴目标函数z=x﹣2y的最大值是3.当直线y=,过点B时,直线y=的截距最大,此时z最小,由,得,即B(1,2)代入目标函数z=x﹣2y,得z=1﹣2×2=﹣3∴目标函数z=x﹣2y的最小值是﹣3.故﹣3≤z≤3,故选:B11.B【解析】如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|,∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3x,故选:B12.A【解析】∵在锐角△ABC中,sin A=,S△ABC=,∴bc sin A=bc=,∴bc=3,①又a=2,A是锐角,∴cos A==,∴由余弦定理得:a2=b2+c2﹣2bc cos A,即(b+c)2=a2+2bc(1+cos A)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.二、填空题13.【解析】∵AC=,A=45°,C=75°,B=180°﹣A﹣C=60°,∴由正弦定理,可得:BC===.故答案为:.14.﹣5【解析】由,得log3(3a n)=log3a n+1,∴a n+1=3a n,且a n>0,∴数列{a n}是公比为3的等比数列,又a2+a4+a6=9,∴=35.∴=.故答案为:﹣5.15.【解析】若x∈N是的必要条件,则M⊆N,若a=1时,不等式(x﹣a)(x+a﹣2)<0的解集N=∅,此时不满足条件.若a<1,则N=(a,2﹣a),则满足,得,此时a≤﹣,若a>1,则N=(2﹣a,a),则满足,得,此时a≥,综上,故答案为:16.【解析】如图,由题意,A(﹣c,),∵=2,∴,且x C﹣c=c,得x C=2c.∴C(2c,),代入椭圆,得,即5c2=a2,解得e=.故答案为:.三、解答题17.解:(1)由,取n=1,得,∵a n>0,得a1=1,取n=2,得,解得a2=2,取n=3,得,解a3=3;(2)∵+a n,①∴,②②﹣①得(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n>0,∴a n+1+a n>0,则a n+1﹣a n=1,∴{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)×1=n.18.解:(1)∵b cos C=(2a﹣c)cos B,∴由正弦定理sin B cos C=(2sin A﹣sin C)cos B,∴sin B cos C+cos B sin C=2sin A cos B,∴sin(B+C)=2sin A cos B,又A+B+C=π,∴sin A=2sin A cos B,∴,又B为三角形内角,∴.(2)由题意得2b=a+c=6,又,∴,∴ac=9,∴.19.解:(1)由题意,得a2a3=a1a4=8,又a1+a4=9,所以a1=1,a4=8,或a1=8,a4=1,由{a n}是递增的等比数列,知q>1所以a1=1,a4=8,且q=2,∴,即a n=2n﹣1;(2)由(1)得,所以所以,两式相减,得,得.20.解:(1)设,由,整理得+y2=1,x≠(2)设MN的中点坐标为(x0,y0),联立得(2k2+1)x2+4kx=0,所以,由x0+2y0=0,得k=1,所以直线的方程为:y=x+121.证明:(1)∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC.(2)由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角,由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF.解:(3)以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,),=(﹣2a,0,0),设平面BEC的法向量=(x1,y1,z1),则,取x1=,则=(),设平面ABC的法向量为=(x,y,z),则,取y=,得,设二面角E﹣BC﹣A的平面角为θ.则cosθ===﹣,∴二面角E﹣BC﹣A的余弦值为﹣.22.解:(Ⅰ)焦点F(0,1),显然直线AB的斜率存在,设AB:y=kx+1,联立x2=4y,消去y得,x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),G(x,y),则x1+x2=4k,x1x2=﹣4,所以,所以,消去k,得重心G的轨迹方程为;(Ⅱ)由已知及(Ⅰ)知,,因为,所以DG∥ME,(注:也可根据斜率相等得到),,D点到直线AB的距离,所以四边形DEMG的面积,当且仅当,即时取等号,此时四边形DEMG的面积最小,所求的直线AB的方程为.。